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1 Introduction

Let us recall that a linear operator L acting from a Banach space E into another Banach
space F has the Fredholm property if its image is closed, the dimension of its kernel and the
codimension of its image are finite. As a consequence, the problem Lu = f is solvable if and
only if φi(f) = 0 for a finite number of functionals φi from the dual space F ∗. Such properties
of Fredholm operators are broadly used in different methods of linear and nonlinear analysis.

Elliptic problems in bounded domains with a sufficiently smooth boundary satisfy the
Fredholm property if the ellipticity condition, proper ellipticity and Lopatinskii conditions
are fulfilled (see e.g. [1], [10], [12]). This is the main result of the theory of linear elliptic
problems. When domains are not bounded, such conditions may be not sufficient and the
Fredholm property may not be satisfied. For example, Laplace operator, Lu = ∆u, in Rd

does not satisfy the Fredholm property when considered in Hölder spaces, L : C2+α(Rd) →
Cα(Rd), or in Sobolev spaces, L : H2(Rd) → L2(Rd).

Linear elliptic problems in unbounded domains satisfy the Fredholm property if and only
if, in addition to the conditions stated above, the limiting operators are invertible (see [13]).
In certain simple cases, the limiting operators can be explicitly constructed. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R
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with the coefficients of such operator having limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are given by:

L±u = a±u
′′ + b±u

′ + c±u.

Since the coefficients are constants, the essential spectrum of the operator, that is the set
of complex numbers λ for which the operator L− λ does not satisfy the Fredholm property,
can be explicitly calculated by virtue of the Fourier transform:

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

Invertibility of limiting operators is equivalent to the condition that the essential spectrum
does not contain the origin.

In the case of general elliptic problems, the same assertions hold true. The Fredholm
property is satisfied if the essential spectrum does not contain the origin or if the limiting
operators are invertible. However, such conditions may not be explicitly written.

When the operators fail to satisfy the Fredholm property, the standard solvability condi-
tions may not be applicable and solvability relations are, in general, not known. There are
some classes of operators for which solvability conditions are obtained. We illustrate them
with the following example. Consider the equation

Lu ≡ ∆u+ au = f (1.1)

in Rd, where a > 0 is a constant. The operator L here coincides with its limiting operators.
The homogeneous equation has a nonzero bounded solution. Hence the Fredholm property
is not satisfied. However, since the operator has constant coefficients, we can use the Fourier
transform and find the solution explicitly. Solvability relations can be formulated as follows.
If f ∈ L2(Rd) and xf ∈ L1(Rd), then there exists a solution of this equation in H2(Rd) if
and only if (

f(x),
eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.

(see [23]). Here and further down Sd
r denotes the sphere in Rd of radius r centered at the

origin. Thus, though the operator is non Fredholm, solvability relations are formulated
analogously. However, such similarity is only formal because the range of the operator is not
closed.

In the case of the operator with a potential,

Lu ≡ ∆u+ a(x)u = f,

the Fourier transform cannot help. Nevertheless, solvability relations in R3 can be obtained
by a rather sophisticated application of the theory of self-adjoint operators (see [15]). As
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before, solvability conditions are formulated in terms of orthogonality to solutions of the
homogeneous adjoint problem. There are several other examples of linear elliptic operators
without Fredholm property for which solvability relations can be derived (see [13]-[23]).

Solvability conditions play an important role in the analysis of nonlinear elliptic prob-
lems. When the operators do not satisfy the Fredholm property, in spite of some progress
in understanding of linear problems, there exist only few examples where nonlinear non-
Fredholm operators are studied (see [5]-[7], [22], [23], [26]). In the present article we deal
with the nonlinear system, for which the Fredholm property may not be satisfied:

∂uk

∂t
= ∆uk + akuk +

∫

Ω

Gk(x− y)Fk(u1(y, t), u2(y, t), ..., uN(y, t), y)dy, 1 ≤ k ≤ N. (1.2)

Here all ak ≥ 0 and Ω is a domain in Rd, d = 1, 2, 3, the more physically interesting
dimensions. Problems of that kind appear in cell population dynamics. The space variable x
here corresponds to the cell genotype, uk(x, t) stand for the cell densities for various groups
of cells as functions of their genotype and time. The right side of system (1.2) describes
the evolution of cell densities via cell proliferation and mutations. Here the diffusion terms
correspond to the change of genotype via small random mutations, and the nonlocal terms
describe large mutations. In this context, Fk(u1, u2, ..., uN , x) are the rates of cell birth which
depend on the vector function

u := (u1, u2, ..., uN) ∈ RN (1.3)

and x (density dependent proliferation), and the functions Gk(x− y) show the proportion of
newly born cells changing their genotype from y to x. Let us assume that they depend on the
distance between the genotypes. In population dynamics the integro-differential equations
describe models with intra-specific competition and nonlocal consumption of resources (see
e.g. [2], [3], [8]). The existence of stationary solutions of (1.2) was studied in [22] via the
fixed point technique. Related to problem (1.2), we consider the sequence of iterated systems
of equations with m ∈ N and 1 ≤ k ≤ N

∂uk

∂t
= ∆uk + akuk +

∫

Ω

Gk,m(x− y)Fk(u1(y, t), u2(y, t), ..., uN(y, t), y)dy, ak ≥ 0. (1.4)

For 1 ≤ k ≤ N , each sequence of kernels Gk,m(x) → Gk(x) as m → ∞ in the appropriate
function spaces discussed below. Let us prove that under the appropriate technical conditions
each of systems (1.4) admits a unique stationary solution vector-function u(m)(x) ∈ H2, the
limiting system (1.2) will possess a unique stationary solution u(x) ∈ H2 and u(m)(x) →
u(x) in H2 as m → ∞, which is a so-called existence of stationary solutions in the sense
of sequences. The similar ideas in the sense of standard Schrödinger type operators were
exploited in [24] and [25]. The non Fredholm operators arise also when studying the
so-called embedded solitons (see e.g. [11]).
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2 Formulation of the results

The nonlinear part of systems (1.2) and (1.4) will satisfy the regularity conditions analogous
to the ones of [22].

Assumption 1. Functions Fk(u, x) : R
N × Ω → R, 1 ≤ k ≤ N are such that

√√√√
N∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ RN , x ∈ Ω, (2.1)

with a constant K > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Moreover, they are Lipschitz
continuous functions, such that for any u(1),(2) ∈ RN , x ∈ Ω,

√√√√
N∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN , (2.2)

where a constant L > 0.

Here and further down the norm of a vector given by (1.3) is

|u|RN :=

√√√√
N∑

k=1

u2
k.

Evidently, the stationary solutions of (1.2) and (1.4), which exist under the appropriate
technical conditions, will satisfy the system of nonlocal elliptic equations

∆uk+

∫

Ω

Gk(x−y)Fk(u1(y), u2(y), ..., uN(y), y)dy+akuk = 0, ak ≥ 0, 1 ≤ k ≤ N. (2.3)

and for m ∈ N, 1 ≤ k ≤ N

∆u
(m)
k +

∫

Ω

Gk,m(x− y)Fk(u
(m)
1 (y), u

(m)
2 (y), ..., u

(m)
N (y), y)dy + aku

(m)
k = 0, ak ≥ 0. (2.4)

We denote

(f1(x), f2(x))L2(Ω) :=

∫

Ω

f1(x)f̄2(x)dx,

with a slight abuse of notations when these functions are not square integrable, like for
instance those used in the orthogonality conditions of Assumption 2 below. Indeed, if f1(x) ∈
L1(Ω) and f2(x) is bounded in Ω, then the integral in the right side of the definition above
makes sense. In the first part of the work we consider the case of Ω = Rd, such that the
appropriate Sobolev space is equipped with the norm

‖u‖2H2(Rd, RN ) :=

N∑

k=1

‖uk‖2H2(Rd) =

N∑

k=1

{‖uk‖2L2(Rd) + ‖∆uk‖2L2(Rd)}. (2.5)
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We will also use the norm

‖u‖2L2(Rd, RN ) :=

N∑

k=1

‖uk‖2L2(Rd).

The main issue for systems (2.3) and (2.4) above is that the operators −∆− ak : H2(Rd) →
L2(Rd), ak ≥ 0 do not satisfy the Fredholm property, which is the obstacle when solving such
systems. The similar situations arising in linear and nonlinear equations, both self- adjoint
and non self-adjoint involving non Fredholm second or fourth order differential operators or
systems of equations with non Fredholm operators have been studied extensively in recent
years (see [15]-[27]). Let us make the following assumption on the integral kernels involved
in the nonlocal parts of (2.4).

Assumption 2. Let m ∈ N, Gk,m(x) : Rd → R, such that Gk,m(x) ∈ L1(Rd) and
Gk,m(x) → Gk(x) in L1(Rd) as m → ∞ with 1 ≤ k ≤ N, 1 ≤ d ≤ 3 and 1 ≤ l ≤ N−1, l ∈ N

with N ≥ 2.
I) Let ak > 0, 1 ≤ k ≤ l, assume that xGk,m(x) ∈ L1(Rd), such that xGk,m(x) → xGk(x)

in L1(Rd) as m → ∞ and for all m ∈ N

(
Gk,m(x),

e±i
√
akx

√
2π

)

L2(R)

= 0, d = 1. (2.6)

(
Gk,m(x),

eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√
ak
, d = 2, 3. (2.7)

II) Let ak = 0, l+ 1 ≤ k ≤ N , assume that x2Gk,m(x) ∈ L1(Rd), such that x2Gk,m(x) →
x2Gk(x) in L1(Rd) as m → ∞ and for all m ∈ N

(Gk,m(x), 1)L2(Rd) = 0 and (Gk,m(x), xs)L2(Rd) = 0, 1 ≤ s ≤ d. (2.8)

Let us use the hat symbol throughout the work to designate the standard Fourier transform,
such that

Ĝk(p) :=
1

(2π)
d
2

∫

Rd

Gk(x)e
−ipxdx, p ∈ Rd. (2.9)

Thus

‖Ĝk(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖Gk(x)‖L1(Rd). (2.10)

Let us define the following auxiliary quantities for m ∈ N

Mk,m := max

{∥∥∥∥
Ĝk,m(p)

p2 − ak

∥∥∥∥
L∞(Rd)

,

∥∥∥∥
p2Ĝk,m(p)

p2 − ak

∥∥∥∥
L∞(Rd)

}
, 1 ≤ k ≤ l. (2.11)

Mk,m := max

{∥∥∥∥
Ĝk,m(p)

p2

∥∥∥∥
L∞(Rd)

,

∥∥∥∥Ĝk,m(p)

∥∥∥∥
L∞(Rd)

}
, l + 1 ≤ k ≤ N. (2.12)
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Similarly, in the limiting case we have

Mk := max

{∥∥∥∥
Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd)

,

∥∥∥∥
p2Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd)

}
, 1 ≤ k ≤ l. (2.13)

Mk := max

{∥∥∥∥
Ĝk(p)

p2

∥∥∥∥
L∞(Rd)

,

∥∥∥∥Ĝk(p)

∥∥∥∥
L∞(Rd)

}
, l + 1 ≤ k ≤ N. (2.14)

Clearly, expressions (2.11) and (2.12) are finite due to Lemma A1 in one dimension and
Lemma A2 for d = 2, 3 of [21] under Assumption 2 above. This enables us to define for each
m ∈ N

Mm := maxMk,m, 1 ≤ k ≤ N (2.15)

with Mk,m given by (2.11) and (2.12). Analogously, for the limiting case due to Lemmas A1
and A2 of the Appendix of [27] we define

M := maxMk, 1 ≤ k ≤ N, (2.16)

which is finite. Our first main statement is as follows.

Theorem 3. Let Ω = Rd, d = 1, 2, 3, Assumptions 1 and 2 hold and for all m ∈ N we
have

√
2(2π)

d
2MmL ≤ 1−ε for some 0 < ε < 1. Then each system of equations (2.4) admits

a unique solution u(m)(x) ∈ H2(Rd, RN ), the limiting system of equations (2.3) has a unique
solution u(x) ∈ H2(Rd, RN), such that u(m)(x) → u(x) in H2(Rd, RN) as m → ∞.

The unique solution of each system (2.4) u(m)(x) is nontrivial provided the intersection of

supports of the Fourier transforms of functions suppF̂k(0, x) ∩ suppĜk,m is a set of nonzero
Lebesgue measure in Rd for some 1 ≤ k ≤ N . Similarly, the unique solution of the limiting

system (2.3) u(x) does not vanish identically if suppF̂k(0, x) ∩ suppĜk is a set of nonzero
Lebesgue measure in Rd for a certain 1 ≤ k ≤ N .

The second part of the present work deals with the studies of the analogous system on
the finite interval with periodic boundary conditions for the solution vector function and its
first derivative, namely on Ω = I := [0, 2π]. We assume the following about the integral
kernels present in the nonlocal parts of system (2.4) in such case.

Assumption 4. Let Ω = I, m ∈ N, Gk,m(x) : I → R, Gk,m(x) ∈ L∞(I), such that
Gk,m(x) → Gk(x) in L∞(I) as m → ∞ with Gk,m(0) = Gk,m(2π), 1 ≤ k ≤ N , where N ≥ 3
and 1 ≤ l < q ≤ N − 1, l, q ∈ N.

I) Let ak > 0 and ak 6= n2, n ∈ Z for 1 ≤ k ≤ l.
II) Let ak = n2

k, nk ∈ N and

(
Gk,m(x),

e±inkx

√
2π

)

L2(I)

= 0, l + 1 ≤ k ≤ q. (2.17)
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III) Let ak = 0 and

(Gk,m(x), 1)L2(I) = 0, q + 1 ≤ k ≤ N. (2.18)

Let Fk(u, 0) = Fk(u, 2π) for u ∈ RN and k = 1, ..., N .

We introduce the Fourier transform for functions on the [0, 2π] interval as

Gk,n :=

∫ 2π

0

Gk(x)
e−inx

√
2π

dx, n ∈ Z (2.19)

and define the following auxiliary expressions for m ∈ N

Pk,m := max

{∥∥∥∥
Gk,m,n

n2 − ak

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,m,n

n2 − ak

∥∥∥∥
l∞

}
, 1 ≤ k ≤ l. (2.20)

Pk,m := max

{∥∥∥∥
Gk,m,n

n2 − n2
k

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,m,n

n2 − n2
k

∥∥∥∥
l∞

}
, l + 1 ≤ k ≤ q. (2.21)

Pk,m := max

{∥∥∥∥
Gk,m,n

n2

∥∥∥∥
l∞

,

∥∥∥∥Gk,m,n

∥∥∥∥
l∞

}
, q + 1 ≤ k ≤ N. (2.22)

In the limiting case, we will use

Pk := max

{∥∥∥∥
Gk,n

n2 − ak

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,n

n2 − ak

∥∥∥∥
l∞

}
, 1 ≤ k ≤ l. (2.23)

Pk := max

{∥∥∥∥
Gk,n

n2 − n2
k

∥∥∥∥
l∞

,

∥∥∥∥
n2Gk,n

n2 − n2
k

∥∥∥∥
l∞

}
, l + 1 ≤ k ≤ q. (2.24)

Pk := max

{∥∥∥∥
Gk,n

n2

∥∥∥∥
l∞

,

∥∥∥∥Gk,n

∥∥∥∥
l∞

}
, q + 1 ≤ k ≤ N. (2.25)

Evidently, expressions (2.20), (2.21) and (2.22) are finite by virtue of Lemma A3 of [21]
under Assumption 4 above. This allows us to define for each m ∈ N

Pm := maxPk,m, 1 ≤ k ≤ N (2.26)

with Pk,m given by (2.20), (2.21) and (2.22). Similarly, in the limiting case by means of
Lemma A3 of the Appendix of [27] we define

P := maxPk, 1 ≤ k ≤ N, (2.27)

which is finite. Let us use here the corresponding functional space

H2(I) := {v(x) : I → R | v(x), v′′(x) ∈ L2(I), v(0) = v(2π), v′(0) = v′(2π)},
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aiming at uk(x) ∈ H2(I), 1 ≤ k ≤ l. We introduce the following auxiliary constrained
subspaces

H2
k(I) :=

{
v ∈ H2(I) |

(
v(x),

e±inkx

√
2π

)

L2(I)

= 0

}
, nk ∈ N, l + 1 ≤ k ≤ q,

with the goal of having uk(x) ∈ H2
k(I), l + 1 ≤ k ≤ q. Finally,

H2
0 (I) := {v ∈ H2(I) | (v(x), 1)L2(I) = 0}, q + 1 ≤ k ≤ N.

Our aim is to have uk(x) ∈ H2
0 (I), q+1 ≤ k ≤ N . The constrained subspaces defined above

are Hilbert spaces as well (see e.g. Chapter 2.1 of [9]). The resulting space used for proving
the existence in the sense of sequences of solutions u(x) : I → RN of system (2.3) will be the
direct sum of the spaces given above, such that

H2
c (I, RN) := ⊕l

k=1H
2(I)⊕q

k=l+1 H
2
k(I)⊕N

k=q+1 H
2
0(I).

The corresponding Sobolev norm is given by

‖u‖2H2
c (I, RN ) :=

N∑

k=1

{‖uk‖2L2(I) + ‖u′′
k‖2L2(I)}

with u(x) : I → RN . Another useful norm here is

‖u‖2L2(I, RN ) :=
N∑

k=1

‖uk‖2L2(I).

Our second main result is as follows.

Theorem 5. Let Ω = I, Assumptions 1 and 4 hold and for all m ∈ N we have 2
√
πPmL ≤

1− ε with some 0 < ε < 1. Then each system of equations (2.4) possesses a unique solution
u(m)(x) ∈ H2

c (I, R
N), the limiting system of equations (2.3) admits a unique solution u(x) ∈

H2
c (I, RN ), such that u(m)(x) → u(x) in H2

c (I, RN) as m → ∞.
The unique solution of each system (2.4) u(m)(x) is nontrivial provided the Fourier co-

efficients Gk,m,nFk(0, x)n 6= 0 for some k = 1, ..., N and some n ∈ Z. Similarly, the unique
solution of limiting system (2.3) u(x) does not vanish identically if Gk,nFk(0, x)n 6= 0 for
some k = 1, ..., N and some n ∈ Z.

Remark. We use the constrained subspaces H2
k(I) and H2

0 (I) involved in the direct sum

of spaces H2
c (I, RN), such that the Fredholm operators − d2

dx2
− n2

k : H
2
k(I) → L2(I) and

− d2

dx2
: H2

0 (I) → L2(I) have trivial kernels.

We conclude the article with the studies of our system on the product of sets, where
one is the finite interval I with periodic boundary conditions as before and another is the
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whole space of dimension not exceeding two, such that in our notations Ω = I × Rd =
[0, 2π]×Rd, d = 1, 2 and x = (x1, x⊥) with x1 ∈ I and x⊥ ∈ Rd. The total Laplace operator
in such context will be

∆ :=
∂2

∂x2
1

+
d∑

s=1

∂2

∂x2
⊥,s

.

The appropriate Sobolev space for the problem is H2(Ω, RN) of vector functions u(x) : Ω →
RN , such that for k=1,...,N

uk(x), ∆uk(x) ∈ L2(Ω), uk(0, x⊥) = uk(2π, x⊥),
∂uk

∂x1
(0, x⊥) =

∂uk

∂x1
(2π, x⊥)

with x⊥ ∈ Rd a.e. It is equipped with the norm

‖u‖2H2(Ω, RN ) :=

N∑

k=1

{‖uk‖2L2(Ω) + ‖∆uk‖2L2(Ω)}.

Another norm used here is given by

‖u‖2L2(Ω, RN ) :=

N∑

k=1

‖uk‖2L2(Ω).

Similarly to the whole space case studied in Theorem 3, the operators −∆ − ak : H2(Ω) →
L2(Ω), ak ≥ 0 do not possess the Fredholm property.

Assumption 6. Let m ∈ N, Gk,m(x) : Ω → R, Gk,m(x) ∈ L1(Ω),

Gk,m(x) → Gk(x) in L1(Ω), m → ∞,

for x⊥ ∈ Rd a.e. Gk,m(0, x⊥) = Gk,m(2π, x⊥) ∈ L∞(Rd), such that

Gk,m(0, x⊥) → Gk(0, x⊥), Gk,m(2π, x⊥) → Gk(2π, x⊥) in L∞(Rd), m → ∞

and Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ Rd a.e., u ∈ RN , d = 1, 2 and k = 1, ..., N . Let
N ≥ 3 and 1 ≤ l < q ≤ N − 1 with l, q ∈ N.

I) Assume for 1 ≤ k ≤ l we have n2
k < ak < (nk +1)2, nk ∈ Z+ = N∪ {0}, x⊥Gk,m(x) ∈

L1(Ω), such that x⊥Gk,m(x) → x⊥Gk(x) in L1(Ω) as m → ∞ and

(
Gk,m(x1, x⊥),

einx1

√
2π

e±i
√

ak−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk, d = 1, (2.28)

(
Gk,m(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
ak−n2

, |n| ≤ nk, d = 2. (2.29)
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II) Assume for l + 1 ≤ k ≤ q we have ak = n2
k, nk ∈ N, x2

⊥Gk,m(x) ∈ L1(Ω), such that
x2
⊥Gk,m(x) → x2

⊥Gk(x) in L1(Ω) as m → ∞ and

(
Gk,m(x1, x⊥),

einx1

√
2π

e±i
√

n2
k
−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ nk − 1, d = 1, (2.30)

(
Gk,m(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
n2
k
−n2

, |n| ≤ nk − 1, d = 2, (2.31)

(
Gk,m(x1, x⊥),

e±inkx1

√
2π

)

L2(Ω)

= 0,

(
Gk,m(x1, x⊥),

e±inkx1

√
2π

x⊥,s

)

L2(Ω)

= 0, (2.32)

for 1 ≤ s ≤ d.
III) Assume for q + 1 ≤ k ≤ N we have ak = 0, x2

⊥Gk,m(x) ∈ L1(Ω), such that
x2
⊥Gk,m(x) → x2

⊥Gk(x) in L1(Ω) as m → ∞ and

(Gk,m(x), 1)L2(Ω) = 0, (Gk,m(x), x⊥,s)L2(Ω) = 0, 1 ≤ s ≤ d. (2.33)

Let us use the Fourier transform for functions on such a product of sets, namely for d = 1, 2
and k = 1, ..., N

Ĝk,n(p) :=
1

(2π)
d+1

2

∫

Rd

dx⊥e
−ipx⊥

∫ 2π

0

Gk(x1, x⊥)e
−inx1dx1, p ∈ Rd, n ∈ Z. (2.34)

Thus

‖Ĝk,n(p)‖L∞
n,p

:= sup{p∈Rd,n∈Z}|Ĝk,n(p)| ≤
1

(2π)
d+1

2

‖Gk‖L1(Ω).

For the technical purposes, we define the following quantities for m ∈ N

Rk,m := max

{∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

,

∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

}
, 1 ≤ k ≤ l. (2.35)

Rk,m := max

{∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − n2
k

∥∥∥∥
L∞
n,p

,

∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − n2
k

∥∥∥∥
L∞
n,p

}
, l + 1 ≤ k ≤ q. (2.36)

Rk,m := max

{∥∥∥∥
Ĝk,m,n(p)

p2 + n2

∥∥∥∥
L∞
n,p

,

∥∥∥∥Ĝk,m,n(p)

∥∥∥∥
L∞
n,p

}
, q + 1 ≤ k ≤ N. (2.37)

In the limiting case, we have

Rk := max

{∥∥∥∥
Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

,

∥∥∥∥
(p2 + n2)Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

}
, 1 ≤ k ≤ l. (2.38)

Rk := max

{∥∥∥∥
Ĝk,n(p)

p2 + n2 − n2
k

∥∥∥∥
L∞
n,p

,

∥∥∥∥
(p2 + n2)Ĝk,n(p)

p2 + n2 − n2
k

∥∥∥∥
L∞
n,p

}
, l + 1 ≤ k ≤ q. (2.39)
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Rk := max

{∥∥∥∥
Ĝk,n(p)

p2 + n2

∥∥∥∥
L∞
n,p

,

∥∥∥∥Ĝk,n(p)

∥∥∥∥
L∞
n,p

}
, q + 1 ≤ k ≤ N. (2.40)

Assumption 6 along with Lemmas A6, A5 and A4 of [21] yield that the expressions given
by (2.35), (2.36) and (2.37) are finite, which enables us to define for each m ∈ N

Rm := maxRk,m, k = 1, ..., N

with Rk,m given in (2.35), (2.36) and (2.37). Analogously, in the limiting case by virtue of
Lemmas A6, A5 and A4 of the Appendix of [27], we define the finite quantity

R := maxRk, k = 1, ..., N.

The final statement of the work is as follows.

Theorem 7. Let Ω = I × Rd, d = 1, 2, Assumptions 1 and 6 hold and for all m ∈ N

we have
√
2(2π)

d+1

2 RmL ≤ 1 − ε for some 0 < ε < 1. Then each system of equations (2.4)
admits a unique solution u(m)(x) ∈ H2(Ω, RN), the limiting system of equations (2.3) has a
unique solution u(x) ∈ H2(Ω, RN), such that u(m)(x) → u(x) in H2(Ω, RN) as m → ∞.

The unique solution of each system (2.4) u(m)(x) is nontrivial provided that the inter-

section of supports of the Fourier transforms of functions suppF̂k(0, x)n(p) ∩ suppĜk,m,n(p)
is a set of nonzero Lebesgue measure in Rd for some k = 1, ..., N and for some n ∈ Z.
Similarly, the unique solution of limiting system (2.3) u(x) does not vanish identically if

suppF̂k(0, x)n(p) ∩ suppĜk,n(p) is a set of nonzero Lebesgue measure in Rd for a certain
k = 1, ..., N and for some n ∈ Z.

Remark. Note that in the work we deal with real valued vector functions by means of the
assumptions on Fk(u, x), Gk,m(x) and Gk(x), k = 1, ..., N involved in the nonlocal terms of
systems (2.4) and (2.3).

3 The Whole Space Case

Proof of Theorem 3. By virtue of Theorem 3 of [22], each system of equations (2.4) possesses
a unique solution u(m)(x) ∈ H2(Rd, RN), m ∈ N. System (2.3) has a unique solution
u(x) ∈ H2(Rd, RN) as a result of Lemmas A1 and A2 of the Appendix of [27] in dimensions
d = 1 and d = 2, 3 respectively along with Theorem 3 of [22].

We apply the standard Fourier transform (2.9) to both sides of systems (2.3) and (2.4).
This gives us for k = 1, ..., N and m ∈ N

ûk(p) = (2π)
d
2

Ĝk(p)f̂k(p)

p2 − ak
, û

(m)
k (p) = (2π)

d
2

Ĝk,m(p)f̂k,m(p)

p2 − ak
(3.1)
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with f̂k(p) and f̂k,m(p) denoting the Fourier transforms of Fk(u(x), x) and Fk(u
(m)(x), x)

respectively. Evidently, we have the upper bound

|û(m)
k (p)− ûk(p)| ≤ (2π)

d
2

∥∥∥∥
Ĝk,m(p)

p2 − ak
− Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd)

|f̂k(p)|+

+(2π)
d
2

∥∥∥∥
Ĝk,m(p)

p2 − ak

∥∥∥∥
L∞(Rd)

|f̂k,m(p)− f̂k(p)|.

Hence

‖u(m)
k − uk‖L2(Rd) ≤ (2π)

d
2

∥∥∥∥
Ĝk,m(p)

p2 − ak
− Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd)

‖Fk(u(x), x)‖L2(Rd)+

+(2π)
d
2

∥∥∥∥
Ĝk,m(p)

p2 − ak

∥∥∥∥
L∞(Rd)

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(Rd).

By means of inequality (2.2) of Assumption 1, we have

√√√√
N∑

k=1

‖Fk(u(m)(x), x)− Fk(u(x), x)‖2L2(Rd)
≤ L‖u(m) − u‖L2(Rd, RN ). (3.2)

Note that u
(m)
k (x), uk(x) ∈ H2(Rd) ⊂ L∞(Rd), k = 1, ..., N, d ≤ 3 by means of the Sobolev

embedding. Hence, we obtain

‖u(m) − u‖2L2(Rd, RN ) ≤ 2(2π)d
N∑

k=1

∥∥∥∥
Ĝk,m(p)

p2 − ak
− Ĝk(p)

p2 − ak

∥∥∥∥
2

L∞(Rd)

‖Fk(u(x), x)‖2L2(Rd)+

+2(2π)dM2
mL

2‖u(m) − u‖2L2(Rd, RN ),

such that

‖u(m) − u‖2L2(Rd, RN ) ≤
2(2π)d

ε(2− ε)

N∑

k=1

∥∥∥∥
Ĝk,m(p)

p2 − ak
− Ĝk(p)

p2 − ak

∥∥∥∥
2

L∞(Rd)

‖Fk(u(x), x)‖2L2(Rd).

By virtue of inequality (2.1) of Assumption 1, we have Fk(u(x), x) ∈ L2(Rd), k = 1, ..., N
for u(x) ∈ H2(Rd, RN). Thus,

u(m)(x) → u(x), m → ∞ (3.3)

in L2(Rd, RN ) due to Lemmas A1 and A2 of the Appendix of [27] for d = 1 and d = 2, 3
respectively. Obviously, for k = 1, ..., N and m ∈ N

p2ûk(p) = (2π)
d
2

p2Ĝk(p)f̂k(p)

p2 − ak
, p2û

(m)
k (p) = (2π)

d
2

p2Ĝk,m(p)f̂k,m(p)

p2 − ak
.
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Therefore,

|p2û(m)
k (p)− p2ûk(p)| ≤ (2π)

d
2

∥∥∥∥
p2Ĝk,m(p)

p2 − ak
− p2Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd)

|f̂k(p)|+

+(2π)
d
2

∥∥∥∥
p2Ĝk,m(p)

p2 − ak

∥∥∥∥
L∞(Rd)

|f̂k,m(p)− f̂k(p)|.

By means of (3.2) we obtain for k = 1, ..., N

‖∆u
(m)
k −∆uk‖L2(Rd) ≤ (2π)

d
2

∥∥∥∥
p2Ĝk,m(p)

p2 − ak
− p2Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd)

‖Fk(u(x), x)‖L2(Rd)+

+(2π)
d
2

∥∥∥∥
p2Ĝk,m(p)

p2 − ak

∥∥∥∥
L∞(Rd)

L‖u(m) − u‖L2(Rd, RN ).

Therefore, by means of Lemmas A1 and A2 of the Appendix of [27] in d = 1 and for d = 2, 3
respectively along with (3.3), we arrive at ∆u(m)(x) → ∆u(x) in L2(Rd, RN) as m → ∞.
Norm definition (2.5) yields that u(m)(x) → u(x) in H2(Rd, RN) as m → ∞.

Suppose the solution u(m)(x) of system (2.4) discussed above vanishes a.e. in Rd for some
m ∈ N. This will contradict to the assumption that the Fourier images of Gk,m(x) and
Fk(0, x) do not vanish on a set of nonzero Lebesgue measure in Rd for a certain 1 ≤ k ≤ N .
The similar reasoning holds for the solution u(x) of the limiting system of equations (2.3)
discussed above.

4 The Problem on the Finite Interval

Proof of Theorem 5. Evidently, for 1 ≤ k ≤ N , we can estimate |Gk(0)−Gk(2π)| from above
by

|Gk(0)−Gk,m(0)|+ |Gk,m(2π)−Gk(2π)| ≤ 2‖Gk,m(x)−Gk(x)‖L∞(I) → 0, m → ∞

as assumed, such that Gk(0) = Gk(2π). Clearly, under the stated conditions we have
Gk,m(x) ∈ L1(I), m ∈ N and Gk,m(x) → Gk(x) in L1(I) for k = 1, ..., N as m → ∞.
By means of Theorem 5 of [22], each system (2.4) admits a unique solution u(m)(x) belong-
ing to H2

c (I, RN) with m ∈ N. System (2.3) possesses a unique solution u(x) belonging to
H2

c (I, RN) due to Lemma A3 of the Appendix of [27] along with Theorem 5 of [22].
Let us apply Fourier transform (2.19) to both sides of systems (2.3) and (2.4). This gives

us for n ∈ Z and 1 ≤ k ≤ N

uk,n =
√
2π

Gk,nfk,n

n2 − ak
, u

(m)
k,n =

√
2π

Gk,m,nfk,m,n

n2 − ak
, m ∈ N (4.1)
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with fk,n and fk,m,n standing for the Fourier images of Fk(u(x), x) and Fk(u
(m)(x), x) respec-

tively under transform (2.19). This allows us to derive the upper bound

|u(m)
k,n − uk,n| ≤

√
2π

∥∥∥∥
Gk,m,n

n2 − ak
− Gk,n

n2 − ak

∥∥∥∥
l∞

|fk,n|+
√
2π

∥∥∥∥
Gk,m,n

n2 − ak

∥∥∥∥
l∞

|fk,m,n − fk,n|.

Hence

‖u(m)
k (x)− uk(x)‖L2(I) ≤

√
2π

∥∥∥∥
Gk,m,n

n2 − ak
− Gk,n

n2 − ak

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I)+

+
√
2π

∥∥∥∥
Gk,m,n

n2 − ak

∥∥∥∥
l∞

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(I).

Inequality (2.2) of Assumption 1 gives us

√√√√
N∑

k=1

‖Fk(u(m)(x), x)− Fk(u(x), x)‖2L2(I) ≤ L‖u(m) − u‖L2(I, RN ). (4.2)

Note that by virtue of the Sobolev embedding we have u
(m)
k (x), uk(x) ∈ H2(I) ⊂ L∞(I), 1 ≤

k ≤ N . Clearly,

‖u(m) − u‖2L2(I, RN ) ≤ 4π

N∑

k=1

∥∥∥∥
Gk,m,n

n2 − ak
− Gk,n

n2 − ak

∥∥∥∥
2

l∞

‖Fk(u(x), x)‖2L2(I)+

+4πP 2
mL

2‖u(m) − u‖2L2(I, RN ).

Thus

‖u(m) − u‖2L2(I, RN ) ≤
4π

ε(2− ε)

N∑

k=1

∥∥∥∥
Gk,m,n

n2 − ak
− Gk,n

n2 − ak

∥∥∥∥
2

l∞

‖Fk(u(x), x)‖2L2(I).

Obviously, Fk(u(x), x) ∈ L2(I), k = 1, ..., N for u(x) ∈ H2
c (I, RN ) via inequality (2.1) of

Assumption 1. Then by virtue of the result of Lemma A3 of the Appendix of [27], we arrive
at

u(m)(x) → u(x), m → ∞ (4.3)

in L2(I, RN). Apparently, for n ∈ Z, m ∈ N, 1 ≤ k ≤ N

n2uk,n =
√
2π

n2Gk,nfk,n

n2 − ak
, n2u

(m)
k,n =

√
2π

n2Gk,m,nfk,m,n

n2 − ak
.

Hence,

|n2u
(m)
k,n − n2uk,n| ≤

√
2π

∥∥∥∥
n2Gk,m,n

n2 − ak
− n2Gk,n

n2 − ak

∥∥∥∥
l∞

|fk,n|+
√
2π

∥∥∥∥
n2Gk,m,n

n2 − ak

∥∥∥∥
l∞

|fk,m,n − fk,n|,
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such that via (4.2)

∥∥∥∥
d2

dx2
u
(m)
k − d2

dx2
uk

∥∥∥∥
L2(I)

≤
√
2π

∥∥∥∥
n2Gk,m,n

n2 − ak
− n2Gk,n

n2 − ak

∥∥∥∥
l∞

‖Fk(u(x), x)‖L2(I)+

+
√
2π

∥∥∥∥
n2Gk,m,n

n2 − ak

∥∥∥∥
l∞

L‖u(m) − u‖L2(I, RN ).

By means of the result of Lemma A3 of the Appendix of [27] along with (4.3), we obtain

d2

dx2
u(m)(x) → d2

dx2
u(x), m → ∞

in L2(I, RN). Thus, u(m)(x) → u(x) in the H2
c (I, RN) norm as m → ∞.

Suppose u(m)(x) vanishes a.e. in I for some m ∈ N. Then we will arrive at the contradic-
tion to the assumption that the Fourier coefficients Gk,m,nFk(0, x)n 6= 0 for some k = 1, ..., N
and a certain n ∈ Z. The similar argument holds for the solution u(x) of the limiting system
(2.3) discussed above.

5 The Problem on the Product of Sets

Proof of Theorem 7. Clearly, for 1 ≤ k ≤ N , the norm ‖Gk(0, x⊥)−Gk(2π, x⊥)‖L∞(Rd) can
be bounded from above by

‖Gk(0, x⊥)−Gk,m(0, x⊥)‖L∞(Rd) + ‖Gk,m(2π, x⊥)−Gk(2π, x⊥)‖L∞(Rd) → 0, m → ∞

as assumed, such that Gk(0, x⊥) = Gk(2π, x⊥) for x⊥ ∈ Rd a.e.. By virtue of Theorem 7 of
[22], each system (2.4) possesses a unique solution u(m)(x) ∈ H2(Ω, RN ), m ∈ N. System
(2.3) admits a unique solution u(x) ∈ H2(Ω, RN) as a result of Lemmas A6, A5 and A4 of
the Appendix of [27] along with Theorem 7 of [22].

Let us apply Fourier transform (2.34) to both sides of systems (2.3) and (2.4). This gives
us for k = 1, ..., N, n ∈ Z, p ∈ Rd, d = 1, 2, m ∈ N

ûk,n(p) = (2π)
d+1

2

Ĝk,n(p)f̂k,n(p)

p2 + n2 − ak
, ûk,m,n(p) = (2π)

d+1

2

Ĝk,m,n(p)f̂k,m,n(p)

p2 + n2 − ak
, (5.1)

with f̂k,n(p) and f̂k,m,n(p) denoting the Fourier images of Fk(u(x), x) and Fk(u
(m)(x), x)

respectively for k = 1, ..., N under transform (2.34). This enables us to derive the upper
bound

|ûk,m,n(p)− ûk,n(p)| ≤ (2π)
d+1

2

∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak
− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

|f̂k,n(p)|+
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+(2π)
d+1

2

∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

|f̂k,m,n(p)− f̂k,n(p)|.

Hence for k = 1, ..., N

‖u(m)
k (x)− uk(x)‖L2(Ω) ≤ (2π)

d+1

2

∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak
− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

‖Fk(u(x), x)‖L2(Ω)+

+(2π)
d+1

2

∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(Ω).

Inequality (2.2) of Assumption 1 yields

√√√√
N∑

k=1

‖Fk(u(m)(x), x)− Fk(u(x), x)‖2L2(Ω) ≤ L‖u(m)(x)− u(x)‖L2(Ω, RN ). (5.2)

Note that due to the Sobolev embedding we have u
(m)
k (x), uk(x) ∈ H2(Ω) ⊂ L∞(Ω), k =

1, ..., N . Evidently

‖u(m) − u‖2L2(Ω, RN ) ≤ 2(2π)d+1
N∑

k=1

∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak
− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
2

L∞
n,p

‖Fk(u(x), x)‖2L2(Ω)+

+2(2π)d+1R2
mL

2‖u(m) − u‖2L2(Ω, RN ).

Therefore, we obtain

‖u(m) − u‖2L2(Ω, RN ) ≤
2(2π)d+1

ε(2− ε)

N∑

k=1

∥∥∥∥
Ĝk,m,n(p)

p2 + n2 − ak
− Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
2

L∞
n,p

‖Fk(u(x), x)‖2L2(Ω).

Evidently, Fk(u(x), x) ∈ L2(Ω), k = 1, ..., N for u(x) ∈ H2(Ω, RN ) due to inequality (2.1)
of Assumption 1. By virtue of the results of Lemmas A6, A5 and A4 of the Appendix of
[27], we derive

u(m)(x) → u(x), m → ∞ (5.3)

in L2(Ω, RN). Obviously,

|(p2 + n2)ûk,m,n(p)− (p2 + n2)ûk,n(p)| ≤

≤ (2π)
d+1

2

∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak
− (p2 + n2)Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

|f̂k,n(p)|+

+(2π)
d+1

2

∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

|f̂k,m,n(p)− f̂k,n(p)|.
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Via (5.2), this gives us

‖∆u
(m)
k (x)−∆uk(x)‖L2(Ω) ≤

≤ (2π)
d+1

2

∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak
− (p2 + n2)Ĝk,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

‖Fk(u(x), x)‖L2(Ω)+

+(2π)
d+1

2

∥∥∥∥
(p2 + n2)Ĝk,m,n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

L‖u(m)(x)− u(x)‖L2(Ω, RN ).

By virtue of (5.3) along with the results of Lemmas A6, A5 and A4 of the Appendix of [27],
we obtain

∆u(m)(x) → ∆u(x), m → ∞
in L2(Ω, RN). Thus, we arrive at

u(m)(x) → u(x), m → ∞

in H2(Ω, RN). Suppose u(m)(x) vanishes a.e. in Ω for some m ∈ N. This gives us
the contradiction to the assumption that there exist k = 1, ..., N and n ∈ Z, such that

suppĜk,m,n(p) ∩ suppF̂k(0, x)n(p) is a set of nonzero Lebesgue measure in Rd. The similar
argument is valid for the solution u(x) of limiting system (2.3) considered above.

6 Discussion

Let us conclude the work with a short discussion of biological interpretations of our results.
All tissues and organs in a biological organism are characterized by the cell distribution with
respect to their genotype. Without mutations all cells would possess the same genotype.
Due to mutations, the genotype changes and represents a certain distribution around its
principal value. The stationary solutions of such systems yield a stationary cell distribution
with respect to the genotype. Existence of these stationary distributions is an important
property of biological organisms which allows their existence as steady state systems. We
prove the existence of stationary solutions in the space of integrable functions decaying at
infinity. Biologically this implies that the cell distribution with respect to the genotype
decays as the distance from the main genotype increases. Our results show what conditions
should be imposed on cell proliferation, mutations and influx to arrive at such distributions.
In the context of population dynamics, our results apply also to biological species where
individuals are distributed around some average genotype. In this case, the existence of
stationary solutions corresponds to the existence of biological species (see [4]).
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