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We present another concrete realization of a quantum field theory, envisaged many years
ago by Bargmann, Wightman and Wigner. Considering the special case of the (1/2, 0)⊕
(0, 1/2) field and developing the Majorana–McLennan–Case–Ahluwalia construction for
neutrino, we show that fermion and its antifermion can have the same intrinsic parity.
The construction can be applied to explain the present situation in neutrino physics.

Though it has been three decades since the proposal of the Glashow–Weinberg–

Salam model, we are still far from understanding many of its essential theoreti-

cal ingredients; first of all, fundamental origins of “parity violation” effect, the

Kobayashi–Maskawa mixing and Higgs phenomenon. Experimental neutrino

physics and astrophysics provided us by new puzzles, that until now have not found

adequate explanation. For instance, recently Prof. Bilenky1 pointed out that fol-

lowing the analysis of the LSND neutrino oscillation signal, “there is no natural

hierarchy of coupling among generations in the lepton sector”. Moreover, at the

same time the atmospheric neutrino anomaly indicates “the existence of an addi-

tional sterile neutrino state besides the three active flavor neutrino states”.

The Majorana idea,2 recently analyzed in detail by Ahluwalia,3 gives alternative

way of describing neutral particles, which is based on the treatment of self/anti-self

charge conjugate states. This formalism is believed at the moment to be able to

provide a natural mechanism of neutrino oscillations through the Majorana mass

term in the Lagrangian.

In Ref. 3 in the framework of the Majorana–McLennan–Case kinematical

scheme, the following type-II bispinors of the (j, 0) ⊕ (0, j) representation space

have been defined in the momentum representation:

λ(pµ) ≡
(

(ζλΘ[j])φ
∗
L(pµ)

φL(pµ)

)
, ρ(pµ) ≡

(
φR(pµ)

(ζρΘ[j])
∗φ∗R(pµ)

)
, (1)
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where ζλ and ζρ are the phase factors fixed by the conditions of self/anti-self charge

conjugacy, Θ[j] is the Wigner time-reversal operator for spin j. In this letter we

show that the construction based on the type-II spinors leads to another example

of the Nigam–Foldy–Bargmann–Wightman–Wigner (FNBWW) type quantum field

theory.

The irreducible projective representations of the quantum-mechanical Poincaré

group have been enumerated by Wigner.4,5 He showed that one has to distinguish

four cases. The Dirac field, that describes the eigenstates of the charge opera-

tor, belongs to the simplest one.a In the other three cases, there is a phenomenon

which could be called as doubling of an ordinary Fock space (or, in the Schrödinger

language, doubling the number of components of the wave function). An explicit

example of the FNBWW-type quantum field theory has recently been presented6

in the (1, 0) ⊕ (0, 1) representation of the extended Lorentz group (see also earlier

papers Refs. 7–9). The remarkable feature of the construction presented in Ref. 6 is

that in such a framework a boson and its antiboson have opposite intrinsic parities.

In this letter we present a construction in which fermion and antifermion have the

same intrinsic parity. We prove this by working out explicitly their properties under

operators of discrete symmetries C, P and T .

Let us begin with the transformation properties of the left φL (and χL =

(ζ∗ρΘ[j])φ
∗
R), and the right φR (and χR = (ζλΘ[j])φ

∗
L) two-spinors. In particular,

the (1/2, 0) spinors transform with respect to the restricted Lorentz transformations

according to the Wigner’s rules:

φR(pµ) = ΛR(pµ ← ◦
pµ)φR(

◦
pµ) = exp

(
+
σ ·ϕ

2

)
φR(

◦
pµ) , (2a)

χR(pµ) = ΛR(pµ ← ◦
pµ)χR(

◦
pµ) = exp

(
+
σ · ϕ

2

)
χR(

◦
pµ) , (2b)

and the (0, 1/2) spinors,

φL(pµ) = ΛL(pµ ← ◦
pµ)φL(

◦
pµ) = exp

(
−σ · ϕ

2

)
φL(

◦
pµ) , (3a)

χL(pµ) = ΛL(pµ ← ◦
pµ)χL(

◦
pµ) = exp

(
−σ ·ϕ

2

)
χL(

◦
pµ) , (3b)

where ϕ are the Lorentz boost parameters, e.g. Ref. 10, σ are the Pauli matrices.

In the chiral representation, one can choose the spinorial basis (zero-momentum

spinors) in the following wayb:

aNevertheless, let us not forgetting that the Dirac construction allows one to describe both particle
and its antiparticle which have opposite eigenvalues of the charge operator.
bOverall phase factors of left- and right-spinors are assumed to be the same, see Eqs. (22a) and
(22b) in Ref. 3c. In this letter, we try to keep the notation of the cited reference.
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λS↑ (
◦
pµ) =

√
m

2


0

i

1

0

 , λS↓ (
◦
pµ) =

√
m

2


−i
0

0

1

 ,

λA↑ (
◦
pµ) =

√
m

2


0

−i
1

0

 , λA↓ (
◦
pµ) =

√
m

2


i

0

0

1

 ,

(4a)

ρS↑ (
◦
pµ) =

√
m

2


1

0

0

−i

 , ρS↓ (
◦
pµ) =

√
m

2


0

1

i

0

 ,

ρA↑ (
◦
pµ) =

√
m

2


1

0

0

i

 , ρA↓ (
◦
pµ) =

√
m

2


0

1

−i
0

 .

(4b)

The indices ↑↓ should be referred to as the chiral helicity quantum number

introduced in Ref. 3. Using the boost (2a)–(3b) the reader would immediately

find the four-spinors of the second kind λS,A↑↓ (pµ) and ρS,A↑↓ (pµ) in an arbitrary

frame:

λS↑ (pµ) =
1

2
√
E+m


ipl

i(p− +m)

p− +m

−pr

 , λS↓ (pµ) =
1

2
√
E+m


−i(p+ +m)

−ipr
−pl

(p+ +m)

 , (5a)

λA↑ (pµ) =
1

2
√
E+m


−ipl

−i(p− +m)

(p− +m)

−pr

 , λA↓ (pµ) =
1

2
√
E+m


i(p+ +m)

ipr

−pl
(p+ +m)

 , (5b)

ρS↑ (pµ) =
1

2
√
E +m


p+ +m

pr

ipl

−i(p+ +m)

 , ρS↓ (pµ) =
1

2
√
E+m


pl

(p− +m)

i(p− +m)

−ipr

 , (5c)
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ρA↑ (pµ) =
1

2
√
E+m


p+ +m

pr

−ipl
i(p+ +m)

 , ρA↓ (pµ) =
1

2
√
E+m


pl

(p− +m)

−i(p− +m)

ipr

 , (5d)

with pr = px + ipy, pl = px− ipy, p± = p0± pz. Therefore, one has [Eqs. (48a) and

(48b) of Ref. 3c]

ρS↑ (pµ) = −iλA↓ (pµ) , ρS↓ (pµ) = +iλA↑ (pµ) , (6a)

ρA↑ (pµ) = +iλS↓ (pµ) , ρA↓ (pµ) = −iλS↑ (pµ) . (6b)

The normalization of the spinors λS,A↑↓ (pµ) and ρS,A↑↓ (pµ) are as follows:

λ̄S↑ (pµ)λS↓ (pµ) = −im , λ̄S↓ (pµ)λS↑ (pµ) = +im , (7a)

λ̄A↑ (pµ)λA↓ (pµ) = +im , λ̄A↓ (pµ)λA↑ (pµ) = −im , (7b)

ρ̄S↑ (pµ)ρS↓ (pµ) = +im , ρ̄S↓ (pµ)ρS↑ (pµ) = −im , (7c)

ρ̄A↑ (pµ)ρA↓ (pµ) = −im , ρ̄A↓ (pµ)ρA↑ (pµ) = +im . (7d)

All the other conditions are equal to zero (provided that ϑL,R1 + ϑL,R2 = π).

First of all, one must deduce equations for the Majorana-like spinors in order to

see what dynamics do the neutral particles have. Obviously it is difficult to build the

Lagrangian dynamics from Eqs. (30) and (31) of Ref. 3c (they are very unwieldy).

Nevertheless, one can use another generalized form of the Ryder–Burgard relation

(cf. Eq. (26) of Ref. 3c and Ref. 11) for zero-momentum spinors:[
φhL(

◦
pµ)
]∗

= (−1)1/2−h e−i(ϑ
L
1 +ϑL2 ) Θ[1/2] φ

−h
L (
◦
pµ) . (8)

Relations for zero-momentum right spinors are obtained with the substitution

L↔ R. h is the helicity quantum number for the left and right two-spinors. Hence,

implying that λS(pµ) (and ρA(pµ)) for positive-frequency solutions; λA(pµ) (and

ρS(pµ)), for negative-frequency solutions, one can deduce the dynamical coordinate-

space equations11c

iγµ∂µλ
S(x)−mρA(x) = 0 , (9a)

iγµ∂µρ
A(x) −mλS(x) = 0 , (9b)

iγµ∂µλ
A(x) +mρS(x) = 0 , (9c)

iγµ∂µρ
S(x) +mλA(x) = 0 . (9d)
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They can be written in the eight-component form as follows:

[iΓµ∂µ −m]Ψ(+)(x) = 0 , (10a)

[iΓµ∂µ +m]Ψ(−)(x) = 0 , (10b)

with

Ψ(+)(x) =

(
ρA(x)

λS(x)

)
, Ψ(−)(x) =

(
ρS(x)

λA(x)

)
, and Γµ =

(
0 γµ

γµ 0

)
. (11)

One can also rewrite the equations into the two-component form. Similar formula-

tions have been presented by M. Markov,12 and A. Barut and G. Ziino.13

The Dirac-like and Majorana-like field operators can be built from both λS,A(pµ)

and ρS,A(pµ), or their combinations (see Eqs. (46), (47) and (49) in Ref. 3c). For

instance,

Ψ(xµ) ≡
∫

d3p

(2π)3

1

2Ep

∑
η

[
λSη (pµ)aη(p) exp(−ip · x) + λAη (pµ)b†η(p) exp(+ip · x)

]
.

(12)

Operators of discrete symmetries (charge conjugation and space inversion) are

given by

Sc[1/2] = eiϑ
c
[1/2]

(
0 iΘ[1/2]

−iΘ[1/2] 0

)
K = C[1/2]K ,

Ss[1/2] = eiϑ
s
[1/2]

(
0 1l2

1l2 0

)
= eiϑ

s
[1/2]γ0 .

(13)

In the Fock space, operations of the charge conjugation and space inversions can be

defined through unitary operators such that:

U c[1/2]Ψ(xµ)(U c[1/2])
−1 = C[1/2]Ψ

†
[1/2](x

µ) ,

Us[1/2]Ψ(xµ)(Us[1/2])
−1 = γ0Ψ(x′µ) ,

(14)

the time reversal operation, through an antiunitary operatorc[
V T

[1/2]Ψ(xµ)(V T
[1/2])

−1
]†

= S(T )Ψ†(x′′µ) , (15)

with x′µ ≡ (x0,−x) and x′′µ = (−x0,x). We further assume the vacuum state to

be assigned an even P - and C-eigenvalue and, then, proceed as in Ref. 6.

cLet us remind that the operator of hermitian conjugation does not act on c-numbers on the left
of Eq. (15). This fact is connected with the properties of an antiunitary operator:[

V TλA(V T)−1
]†

=
[
λ∗V TA(V T)−1

]†
= λ
[
V TA†(V T)−1

]
.
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As a result, we have the following properties of creation (annihilation) operators

in the Fock space:

Us[1/2]a↑(p)(Us[1/2])
−1 = −ia↓(−p) , Us[1/2]a↓(p)(Us[1/2])

−1 = +ia↑(−p) , (16a)

Us[1/2]b
†
↑(p)(Us[1/2])

−1 = +ib†↓(−p) , Us[1/2]b
†
↓(p)(Us[1/2])

−1 = −ib↑(−p) , (16b)

which signifies that the states created by the operators a†(p) and b†(p) have very

different properties with respect to the space inversion operation, comparing with

the Dirac states (also mentioned in Ref. 13):

Us[1/2]|p, ↑〉+ = +i| −p, ↓〉+ , Us[1/2]|p, ↑〉− = +i| −p, ↓〉− , (17a)

Us[1/2]|p, ↓〉+ = −i| −p, ↑〉+ , Us[1/2]|p, ↓〉− = −i| −p, ↑〉− . (17b)

For the charge conjugation operation in the Fock space we have two physically

different possibilities. The first one, e.g.,

U c[1/2]a↑(p)(U c[1/2])
−1 = +b↑(p) , U c[1/2]a↓(p)(U c[1/2])

−1 = +b↓(p) , (18a)

U c[1/2]b
†
↑(p)(U c[1/2])

−1 = −a†↑(p) , U c[1/2]b
†
↓(p)(U c[1/2])

−1 = −a†↓(p) , (18b)

in fact, has some similarities with the Dirac construction. The actions of this

operator on the physical states are

U c[1/2]|p, ↑〉+ = +|p, ↑〉− , U c[1/2]|p, ↓〉+ = +|p, ↓〉− , (19a)

U c[1/2]|p, ↑〉− = −|p, ↑〉+ , U c[1/2]|p, ↓〉− = −|p, ↓〉+ . (19b)

But, one can construct the charge conjugation operator in the Fock space which

acts, e.g., in the following manner:

Ũ c[1/2]a↑(p)(Ũ c[1/2])
−1 = −b↓(p) , Ũ c[1/2]a↓(p)(Ũ c[1/2])

−1 = −b↑(p) , (20a)

Ũ c[1/2]b
†
↑(p)(Ũ c[1/2])

−1 = +a†↓(p) , Ũ c[1/2]b
†
↓(p)(Ũ c[1/2])

−1 = +a†↑(p) , (20b)

and, therefore,

Ũ c[1/2]|p, ↑〉+ = −|p, ↓〉− , Ũ c[1/2]|p, ↓〉+ = −|p, ↑〉− , (21a)

Ũ c[1/2]|p, ↑〉− = +|p, ↓〉+ , Ũ c[1/2]|p, ↓〉− = +|p, ↑〉+ . (21b)

Investigations of several important cases, which are different from the above,

are discussed in a separate paper. Next, by straightforward verification one can

convince oneself about the assertions made in Refs. 3 and 14 (see also Ref. 7)
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are correct as it is possible for the operators of the space inversion and charge

conjugation to commute with each other in the Fock space. For instance,

U c[1/2]U
s
[1/2]|p, ↑〉+ = +iU c[1/2]| −p, ↓〉+ = +i| −p, ↓〉− , (22a)

Us[1/2]U
c
[1/2]|p, ↑〉+ = Us[1/2]|p, ↑〉− = +i| −p, ↓〉− . (22b)

The second choice of the charge conjugation operator answers for the case when

the Ũ c[1/2] and Us[1/2] operations anticommute:

Ũ c[1/2]U
s
[1/2]|p, ↑〉+ = +iŨ c[1/2]| −p, ↓〉+ = −i| −p, ↑〉− , (23a)

Us[1/2]Ũ
c
[1/2]|p, ↑〉+ = −Us[1/2]|p, ↓〉− = +i| −p, ↑〉− . (23b)

Next, one can compose states which would have somewhat similar properties to

those which we have become accustomed. The states |p, ↑〉+ ± i|p, ↓〉+ answer for

positive (negative) parity, respectively. But, what is important, is that the anti-

particle states (moving backward in time) have the same properties with respect to

the operation of space inversion as the corresponding particle states (as opposed to

j = 1/2 Dirac particles). This is again in accordance with the analysis of Nigam and

Foldy and Ahluwalia. The states which are eigenstates of the charge conjugation

operator in the Fock space are

U c[1/2]

(
|p, ↑〉+ ± i|p, ↑〉−

)
= ∓i

(
|p, ↑〉+ ± i|p, ↑〉−

)
. (24)

There is no simultaneous set of states which were “eigenstates” of the operator of

the space inversion and of the charge conjugation U c[1/2].

Finally, the time reversal anti-unitary operator in the Fock space should be

defined in such a way that the formalism is compatible with the CPT theorem. If

we want the Dirac states to transform as V (T )|p,±1/2〉 = ±| −p, ∓1/2〉, we have

to choose (within a phase factor), Ref. 15:

S(T ) =

(
Θ[1/2] 0

0 Θ[1/2]

)
. (25)

Thus, in the first relevant case we obtain for the Ψ(xµ) field,d Eq. (12):

V Ta†↑(p)(V T)−1 = a†↓(−p) , V Ta†↓(p)(V T)−1 = −a†↑(−p) , (26a)

V Tb↑(p)(V T)−1 = b↓(−p) , V Tb↓(p)(V T)−1 = −b↑(−p) . (26b)

To summarize, we note that we have constructed another explicit example of the

Bargmann–Wightman–Wigner theory. The matters of physical dynamics connected

dIn connection with the proposal of the eight-component equation we still note that some modi-
fications in arguments concerning the formalism for time-reversal operation are possible.
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with this mathematical construction should be solved in future taking into account

the gauge interactions with potential fields11c and the experimental setup.
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