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1 Introduction

A simple model of a closed, uctuating membrane in solution (or vesicle), such as those

found in biological contexts, is a self{avoiding surface on a d{dimensional hypercubic lat-

tice. To take account of the e�ects of factors such as osmotic pressure and pH di�erences

between the inside and outside of the membrane it is advantageous to sort the con�g-

urations according to their volume and surface area. In two dimensions, self{avoiding

polygons (SAP) weighted by area and perimeter were investigated by Fisher et al. [9] af-

ter the general problem of two{dimensional vesicles was discussed by Leibler et al. [13].

Exact enumerations of SAP by area and perimeter, and some related rigorous results on

the mean area of polygons of �xed perimeter have also been given [12, 8], after pioneering

work of Hiley and Sykes [11] on their enumeration.

A vesicle in two dimensions will be modelled in this paper by a self{avoiding polygon

on the square lattice, where both the perimeter and area are controlled in some fashion.

To be more precise, one quantity often considered when investigating the behaviour of

lattice vesicles is the �nite{perimeter partition function. This is de�ned as

Zn(q) =
X
m

cnmq
m ; (1.1)

where cnm is the number of some set of polygon con�gurations enumerated with respect

to their perimeter, 2n, and area, m, and the sum is over all possible values of m. (Since

only the square lattice is considered here, where the perimeter of the polygons contains

an even number of bonds, we will use the convention that n denotes half of the length of

the perimeter.) It is this quantity that will be the focus of our work here, more precisely,

its asymptotic behaviour as n ! 1 for a �xed value of q. Moreover, everywhere we

will restrict q to be larger than one, that is, q > 1. In the course of our discussion we

will consider several subsets of self{avoiding polygons on the square lattice: these include

convex polygons, directed convex polygons, Ferrers diagrams and simple rectangles. The
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general area{perimeter counting problem for these subsets have been examined previously

[4, 5, 7, 1, 2, 3, 6, 14, 15, 16, 17]. In particular, the de�nitions, including diagrams, of

the various polygon models can be found in Bousquet{M�elou [2]. However, their �nite{

perimeter partition functions' asymptotics for q > 1 have not been explicitly examined.

In this paper we prove that in two dimensions for SAP

Zn(q) = A(q) qn
2=4 (1 +O(�n)) as n!1 ; (1.2)

for some 0 < � < 1, where A(q) = Ao(q) or A(q) = Ae(q) when n is restricted to

subsequences with n being odd or even respectively. We give explicit expressions for Ao(q)

and Ae(q). In fact we show that these functions coincide with those obtained if one only

considered convex polygons. Note also that the odd/even dichotomy implies there is not

a unique asymptotic form for Zn(q) in the regime q > 1.

We also deduce that there is an essential singularity in both the A(q) functions as q

approaches 1 from above; in particular

A(q) �
1

4

� "
�

�3=2
e2�

2=3" as " = log q ! 0+ (1.3)

for both even and odd n.

In Fisher et al. [9] there is an argument giving the leading order factor of the �nite{

perimeter partition function asymptotics for polygons. The partition function Zn(q) is

bounded for q > 1 by

qM(n) � Zn(q) � qM(n)Zn(1) = qM(n)�2n+o(n)saw (1.4)

where M(n) is the maximal area of a polygon with perimeter 2n and �saw is the connec-

tivity constant for self{avoiding walks. From this and the exact value of M(n) (see 3.1) it

follows immediately that

Zn(q) = qn
2=4eO(n) as n!1 : (1.5)
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Figure 1: Pictorial representation of (1.6): the partition function is asymptotically dom-

inated by convex polygons, which are constructed from rectangles by removing corners

made of Ferrers diagrams.

To re�ne this result, we show that in fact for all q > 1 the partition function asymptotics

is completely dominated by the convex con�gurations. This is stated in Theorem 2.1. In

Theorem 2.2 we then discuss the asymptotics for various models of convex polygons. Taken

together these two theorems enable the following explicit expression, described precisely

in Corollary 2.3, for the leading asymptotic behaviour of Zn(q) to be given

Zn(q) =
(1 +O(�n))

(q�1; q�1)41

1X
k=�1

qk(n�k) (1.6)

for some 0 < � < 1. Here,

(x; q)m
def
=

mY
k=1

(1� xqk�1) (1.7)

is the standard q{product notation. This is the main result of our work.

The asymptotic form (1.6) has a straightforward combinatorial interpretation (see

Figure 1). The in�nite sum has its origin in the generating function for rectangles

n�1X
k=1

qk(n�k) : (1.8)
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(A rectangle of perimeter 2n may have sides of length k and n� k where 1 � k � n� 1,

and so an area of k(n � k).) If the range of summation is extended to Z, the change is

of the order of O(q�n
2=4). Convex polygons can be constructed by removing corner sites

from these rectangles while preserving the perimeter. These \corners" are described by

Ferrers diagrams, whose area{generating function is

F (q) =
1

(q; q)1
=

1Y
k=1

1

1� qk
; (1.9)

which is convergent for jqj < 1. A removal of one corner (ignoring overlaps) corresponds

to multiplication with this area{generating function with the area weight replaced by q�1.

Correspondingly, the simultaneous removal of four corners corresponds to multiplication

with F (q�1)4, leading directly to the expression in (1.6).

The rest of the paper is set out as follows: in section 2 we state the two main theorems,

where the �rst theorem compares the asymptotics of the �nite{perimeter partition func-

tions of all polygons with those of convex polygons while the second gives the asymptotics

of various kinds of convex polygons, and our main result precisely, which combines these

theorems to give the �nite{perimeter partition function asymptotics for all polygons. In

the following section 3 we prove the two main theorems. We end with a discussion of our

results, including the derivation of the asymptotics as q ! 1+ of the dominant asymptotic

part (of the right{hand side) of (1.6).

2 Asymptotic Results

Theorem 2.1 Let Zn(q) and Z
c
n(q) be the �nite{perimeter partition functions of polygons

and convex polygons, respectively, on the square lattice. Then, Zn(q) � Zc
n(q) \exponen-

tially fast" as n!1: more precisely, for all q > 1 there exist C > 0 and 0 < � < 1 such

that for all integers n > 1

1 �
Zn(q)

Zc
n(q)

< 1 + C�n : (2.1)
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Theorem 2.2 Let Z
(s)
n (q) be the �nite{perimeter partition function of rectangles (s = 0),

Ferrers diagrams (s = 1), stacks or staircase polygons (s = 2), directed convex polygons

(s = 3), and convex polygons (s = 4) on the square lattice. Then

Z(s)
n (q) � Z(s);as

n (q)
def
=

1

(q�1; q�1)s1

1X
k=�1

qk(n�k) (2.2)

exponentially fast as n!1: more precisely, for all q > 1 there exist C > 0 and 0 < � < 1

such that for all integers n > 1

1� C�n <
Z
(s)
n (q)

Z
(s);as
n (q)

< 1 : (2.3)

Note that we are using the symbol Z
(2)
n (q), for ease of notation, to refer to either the �nite{

perimeter partition function of stacks or that of staircase polygons which are di�erent

functions. However, their dominant asymptotics in the case described above are identical.

The main result of our work is the following corollary, which follows directly from

Theorems 2.1 and 2.2:

Corollary 2.3 Let Zn(q) be the �nite{perimeter partition function of polygons on the

square lattice. Then

Zn(q) � Zas
n (q)

def
=

1

(q�1; q�1)41

1X
k=�1

qk(n�k) = Z(4);as
n (q) (2.4)

exponentially fast as n!1: more precisely, for all q > 1 there exist C > 0 and 0 < � < 1

such that for all integers n > 1

���� Zn(q)

Zas
n (q)

� 1

���� < C�n : (2.5)

Proof of Corollary 2.3: It follows from Theorem 2.1 and Theorem 2.2 (with s = 4) by

multiplying the inequalities (2.1) and (2.3) that for q > 1 there exist C > 0 and 0 < � < 1

such that

1� C�n <
Zc
n(q)

Zas
n (q)

Zn(q)

Zc
n(q)

< 1 + C�n : (2.6)
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Remark: In the second theorem and the corollary the in�nite sum could have been replaced

by the �nite{perimeter partition function of rectangles,

Z(0)
n =

n�1X
k=1

qk(n�k) : (2.7)

However, the form chosen has the advantage that one can write the n{dependence more

explicitly:

Zas
n (q) =

qn
2=4

(q�1; q�1)41

8><
>:
P1

k=�1 q�k
2

n evenP1
k=�1 q�(k+1=2)

2

n odd

: (2.8)

3 Proofs of Theorems 2.1 and 2.2

In what follows, we denote the maximal area of a polygon with �xed perimeter 2n by

M(n). Clearly,

M(n) =

8><
>:

n2=4 n even

(n2 � 1)=4 n odd

: (3.1)

The proof of Theorem 2.1 will utilise two lemmata, the �rst one comparing polygons and

nearly convex polygons, and the second one comparing nearly convex polygons with convex

polygons. For this, we �rst de�ne nearly convex more precisely.

De�nition 3.1 A polygon on the square lattice is said to have convexity index `, if the

di�erence between its perimeter and the perimeter of the bounding rectangle is equal to

2`. For non{negative integer ` the set of at-most-`-convex polygons is de�ned to be the

set of polygons with convexity index of at most `, and the corresponding �nite{perimeter

partition function is denoted by Zac
n;`(q) (clearly, Z

ac
n;0(q) = Zc

n(q)).

Lemma 3.2 For all non{negative integers ` and for all q such that q`+1 > �4saw there

exist C > 0 and 0 < � < 1 such that for all integers n > 1

1 �
Zn(q)

Zac
n;`(q)

< 1 + C�n ; (3.2)
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where �saw ' 2:638 is the connectivity constant of self{avoiding walks.

Proof of Lemma 3.2: The di�erence between the set of polygons and at-most-`-convex

polygons is precisely the set of polygons with a convexity index of at least ` + 1. These

polygons have a bounding rectangle of half perimeter � n�`�1, hence an area of at most

M(n� `� 1), and their number is clearly smaller than cn, the total number of polygons

with perimeter 2n. Therefore we have the bound

0 � Zn(q)� Zac
n;`(q) � cnq

M(n�`�1) : (3.3)

Rearranging terms and estimating Zac
n;`(q) > qM(n), this leads to

1 �
Zn(q)

Zac
n;`(q)

� 1 + cnq
M(n�`�1)�M(n) : (3.4)

Now cn grows asymptotically as �2nsaw and we calculate

M(n� `� 1)�M(n) � �
`+ 1

2
n+

(`+ 1)2 + 1

4
: (3.5)

Thus, provided that q
`+1

2 > �2saw, we can �nd C > 0 and 0 < � < 1 such that

cnq
M(n�`�1)�M(n) < C�n ; (3.6)

which completes the proof. 2

This lemma seems to suggest that the closer q is to 1, the larger ` has to be chosen

to get convergence. However, this is just an artefact of the rather simple estimation. One

can sharpen the result with the help of the next lemma.

Lemma 3.3 For all non{negative integers ` and for all q > 1 there exist C > 0 and

0 < � < 1 such that for all integers n > 1

1 �
Zac
n;`(q)

Zc
n(q)

< 1 + C�n : (3.7)
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Figure 2: This �gure shows the construction in Lemma 3.3. Shown is part of a polygon

(shaded faces) with the thick line representing its border. The perimeter of the polygon is

decreased by 2 and the convexity index decreased by 1 by adding the faces marked with

� to the polygon. Note that the faces marked with � are not part of the polygon, whereas

the unmarked faces can be either.

Proof of Lemma 3.3: Let Z 0
n;`(q) denote the �nite{perimeter partition function of polygons

with convexity index `. Clearly Zac
n;`(q) =

P`
k=0 Z

0
n;k(q). We �rst give an upper bound on

Z 0
n;`(q) in terms of Z 0

n�1;`�1(q), valid for ` > 0. To do this let us consider any polygon

with perimeter 2n and convexity index `: we can add cells (faces of the lattice) to arrive

at some polygon with perimeter 2(n � 1) and convexity index `� 1 while preserving the

bounding rectangle. As ` > 0, we can always �nd an indentation within the polygon of

the form depicted in Figure 2. Adding the marked faces to the polygon clearly changes

perimeter and convexity index as desired. This implies that every polygon with perimeter

2n and convexity index ` can be constructed by removing cells (faces of the lattice) from a

polygon with perimeter 2(n� 1) and convexity index `� 1 while preserving the bounding

rectangle.

By going through this procedure carefully, we will obtain the estimate

Z 0
n;`(q) �

2n

q � 1
Z 0
n�1;`�1(q) : (3.8)
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To show this, we take any polygon with perimeter 2(n� 1) and convexity index `� 1 and

count the number of ways to remove faces. As the convexity index increases by exactly

one, the faces to be removed have to be at the boundary of the polygon and have to be

connected (one can of course get further such polygons by removing other sites that are

not directly at the boundary, but then there is a smaller polygon with which we could

have started the construction). There are less than 2n di�erent faces of the polygon at

the boundary. If we �x one face and start removing this one and additional faces in a

clockwise order, we can remove only a �nite number of faces, certainly less than 2n. Each

time we remove a face, the weight of the con�guration gets reduced by 1=q, and summing

up the weights of all con�gurations generated in this way, we get a change of weight of at

most 1=q+1=q2 + : : : � 1=(q� 1) by the removal of faces. Together with a multiplicity of

at most 2n due to the choice of the �rst site, this implies the desired inequality (3.8).

Using this inequality, we get by iteration an upper bound for at-most-`-convex polygons

in terms of convex polygons only:

Zac
n;`(q) �

X̀
k=0

�
2n

q � 1

�k

Zc
n�k(q) : (3.9)

This leads to the need to estimate the terms in the sum on the right hand side of

1 �
Zac
n;`(q)

Zc
n(q)

< 1 +
X̀
k=1

�
2n

q � 1

�k Zc
n�k(q)

Zc
n(q)

: (3.10)

With the help of the inequality

Zc
n(q)

Zc
n+1(q)

� q�n=2 ; (3.11)

which follows from (3.16) in Lemma 3.4 with s = 4, we see now that each term of the sum

in (3.10) is of the order of at most n`q�n=2. As ` is �xed, the sum contains only �nitely

many terms. Thus, if we pick a � such that q�1=2 < � < 1 then there is a C > 0 such that

X̀
k=1

�
2n

q � 1

�k Zc
n�k(q)

Zc
n(q)

� C�n ; (3.12)
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which proves the lemma. 2

Taken together, Lemma 3.2 and Lemma 3.3 prove Theorem 2.1.

Proof of Theorem 2.1: For any q > 1 we can choose ` �xed such that q`+1 > �4saw. Now

we can write

1 �
Zn(q)

Zc
n(q)

=
Zn(q)

Zac
n;`(q)

Zac
n;`(q)

Zc
n(q)

� (1 + C1�
n
1 )(1 + C2�

n
2 ) ; (3.13)

where the existence of C1 > 0 and 0 < �1 < 1 is guaranteed by Lemma 3.2, and Lemma 3.3

guarantees the existence of C2 > 0 and 0 < �2 < 1. It follows that for any max(�1; �2) <

� < 1 there exists a C > 0 such that

1 �
Zn(q)

Zc
n(q)

� 1 + C�n : (3.14)

2

The inequality (3.11) used in the proof of Lemma 3.3 is contained in Lemma 3.4 (with

s = 4), which we also use in a remark after the proof of Lemma 3.6.

Lemma 3.4 For s 2 f0; 1; 2; 3; 4g let Z
(s)
n (q) be de�ned as in Theorem 2.2. Then, for any

positive q and integer n > 1 we have the inequality

Z
(s)
n+2(q) � qn+1Z(s)

n (q) (3.15)

and the slightly weaker bound

Z
(s)
n+1(q) � qn=2Z(s)

n (q) : (3.16)

Proof of Lemma 3.4: If we increase the width of each row and then the height of each

column of a convex polygon with perimeter 2n by one (by adding cells appropriately),

we increase the perimeter by 4 and the area by n + 1. This implies immediately the

�rst inequality. For the second one we have to labour slightly harder. We partition the

set of convex polygons with respect to their bounding rectangles. Let c
m;(s)
(k;`)

denote the

number of convex polygons of class s with width k, height `, and area m. Then, by simply
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increasing the width or height of each row or column, respectively, of a polygon by one,

we get the estimates

c
m;(s)
(k+1;`) � c

m�`;(s)
(k;`) and c

m;(s)
(k;`+1) � c

m�k;(s)
(k;`) : (3.17)

(We need to treat both cases, as stacks (s = 2) lack reection symmetry.) If we de�ne the

partition function Z
(s)
(k;`)(q) =

P
m qmc

m;(s)
(k;`) then this implies the inequalities

Z
(s)
(k+1;`)(q) � q`Z

(s)
(k;`)(q) and Z

(s)
(k;`+1)(q) � qkZ

(s)
(k;`)(q) : (3.18)

As Z
(s)
n+1(q) =

Pn�1
k=0 Z

(s)
(k+1;n�k), we can now estimate

Z
(s)
n+1(q) � Z(1;n)(q) +

n�1X
k=1

qn�kZ
(s)
(k;n�k)(q) (3.19)

and

Z
(s)
n+1(q) � Z(n;1)(q) +

n�1X
k=1

qkZ
(s)
(k;n�k)(q) ; (3.20)

whence it follows that

Z
(s)
n+1(q) �

n�1X
k=1

qn�k + qk

2
Z
(s)
(k;n�k)(q) � qn=2Z(s)

n (q) ; (3.21)

where we have used the geometric{arithmetic mean inequality. 2

A simple idea of over{counting gives the upper bound for the partition function Z
(s)
n (q)

in the next lemma.

Lemma 3.5 For s 2 f0; 1; 2; 3; 4g let Z
(s)
n (q) be de�ned as in Theorem 2.2. Then for any

q > 1 and integer n > 1 we have the bound

Z(s)
n (q) < Z(s);as

n (q) =
1

(q�1; q�1)s1

1X
k=�1

qk(n�k) : (3.22)

Proof of Lemma 3.5: Every con�guration in these models can be constructed by remov-

ing s Ferrers diagrams from speci�ed corners of rectangles with the restriction that the

resulting con�guration is still a polygon (this procedure does not change the perimeter). If
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one removes this restriction, one clearly over{counts. As the removal of Ferrers diagrams

of arbitrary size is equivalent to multiplying the weight of the rectangle with (q�1; q�1)�11 ,

this implies for the generating function the inequality

Z(s)
n (q) �

Z
(0)
n (q)

(q�1; q�1)s1
: (3.23)

Replacing Z
(0)
n (q) =

Pn�1
k=1 q

k(n�k) by the in�nite sum
P1

k=�1 qk(n�k) proves the lemma.

2

As a consequence of Lemma 3.4 and Lemma 3.5 we can now establish the desired

convergence to Z
(s);as
n (q). This is done in Lemma 3.6 in which we also establish the rate

of convergence.

Lemma 3.6 For s 2 f0; 1; 2; 3; 4g let Z
(s)
n (q) be de�ned as in Theorem 2.2. Then for all

q > 1 there exist C > 0 and 0 < � < 1 such that for all integers n > 1

q�M(n)
�
Z(s);as
n (q)� Z(s)

n (q)
�
< C�n : (3.24)

Proof of Lemma 3.6: We �rst consider Z
(s)
2n (q)=q

M(n) and Z
(s);as
n (q)=qM(n) as series in

q�1 and show that we have convergence for each of the series coe�cients. In order to

compare the coe�cients, we need to look more closely at the error made by the over{

counting procedure. The over{counting results from Ferrers diagrams that touch each

other, respectively from Ferrers diagrams that do not �t into the rectangle. In either case,

this necessitates a minimal area removal of size min(k; n�k) from a k� (n�k){rectangle.

Thus, the maximal weight of the excess con�gurations is

qk(n�k)�min(k;n�k) : (3.25)

As both Z
(s)
n (q) and Z

(0)
n (q)=(q�1; q�1)s1 have a leading power of qM(n), this implies that

they agree in their leading bn2 c coe�cients, if considered as a series in q�1.
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If we de�ne for k = 0; 1; 2; : : : the positive numbers

d
(s);even
k = [q�k]

1

(q�1; q�1)s1

1X
`=�1

q�`
2

(3.26)

d
(s);odd
k = [q�k]

1

(q�1; q�1)s1

1X
`=�1

q�`(`+1) (3.27)

where [q�k] denotes the k-th coe�cient of Z
(s);as
n (q)=qM(n) in q�1, then these coe�cients

coincide with those of Z
(s)
2n (q)=q

M(n), as explained above, for the �rst n terms. This

coincidence and the upper bound in Lemma 3.5 imply that

nX
k=0

q�kd
(s);even
k � Z

(s)
2n (q)=q

n2 �
1X
k=0

q�kd
(s);even
k (3.28)

nX
k=0

q�kd
(s);odd
k � Z

(s)
2n+1(q)=q

n(n+1) �

1X
k=0

q�kd
(s);odd
k ; (3.29)

which in turn imply that the error is less than the error made by truncating the expansion

of the upper bound in q�1 after n terms. As the left{hand sides converge exponentially

fast in q�1 to the right{hand sides, we can now write down the rate of convergence for the

middle terms. More precisely, we have shown that for 0 < � < 1 there exists a C > 0 such

that for all q > ��1

1

(q�1; q�1)s1

1X
k=�1

q�k
2

�
1

qn2
Z
(s)
2n (q) � C�n (3.30)

1

(q�1; q�1)s1

1X
k=�1

q�k(k+1) �
1

qn(n+1)
Z
(s)
2n+1(q) � C�n ; (3.31)

which implies that for 0 < � < 1 there exists a C > 0 such that for all q > ��2

q�M(n)

 
1

(q�1; q�1)s1

1X
k=�1

qk(n�k) � Z(s)
n (q)

!
< C�n ; (3.32)

which proves the lemma. 2

Remark: By Lemma 3.4, we have the inequality

Z
(s)
n+2(q)=q

(n+2)2=4 � Z(s)
n (q)=qn

2=4 (3.33)
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which implies that the sequences (Z
(s)
2n (q)=q

n2) and (Z
(s)
2n+1(q))=q

(n+1=2)2 ) are monotoni-

cally increasing. Rewriting the upper bound of Lemma 3.5 gives the n{independent upper

bounds

Z(s)
n (q)=qn

2=4 <
1

(q�1; q�1)s1

8><
>:
P1

k=�1 q�k
2

n evenP1
k=�1 q�(k+1=2)

2

n odd

: (3.34)

Thus, the sequences (Z
(s)
2n (q)=q

n2) and (Z
(s)
2n+1(q))=q

(n+1=2)2 ) converge. One may be tempted

to use this convergence and the fact that the series coe�cients of Z
(s)
2n (q)=q

M(n) and

Z
(s);as
n (q)=qM(n) coincide for the leading bn2 c, as shown in the �rst part of the proof of

Lemma 3.6, to show the sequences, Z
(s)
2n (q)=q

M(n) and Z
(s);as
n (q)=qM(n), converge to the

same (odd and even) limits. However, to use this convergence of the formal power series,

and the point{wise convergence of the sequences, to imply equality of the limits one needs

to utilise the positivity of the coe�cients of the power series. This is precisely what was

accomplished in the second part of the proof of Lemma 3.6, which also allowed us to

estimate the rate of convergence simultaneously.

Proof of Theorem 2.2: This follows now directly from Lemma 3.6. 2

4 Discussion

In this paper we have derived the leading asymptotic behaviour of the �nite{perimeter

generating function for polygons on the square lattice for area fugacity larger than one

and have given a combinatorial interpretation of the result.

We conclude this paper by considering the behaviour of the form (1.6) when q ! 1+.

This is clearly far from being enough to determine the asymptotic behaviour of Zn(1), as

one may not interchange the limits n!1 and q ! 1.

We de�ne

Ae(q) =

P1
k=�1 q�k

2

(q�1; q�1)41
(4.1)
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and

Ao(q) =

P1
k=�1 q�(k+1=2)

2

(q�1; q�1)41
: (4.2)

Hence we can write

Zas
n (q) = A(q) qn

2=4 ; (4.3)

where A(q) = Ao(q) or A(q) = Ae(q) when n is restricted to subsequences with n being odd

or even respectively. The numerators of the functions Ae(q) and Ao(q) can be identi�ed

as limiting cases of the elliptic theta functions [18], that is,

#3(0; q
�1) =

1X
k=�1

q�k
2

(4.4)

and

#2(0; q
�1) =

1X
k=�1

q�(k+1=2)
2

: (4.5)

This allows the powerful theory of theta functions [18] to be utilised. In particular, the

conjugate modulus transformation relates the theta functions of nome p = e��� = q�1 < 1

to theta functions of nome p0 = e��=�. This is useful if we consider the asymptotics as

p ! 1� (that is, q ! 1+) since then p0 ! 0+. The conjugate modulus transformation

yields

#3(0; p) = ��1=2#3(0; p
0) (4.6)

and

#2(0; p) = ��1=2#4(0; p
0) = ��1=2

1X
k=�1

(�1)k(p0)k
2

: (4.7)

Since

#3(0; p
0) � #4(0; p

0) � 1 (4.8)

as p0 ! 0, and since further [10]

(p; p)1 �

�
2

�

�1=2

exp

�
��

6�

�
(4.9)
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as p! 1� (� ! 0+), the asymptotics of the functions Ae(q) and Ao(q) follow after some

algebra. We hence obtain

Ae(q) � Ao(q) �
1

4

� "
�

�3=2
e2�

2=3" as q ! 1+ ; (4.10)

where " = log(q).

Lastly, we consider exact enumeration data for these models. Comparing

Zn(q)=
1X

k=�1

qk(n�k) =
1X
k=0

an;kq
�k (4.11)

and

1

(q�1; q�1)41
=

1X
k=0

bkq
�k (4.12)

we observe that the coe�cients an;k are monotonically increasing in n and bounded above

by bk for n � 21. Hence, we are led to conjecture that Zas
n (q) from (2.4) may, in fact, be

a strict upper bound for Zn(q). We leave this as an open question.
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