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Abstract: By using the Hadamard matrix product concept, this paper introduces two

generalized matrix formulation forms of numerical analogue of nonlinear differential

operators. The SJT matrix-vector product approach is found to be a simple, efficient and

accurate technique in the calculation of the Jacobian matrix of the nonlinear discretization by

finite difference, finite volume, collocation, dual reciprocity BEM or radial functions based

numerical methods. We also present and prove simple underlying relationship (theorem (3.1))

between general nonlinear analogue polynomials and their corresponding Jacobian matrices,

which forms the basis of this paper. By means of theorem 3.1, stability analysis of numerical

solutions of nonlinear initial value problems can be easily handled based on the well-known

results for linear problems. Theorem 3.1 also leads naturally to the straightforward extension

of various linear iterative algorithms such as the SOR, Gauss-Seidel and Jacobi methods to

nonlinear algebraic equations. Since an exact alternative of the quasi-Newton equation is

established via theorem 3.1, we derive a modified BFGS quasi-Newton method. A simple

formula is also given to examine the deviation between the approximate and exact Jacobian

matrices. Furthermore, in order to avoid the evaluation of the Jacobian matrix and its inverse,

the pseudo-Jacobian matrix is introduced with a general applicability of any nonlinear

systems of equations. It should be pointed out that a large class of real-world nonlinear
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problems can be modeled or numerically discretized polynomial-only algebraic system of

equations. The results presented here are in general applicable for all these problems. This

paper can be considered as a starting point in the research of nonlinear computation and

analysis from an innovative viewpoint.

Key words. Hadamard product, Jacobian matrix, SJT product, nonlinear polynomial-only

equations, nonlinear stability analysis, quasi-Newton method, pseudo-Jacobian matrix.
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1. Introduction. The numerical solution of nonlinear partial differential equations plays a

prominent role in many areas of physical and engineering. Considerable research endeavors

have been directed to develop various nonlinear solution methodologies. However, it is not

easy to achieve some significant practical progress in this direction because of great

complexity the nonlinearity arises. Recently, some innovative contributions were made by

one of the present authors [1, 2]. The Hadamard product of matrices was therein introduced to

nonlinear computations and analysis. The SJT product of matrix and vector was defined to

efficiently calculate the accurate Jacobian matrix of some numerical formulations of nonlinear

differential equations. The present study is a step forward development based on these works.

In comparison to nonlinear cases, a vast variety of computing and analysis tools of linear

problems have been quite well developed today. It is natural desire to employ these effective

linear methods to nonlinear problems. However, this is a rather hard task due to the actual

great gaps between both. Based on the Hadamard product approach, Chen et al. [2] derived

two kinds of generalized matrix formulations in numerical approximation of nonlinear

differential or integral operators. By using these unified formulations, this paper presents and

verifies the simple relationship (theorem 3.1) between numerical analogue solutions of

nonlinear differential operators and their Jacobian matrices. It is noted that theorem 3.1 is

only applicable for an important special class of polynomial-only algebraic system of

equations. However, in practice such polynomial-only systems have very widespread

applications. The theorem paves a shortcut path to exploit the existing methods of solving

linear problems to the complex polynomial-only nonlinear problems. Some significant results

are immediately obtained by using theorem 3.1. First, so far there is not general and simple

approach available for stability analysis in the numerical solution of nonlinear initial value
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problems. We here develop such a technique based on the application of theorem 3.1. Second,

the linear iterative methods of algebraic equations such the SOR, Gauss-Seidel, and Jacobi

methods were often applied in conjunction with the Newton method rather than directly to

nonlinear system of equations itself. The present work directs to a straightforward extension

of these techniques to nonlinear algebraic equations. Third, the quasi-Newton equation is the

very basis of various quasi-Newton methods. Based on theorem 3.1, we constitute an exact

alternative equation of the approximate quasi-Newton equation. As a consequence, we derive

a set of the modified BFGS matrix updating formulas. Finally, in order to avoid the

calculation of the Jacobian matrix and its inverse, we introduce the pseudo-Jacobian matrix.

By using this new concept, the general nonlinear system of equations without limitation of

polynomial-only problems is encompassed in this work. The proposed pseudo-Jacobian

matrix is used for stability analysis of nonlinear initial value problems.

This paper is structured as follows. Section 2 gives a brief introduction to the Hadamard and

SJT products. Two unified matrix formulations of general numerical discretization of

nonlinear problems are obtained by using the Hadamard product. Section 3 proves the simple

relationship theorem 3.1 between the numerical analogue of nonlinear operator and the

corresponding Jacobian matrix, which forms the basis of later work. Section 4 is comprised of

three subsections. Section 4.1 is concerned with stability analysis of numerical solution of

nonlinear initial value problems, and in section 4.2 several existing linear iterative methods

are directly extended to the nonlinear problems. Section 4.2 involves the construction of a set

of the modified Broyden-type matrix updating formulas. Section 5 defines the pseudo-

Jacobian matrix, and applies this concept to stability analysis of nonlinear initial value

computation. Finally, some remarks of the present work are given in section 6. Unless

otherwise specified, U, C and F in this paper represent vector.

2. Two unified matrix formulations of general nonlinear discretizations

Matrix computations are of central importance in nonlinear numerical analysis and

computations. However, since nonlinear problems are actually different from linear ones, the

traditional linear algebraic approach, which are based on the concept of linear transformation,

can not provide a unified powerful tool for nonlinear numerical computation and analysis task.

In this section, by using the Hadamard product and SJT product, we gain two kinds of
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generalized matrix formulations of nonlinear numerical discretization and a simple, accurate

approach to calculate the Jacobian matrix [1, 2].

Definition 2.1 Let matrices A=[aij] and B=[bij]∈ CN×M, the Hadamard product of matrices is

defined as A°B= [aij bij]∈ CN×M. where CN×M denotes the set of N×M real matrices.

Definition 2.2 If matrix A=[aij]∈ CN×M, then A°q=[aij
q]∈ CN×M  is defined as the Hadamard

power of matrix A, where q is a real number. Especially, if aij ≠0, A°(-1)=[1/aij]∈ CN×M is defined

as the Hadamard inverse of matrix A. A°0=11 is defined as the Hadamard unit matrix in which

all elements are equal to unity.

Definition 2.3 If matrix A=[aij]∈ CN×M, then the Hadamard matrix function ( )f Ao   is

defined as ( ) ( )[ ]f A f aij
o = ∈  CN×M.

Theorem 2.1: letting A, B and Q∈ CN×M, then

1> A°B=B°A (1a)

2> k(A°B)=(kA)°B, where k is a scalar. (1b)

3> (A+B)°Q=A°Q+B°Q (1c)

4> A°B=EN
T(A⊗ B)EM,  where matrix EN  (or EM) is defined as EN =[ e1⊗ e1M LMeN⊗ eN],

ei=[0L0 1
i

 0L0], i=1, L, N, EN
T  is the transpose matrix of EN. ⊗  denotes the Kronecker

product of matrices. (1d)

5> If A and B are non-negative, then ( ) { } ( ) ( ) { }λ λ λmin maxmin maxA b A B A bii j ii≤ ≤o ,

where λ is the eigenvalue. (1e)

6> (detA)(detB)≤det(A°B), where det( ) denotes the determinant. (1f)

For more details about the Hadamard product see [3, 4].



5

2.1. Nonlinear formulation-K* of general numerical methods

It is well known that the majority of popular numerical methods such as the finite element,

boundary element, finite difference, Galerkin, least square, collocation and spectral methods

have their root on the method of weighted residuals (MWR) [5, 6]. Therefore, it will be

generally significant to apply the Hadamard product to the nonlinear computation of the

MWR. In the MWR, the desired function φ in the differential governing equation

ψ u f{ } − = 0 (2)

is replaced by a finite series approximation û ,

u u Cj j
j

N
= =

=
∑ˆ φ

1

, (3)

where { }ψ  is a differential operator. i can be defined as the assumed functions and CjÔs

are the unknown parameters. The approximate function û  is completely specified in terms of

unknown parameters Cj. Substituting this approximation û  into the governing equation (2), it

is in general unlikely that the equation will be exactly satisfied, namely, result in a residual R

ψ û f R{ } − = (4)

The method of weighted residuals seeks to determine the N unknowns Cj in such a way that

the error R is minimized over the entire solution domain. This is accomplished by requiring

that weighted average of the error vanishes over the solution domain. Choosing the weighting

function Wj and setting the integral of R to zero:

ψ û f W dD RW dDj jDD
{ } −[ ] = =∫∫ 0 ,  j=1,2,....,N. (5)

Equation (5) can be used to obtain the N unknown coefficients. This equation also generally

describes the method of weighted residuals. In order to expose our idea clearly, considering

the following linear and nonlinear differential operators in two dimensions with varying

parameter:

L u c x y
u

x

p

p1{ } = ( ),
∂
∂

(6a)

L u c x y
u

x

u

y

p

p

q

q2{ } = ( ),
∂
∂

∂
∂

 (6b)

Substitution of Eq. (3) into Eqs. (6a) and (6b) and applications of equation (1d) in the theorem

2.1 result in

                                                  
* It is denoted as formulation-S in [2].
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L u c x y
x

C
p

i
p

T

1 ˆ ,{ } = ( )











∂ φ
∂

, (7a)
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x

C
y

C E c x y

x y
E C C c x y
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i

p

T q
i

q

T

T

p
i

p

T q
i

q

T

2 1

1

ˆ , ,

,

( ) = ( ) 
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∂
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∂
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 ⊗( )∂ φ

∂
∂ φ
∂

p
i

p

T q
i

q

T

x y
C C

(7b)

where C  is a vector composed of the unknown parameters, E1=1. Substituting the Eqs. (7a, b)

into Eq. (5), we have

L u W dD c x y
x

W dD CjD

p
j

p

T

jD1 ˆ ,{ } = ( )




























∫ ∫
∂ φ

∂
(8a)

L u W dD c x y
x x

W dD C CjD

p
i

p

T q
i

q

T

D j2 ˆ ,( ) = ( )











⊗







































⊗( )∫ ∫
∂ φ
∂

∂ φ
∂

(8b)

As a general case, the quadratic nonlinear partial differential equation is given by

a x y
u

x y
b x y

u

x y

u

x y
dkl

k l

k l
k l

N

kl

k l

k l

i j

i j
i j
k l

N
, ,

( )

,

( ) ( )

,
,

( ) + ( ) + =
+

=

+ +

=
=

∑ ∑∂
∂ ∂

∂
∂ ∂

∂
∂ ∂0

1

0
0

2
0 , (9)

where d is constant. The above equation encompasses a wide range of the quadratic nonlinear

governing equations.

Applying Eqs. (8a, b), we can easily derive the MWR formulation of the nonlinear differential

equation (9) with the following form  

K C G C C Fn n n n× ×+ ⊗( ) + =2 0 , (10)

where F  is the constant vector.

K a x y
x y

W dD Cn n kl

k l
i

k l

T

k l

N

jD
n n

×

+( )

=

×= ( )
























∈∑∫ ,
,

∂ φ
∂ ∂0

1
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G b x y
x y x y

W dD C
n n kl

i j
p

i j

T
k l

p
k l

T

k l
i j

N

j
n n

D×

+( ) +( )

=
=

×= ( )











⊗





























∈∑∫2

2

0
0

2
,

,
,

∂ φ

∂ ∂

∂ φ

∂ ∂

represent constant coefficient matrices corresponding to the linear and nonlinear operators,

respectively. For the cubic nonlinear differential equations, we can obtain similar general

matrix formulation by using the same approach:
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L C R C C C Fn n n n× ×+ ⊗ ⊗( ) + =3 0 , (11)

where L and R are constant coefficient matrices. For higher order nonlinear problems, the

formulations can be easily obtained in the same way. To simplify notation, formulations with

form of Eqs. (10) and (11) are denoted as formulation-K, where K is chosen since the

Kronecker product is used in expressing nonlinear numerical discretization term.

As was mentioned earlier, most of popular numerical techniques can be derived from the

method of weighted residual. The only difference among these numerical methods lies in the

use of different weighting and basis functions in the MWR. From the foregoing deduction, it

is noted that Eq. (10) can be obtained no matter what weighting and basis functions we use in

the method of weighted residuals. Therefore, it is straightforward that we can obtain the

formulation-K for the nonlinear computations of these methods. In many numerical methods,

the physical values are usually used as the desired variables instead of the unknown expansion

coefficient vector C in the preceding formulas. Both approaches are in fact identical. It is

theoretically convenient to use C here.

In the following we give explicit formulas for computing the Jacobian derivative matrix of the

quadratic and cubic nonlinear formulation-K (10) and (11). Eq. (10) can be restated

K C

vec G

vec G

C C Fn n

n

× +
( )

( )

















⊗( ) + =
1

0M , (12)

where vec( ) is the vector-function of a rectangular matrix formed by stacking the column of

matrix into one long vector [7]. Gi Ôs are n×n symmetric matrices and can be easily obtained

from the corresponding rows of the matrix G in Eq. (10) through the invert process of vec( ).

Furthermore, we have

K

C G

C G

C Fn n

T

T
n

× +

































+ =
1

0M , (13)

where superscript T means the transpose of vector. According to the rule in differentiation of

matrix function [4], the Jacobian derivative matrix of the above equation can be obtained by

the following formula:



8

∂ϕ
∂

C

C
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C G

C G
n n

T

T
n

{ } = +

















× 2
1

M . (14)

Similarly, the cubic nonlinear equation (11) can be restated as

ψ C L C

R C C

R C C

C Fn n

n n

T

n n
n T

( ) = +
⊗( )[ ]
⊗( )[ ]



















+ =×
×

×

2

2

1

0M . (15)

The Jacobian matrix of the above equation can be evaluated by

∂ψ
∂

∂

∂

∂

∂

C

C
L

C
R C C

C

C
R C C

C

R C C

R C C
n n

T n n

T n n
n

n n

T

n n
n T

{ } = +

⊗( )

⊗( )



























+
⊗( )[ ]
⊗( )[ ]



















×

×

×

×

×

2

2

2

2

1
1v

M M . (16)

Furthermore, we have

∂ψ
∂

C

C
L

C R C C R C C R C

C R C C R C C R C

C R C C R C C R C

T T T
n

T T T
n

T
n

T
n

T
nn

( ) = +





















3

11 12 1

21 22 2

1 2

L

L

M M M M

L

, (17)

where Rij result from matrix Ri and are rectangular constant coefficient matrices.

2.2. Nonlinear formulation-H and SJT product

The previously presented formulation-K is somewhat complex. This section will show that

the Hadamard product can be directly exploited to express nonlinear discretization term of

some numerical techniques. For example, consider the quadratic nonlinear differential

operator 
∂

∂
∂

∂
U x y

x

U x y

y

( , ) ( , )
, its numerical analogue by using a point-wise approximation

technique can be expressed

∂
∂

∂
∂

u x y

x

u x y

y
u u u u U A Ux y i x i y i y

( , ) ( , )
= { } = { } °{ } = ( ) ( )Ax

v
o

v
,  i=1,2,É,N,  (18)

where i indexes the number of discrete points; Ax and Ay represent the coefficient matrices

dependent on specified numerical discretization scheme. It is noted that we use the desired

function value vector 
v

U  here instead of the unknown parameter vector C in section 2.1. In

fact, both is equivalent. This explicit matrix formulation (18) is obtained in a straightforward

and intuitive way. The finite difference, collocation methods and their variants such as

differential quadrature and pseudo-spectral methods belong to the point-wise approximating
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numerical technique. In addition, the finite volume, dual reciprocity BEM [8] (the most

efficient technique in applying BEM to nonlinear problems) and numerical techniques based

on radial basis functions [9] can express their analogue of nonlinear differential operators in

the Hadamard product form. For all above-mentioned methods, the numerical analogues of

some nonlinear operators often encountered in practice are given by

1. c x y u c x y A Ux j j x, , ,( ) = ( ){ } ( )o , (19a)

2. 
q

x x
q

u A U, ,( ) = ( )o  where q is a real number, (19b)

3. 
∂
∂

∂
∂

u

x

u

y
A U A U

m n

x
m

y
n= ( ) ( )o oo , (19c)

4. sin sin,u A Ux x= ( )o , (19d)

5. exp exp,u A Ux x( ) = ( )o . (19e)

In the above equations ( ),x =∂( )/∂x; Ax and Ay denote the known coefficient matrices

resulting from cetain numerical methods. We define the nonlinear discretization expression in

the Hadamard product form as the formulation-H. It is very easy to transform the formulation-

H such as Eq. (18) into the formulation-K by using formula (1d). In what follows, the SJT

product is introduced to efficiently compute analytical solution of the Jacobian derivative

matrix.

Definition 2.4. If matrix A=[aij]∈ CN×M, vector U={uj}∈ CN×1, then  A◊U=[aijui]∈ CN×M is

defined as the postmultiplying SJT product of matrix A and vector U, where ◊ represents the

SJT product. If M=1, A◊B=A°B.  

Definition 2.5. If matrix A=[aij]∈ CN×M, vector V={vj}∈ CM×1, then VT◊A=[aij vj]∈ CN×M is

defined as the SJT premultiplying product of matrix A and vector V.

Considering the nonlinear formulation (18), we have

∂
∂U

A U A U A A U A A Ux y x y y x( ) ( ){ } = ◊( ) + ◊( )o . (20)

Formula (20) produces the accurate Jacobian matrix through simple algebraic computations.

The SJT premultiplying product is related to the Jacobian matrix of the formulations such as
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dU

dx
AU

m
m= , i.e.,

∂
∂

v o

U
A U mU Ax

m m T

x{ } = ( ) ◊−( )1 . (21)

In the following, we discuss some operation rules in applying the SJT product to evaluate the

Jacobian matrix of the nonlinear formulations (13).

1. 
∂

∂
v o

U
c x y A U A c x yj j x x j j, ,( ){ } ( ){ } = ◊ ( ){ } (22a)

2. 
∂

∂
v

o o

U
A U qA A Ux

q
x x

q( ){ } = ◊( ) −( )1 . (22b)

3. 

∂
∂

v oo o o o

o o

U
A U A U m U A A U

n U A A U

x
m

y
n m

x y
n

n
y x

m

( ) ( ){ } = ( )◊{ }◊( ) +

( )◊{ }◊( )

−( )

−( )

1

1
 (22c)

4. 
∂

∂
v o

U
A U A A Ux x xsin cos( ){ } = ◊ ( ) (22d)

5. 
∂

∂
v o o

U
A U A A Ux x xexp exp( ){ } = ◊ ( ) (22e)

6. If ψ φ φ ϕ= ( ) = ( )f Uo o, , we have 
∂ψ
∂

∂ψ
∂φ

∂φ
∂U U

= . (22f)

In the above equations 
∂
∂φ

 and 
∂

∂U
 represent the Jacobian derivative matrix of certain

Hadamard vector function with respect to vectors φ  and U, respectively. It is observed from

these formulas that the Jacobian matrix of the nonlinear formulation-H can be calculated by

using the SJT product in the chain rules similar to those in differentiation of a scalar function.

The above computing formulas yield the analytical solutions of the Jacobian matrix. The

computational effort of a SJT product is only n2 scalar multiplications. However, it is noted

that the SJT product seems to be not amenable to the evaluation of the Jacobian matrix of the

previous formulation-K.

The finite difference method is often employed to calculate the approximate solution of the

Jacobian matrix and also requires O(n2) scalar multiplications. In fact, the SJT product

approach requires n2 and 5n2 less multiplication operations than one and two order finite

differences, respectively. Moreover, the SJT product produces the analytic solution of the

Jacobian matrix. In contrast, the approximate Jacobian matrix yielded by the finite difference

method affects the accuracy and convergence rate of the Newton-Raphson method, especially

for highly nonlinear problems. The efficiency and accuracy of the SJT product approach were
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numerically demonstrated in [1, 2].

We notice the following fact that the SJT product is closely related with the ordinary product

of matrices, namely, if matrix A=[aij]∈ CN×M, vector U={ui}∈ CN×1, then the postmultiplying

SJT product of matrix A and vector U satisfies

A◊U=diag{u1, u2, ....., uN}A, (23a)

where matrix diag{u1, u2, ....., uN}∈ CN×N is a diagonal matrix. Similarly, for the SJT

premultiplying product, we have

VT◊A = A diag{v1, v2, ....., vM}, (23b)

where vector V={vj}∈ CM×1. The reason introducing the SJT product is to simplify the

presentation, manifest the relation with the Jacobian matrix of the formulation-H and clear the

fact that the SJT product approach enjoys the same chain rule of scalar differentiation.

Some numerical examples applying these above formulas presented in [1, 2]. The

effectiveness and efficiency are demonstrated therein. Obviously, the formulation-H is

preferred whenever possible. However, the formulation-K is believed to be in the most

general an identical formulation form of various nonlinear numerical analogue due to its

broad applicability. The general formulation-K and formulation-H provide a computational

attractiveness to develop the unified techniques in the nonlinear analysis and computation. In

next sections, we will employ the results given here.

3. Jacobian matrix and nonlinear numerical analogue

Consider the quadratic nonlinear term of equation (18) and its Jacobian matrix of equation

(20), we have

A A U A A U U diag A U A U diag A U A U

A U A U

x y y x y x x y

x y

◊( ) + ◊( )[ ] = ( )( ) + ( )( )
= ( ) ( )2 o

 (24)

by means of equation (23a), where diag(AxU) and diag(AyU) are diagonal matrices with

diagonal terms of AxU and AyU. Furthermore, consider the cubic nonlinear differential

operator

∂
∂

∂
∂

∂
∂

u x y

x

u x y

y

u x y

xy
U A U A Ux xy

( , ) ( , ) ( , )2
= ( ) ( ) ( )Ax o o , (25)
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whose Jacobian matrix is

A A Ax y xy◊ ( ) ( )[ ] + ◊ ( ) ( )[ ] + ◊ ( ) ( )[ ]A U A U A U A U A U A Uy xy x xy x yo o o .

Similar to Eq. (24), we can derive

A A

A

x y

xy

◊ ( ) ( )[ ] + ◊ ( ) ( )[ ]{ +

◊ ( ) ( )[ ]} = ( ) ( ) ( )
A U A U A U A U

A U A U U A U A U A U

y xy x xy

x y x y xy

o o

o o o3
(26)

In fact, we can summarize

N U J U U2 21

2
( ) ( )( ) = ( ) (27)

for quadratic nonlinear term and

N U J U U3 31

3
( ) ( )( ) = ( ) (28)

for cubic nonlinear term, where the N(2) and N(3) denote the quadratic and cubic nonlinear

terms and J(2) and J(3) represent the corresponding Jacobian matrices.

As were mentioned in section 2, the formulation-K is in general appropriate for nonlinear

numerical discretization expression of all numerical techniques resulting from the method of

weighted residuals, which include the finite element, boundary element, finite difference,

Galerkin, least square, collocation and spectral methods. Also, the nonlinear formulation-H of

the finite difference, finite volume, dual reciprocity BEM, radial function based methods,

collocation and their variants can easily be transformed into the formulation-K. Therefore, in

the following we will investigate the effectiveness of equations (27) and (28) for the

formulation-K. First, by comparing equations (13) and (14), it is very obvious

N C J C C2 21

2
( ) ( )( ) = ( ) (29)

for the quadratic nonlinear formulation-K. Furthermore, by postmultiplying the Jacobian

matrix of the cubic nonlinear term in formulation-K equation (17) by the vector C, we have

C R C C R C C R C

C R C C R C C R C

C R C C R C C R C

C R C C C

T T T
n

T T T
nn

T
n

T
n

T
nn

n n

11 12 1

21 22

1 2

3

L

L

M M M M

L





















= ⊗ ⊗( )× (30)

through inverse operations from equations (17) to (15). Therefore, we have

N C J C C3 31

3
( ) ( )( ) = ( ) (31)

Next we use the mathematics inductive method to generalize the relationship formulas (29)
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and (31) to any order nonlinear terms. First, we assume that there exists

N C H C C C
k

J C Ck k
k

k

n nk

( ) ( ) ( )( ) = ⊗ ⊗ ⊗








 = ( )

×
K

6 744 844 1
(32)

for the k-order nonlinear term. Consider the (k+1)-order nonlinear term, the corresponding

formulation-K expression can be stated as

N C H C C C

N C

N C

N C

Ck k
k

k T

k T

n
k T

n nk

+( ) +( )
+

( )

( )

( )

( ) = ⊗ ⊗ ⊗








 =

( )[ ]
( )[ ]
( )[ ]





























× +

1 1
1

1

2
1

K
6 744 844

M

, (33)

where N Ci
k( )( )  are the k-order nonlinear terms,

N C h C C Ci
k

in n
k

k

k
( )

×
+( )( ) = ⊗ ⊗ ⊗











1
K

6 744 844
,  i=1, 2, É., n. (34)

The Jacobian matrix can be given by

J C
N C

C

C
N C

C

C
N C

C

C
N C

C

N C

N C

N

k
k

T
k

T
k

T n
k

k T

k T

n
k

+( )
+( )

( )

( )

( )

( )

( )

(

( ) = ( ) =

( )

( )

( )































+

( )[ ]
( )[ ]1

1

1

2

1

2
∂

∂

∂
∂

∂
∂

∂
∂

v

v

v

M

v

M
))( )[ ]



























C

T

(35)

By using equation (32), we have

J C C kN C N C

k N C

k k k

k

+( ) +( ) +( )

+( )
( ) = ( ) + ( )

= +( ) ( )

1 1 1

11
(36)

Therefore, it is generally validated

N C
m

J C Cm m( ) ( )( ) = ( )1
, (37)

where m denotes the nonlinear order. It is again stressed that the indirect parameter vector C

formulation is actually equivalent to those using the unknown function value vector U.

Therefore, equation (37) is equally satisfied for the vector U formulations. Summarize the

above results, we have

Theorem 3.1: If N Um( )( ) and J Um( )( )  are defined as nonlinear numerical analogue of the m

order nonlinear differential operator and its corresponding Jacobian matrix, respectively, then
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N U
m

J U Um m( ) ( )( ) = ( )1
 is always satisfied irrespective if which numerical technique is

employed to discretize.

In fact, all integral-order nonlinear polynomial systems of equations can be represented in the

formulation-K form. For example, consider quadratic nonlinear term G C C
n n× ⊗( )2  in

equation (10), we can find that for an n-dimension polynomial system of equations, the

quadratic nonlinear term can at most have n2 independent coefficients. Therefore, coefficient

matrix G
n n× 2 is sufficient to determine any quadratic nonlinear polynomial terms uniquely.

Similar analysis can be done for higher order nonlinear polynomial terms. Now we can

conclude that theorem 3.1 is applicable for all integral-order nonlinear polynomial systems of

equations. In addition, for quadratic nonlinear problems, G C C
n n× ⊗( )2  in equation (10) is a

constant coefficient matrix and actually the second order derivative matrix (the Hessian

matrix) of quadratic nonlinear algebraic vectors. Numerical properties such as singular values

of such matrix may disclose some significant information of nonlinear systems.

4. Applications

By using theorem 3.1, this section will address some essential nonlinear computational issues

pertinent to the computational stability analysis of nonlinear initial value problems, linear

iteration solution of nonlinear algebraic equations and a modified BFGS quasi-Newton

method.

4.1. Stability analysis of nonlinear initial value problems

The spatial discretization of time-dependent differential systems results in the initial value

problem. For linear systems, methods for determining conditions of numerical stability and

accuracy of various time integration schemes are well established. However, for nonlinear

problems, these tasks have been dramatically complicated. It was found that numerical

instability can occur in the nonlinear computation even for methods that are unconditionally

stable for linear problems [10, 11]. Recently, an energy and momentum conserving condition

is sometimes imposed to guarantee stability of nonlinear integration. The mathematical

techniques in performing such strategy are often quite sophisticated and thus not easily

learned and used. We wish to develop a methodology which can evaluate stability behavior of
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general integration schemes and avoids the above difficulties.

Without the loss of generality, the canonical form of the first order initial problem with

nonlinear quadratic and cubic polynomial terms is given by

dU

dt
f t U

LU N t U N t U

= ( )

= + ( ) + ( )( ) ( )

,

, ,2 3
(38)

where U is unknown vector; L is a given nonsingular matrix; N(2)(t, U) and N(3)(t, U) are given

vectors of quadratic and cubic nonlinear polynomials, respectively. Therefore, according to

theorem 3.1, we have

L J t U J t U U A t U U+ ( ) + ( )





= ( )( ) ( )1

2

1

3
2 3, , , (39)

where J(2)(t, U) and J(3)(t, U) are the Jacobian matrix of the quadratic and cubic nonlinear terms.

It is seen that the right side of equation (38) is expressed as a definite explicit matrix-vector

separated from in Eq. (39). So equation (38) can be restated as

dU

dt
A t U U= ( ), . (40)

Eq. (40) has the form of linear initial value problem with varying coefficient matrix A(t, U),

which provides a very attractive convenience to apply the well-developed techniques of linear

problems to nonlinear problems.

A variety of linear time integration methods available now fall into two groups, explicit and

implicit. The explicit methods are usually easy-to-use and need not solve a matrix system.

However, these methods are also usually conditionally stable even for linear problems and

thus in many cases stability requires small time step. For nonlinear problems, it is intrinsic

advantages of the explicit methods that iterative solutions are not required. In wave

propagation problems, the methods are often used due to their lower computing cost per step

[12]. On the other hand, the implicit methods require the solution of a matrix system one or

more times and therefore are computationally expensive per time step, especially for

nonlinear problems. However, the implicit methods tend to be numerically stable and thus

allow large time step. So these methods have advantage to solve stiff problems [13]. In what

follows, we will investigate these two types of methods.

Explicit methods

As an example of the simplest, let us consider the explicit Euler scheme solution of equation
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(38)

U U hf t Un n n n+ = + ( )1 , . (41)

In terms of equation (40), we have

U I A t U h Un n n n+ = + ( )[ ]1 , , (42)

where I is unite matrix. If A(tn, Un) is negative definite, then the stability condition is given by

h p
2

λmax
(43)

as in the linear case, where represents the largest eigenvalue of A. We note that A(tn,

Un) is a time-varying coefficient matrix. Therefore, it is difficult to predict stability behavior

of global journey. In other words, the present strategy will only provide the local stability

analysis at one time step. Park [10] pointed out that the local stable calculation can guarantee

the global stability, inversely, the local instability causes the global response unstable. As in

the linear system with time-varying coefficients, the key issue in the local stability analysis is

how to determine . It is known [14] that the lp  matrix norm of A gives a bound on all

eigenvalues of A, namely

λA A≤ . (44)

Of these, the l1 or l∞  matrix norm of A is easily computed. Substitution of inequality (44)

into inequality (43) produces

h
A

p
2

(45)

Therefore, it is not difficult to confine the stepsize h satisfying stability condition inequality

(43) by certain matrix norm.

For the other explicit integration methods, the procedure of stability analysis is similar to

what we have done for the explicit Euler method. For example, the stable region of the

negative real axis in the well-known fourth-order Runge--Kutta method is λh p2.785.

Therefore, the method can be the local and global stable when applied to nonlinear problems

provided that the condition

h
A

p p
2 785 2 785. .

maxλ
(46)

is satisfied.

In particular, we can obtain somewhat more elaborate results for the formulation-H given in
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section 2.2. To illustrate clearly, consider Burger's equation

∂
∂

∂
∂

∂
∂

u

t
u

u

x

u

x
+ =

1 2

2Re
(47)

which Re is the Reynolds number. When applying the finite difference, collocation, finite

volume method, dual reciprocity BEM or radial function based methods, the spatial

discretization of the above equation will result in the formulation-H form discretization

dU

dt
B U U A Ux x= − °( )1

Re
, (48)

where U is consisted of the desired values of u. By using the SJT product, we get the Jacobian

matrix of the right side nonlinear term of equation (48)

J U I A U A Ux x
2( )( ) = − ◊( ) − ◊ (49)

According to theorem 3.1, we have

dU

dt
A t U U= ( ), . (50)

where

A t U B I A U A Ux x x,
Re

( ) = − ◊( ) + ◊[ ]1 1

2
. (51)

One can easily derive

A t U B A Ux x,
Re

( ) ≤ +
1

. (52)

Substituting inequality (52) into inequality (45), we have

h
B A Ux x

≤
+

2
1

Re

. (53)

The above inequality gives the restriction conditions of stability when the explicit Euler

method is applied to this case. If we have a priori knowledge of a bound of U, inequality (53)

can provide global stability condition with respect to time stepsize h. For the fourth-order

Runge-Kutta method, similar formulas can be obtained. It is seen from the preceding analysis

that the present methodology of stability analysis deals with nonlinear problem in a similar

way that we normally handle linear problems with time-dependent coefficients.

Implicit and semi-implicit methods

Without loss of generality, let us consider the implicit Euler method of the simplest implicit

method as a case study

U U hf t Un n n n+ += + ( )1 1, . (54)

In terms of equation (40), we have
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U I A t U h Un n n n+ +
−= − ( )[ ]1 1

1
, . (55)

As in the linear case, the stability condition of equation (55) is that coefficient matrix A(t, U)

is negative definite. Due to the fact that Un+1 is unknown before computation, the approach is

a posterior stability analysis. In fact, for all A-stable implicit integration methods, the local

and global stability can be guaranteed if the negative definite feature of matrix A is kept at all

successive steps. It is noted that for A-stable integration methods, stability condition of

nonlinear system is independent of the time step h as in linear case.

In the numerical solution of nonlinear initial value problems by implicit time-stepping

methods, a system of nonlinear equations has to be solved each step in some iterative way. To

avoid this troublesome and time-consuming task, various semi-implicit methods were

developed by using linearization procedure in the implicit solution of nonlinear problem. For

example, if the nonlinear function f(t, U) in the implicit Euler equation (54) is linearized by

using Newton method, we get the semi-implicit Euler method, namely,

U U h h
f

U
f t Un n U nn+

−
= + −





( )1

1

1
∂
∂

, , (56)

where ∂ ∂f U  is the Jacobian matrix of f(t, U). The stability analysis of equation (56) can be

carried out in the same way as we have done for the explicit methods.

4.2. Linear iterative methods for nonlinear algebraic systems

The linear iterative methods are used most often for large sparse system of linear equations,

which include Jacobi, Gauss-Seidel and SOR methods. Newton method and its variants do not

belong to this type of methods. Ortega and Rheinboldt [15] addressed the detailed discussions

on various possible applications of these methods coupling the Newton-like methods to solve

nonlinear problems such as the so-called SOR-Newton, Newton-SOR, etc. However, it is

found very difficult when we attempt a direction extension of the linear iterative methods to

nonlinear equations without the linearization procedure such as Newton method [14, p. 220,

15, p. 305]. This impediment stems from an explicit matrix-vector separated expression of the

general nonlinear equations is not in general available. In this section, we confine our

attention to overcome this barricade for the polynomial-only equations. Theorem 3.1 provides

a simple approach to express the nonlinear terms as the explicit matrix-vector form. Therefore,

it is possible to conveniently apply the general linear iterative methods to nonlinear

polynomial-only systems, especially for the systems with the formulation-H form.
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Without loss of generality, consider nonlinear polynomial equations

f U b( ) − = 0 (57)

with the quadratic and cubic nonlinear terms. By using theorem 3.1, we have

f U L J U J U U b

A U U b

( ) = + ( ) + ( )





+

= ( ) − =

( ) ( )1

2

1

3

0

2 3

(58)

where J(2)(U) and J(3)(U) are the Jacobian matrix of the quadratic and cubic nonlinear terms as

in equation (39). Therefore, if we can easily compute J(2)(U) and J(3)(U). The obstacle in

directly employing the linear iterative methods to nonlinear problems will be eliminated. By

analogy with the original form of various linear iterative methods, we give the following

nonlinear Jacobi, Gauss-Seidel and SOR iteration formulas in the solution of equation (58),

respectively,

U
a U

b a U Ui
k

ii i
k i ij i

k
i
k

j i

+( )
( )

( ) ( )

≠
= ( ) − ( )







∑1 1
, (59)

U
a U

b a U U a U Ui
k

ii i
k i ij i

k
i
k

ij i
k

i
k

j ij i

+( )
( )

( ) +( ) ( ) ( )= ( ) − ( ) − ( )







∑∑1 11

fp

, (60)

and

U U
a U

b a U U a U Ui
k

i
k

ii i
k i ij i

k
i
k

ij i
k

i
k

j ij i

+( ) ( )
( )

( ) +( ) ( ) ( )= −( ) + ( ) − ( ) − ( )







∑∑1 11 ω ω

fp

, (61)

where  is the relaxation factor in the SOR method and allowed to vary with k The choice

of 

In particular, for nonlinear numerical analogue of the finite difference, finite volume, dual
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reciprocity BEM, radial function based methods, collocation and their variants, the

discretization can be represented in the formulation-H form. We can use the SJT product

method to yield the simple explicit matrix expression of the Jacobian matrix. Therefore, in

fact, it is not necessary to evaluate the Jacobian matrix in these cases.

Of course, the initial start is also of considerable importance in applying these formulas. 

(60) to accelerate convergence. The computational effort of the linear iterative

methods is much less than the Newton method. However, as a penalty, the convergence rate is

linear. It is noted that if a Uii i
k( )( ) is found zero in iterative process, some row or column

interchange is required. Some numerical experiments are also necessary to assess their

performances vis-a-vis the Newton-like methods for various benchmark problems. Also, some

in-depth results of linear iterative methods [14, 15] may be very useful to enhance the present

nonlinear iterative formulas.

4.3. A modified BFGS quasi-Newton method

To avoid time-consuming evaluation and inversion of the Jacobian matrix in each iterative

step of the standard Newton method, the quasi-Newton method was developed with

maintaining a superlinear convergence rate. This key of such methods is a matrix-updating

procedure, one of the most successful and widely used which is known as BFGS method

named for its four developers, Broyden, Fletcher, Goldfarb, and Shanno. The so-called quasi-

Newton equation is the very fundamental of various quasi-Newton methods, namely,

J U U f U f Ui i i i i−( ) = ( ) − ( )− −1 1 . (62)

The Jacobian matrix Ji is updated by adding a rank-one matrix to the previous Ji-1 in satisfying

equation (62) and the following relations:

J p J pi i= −1 , when U U pi i
T−( ) =−1 0 , (63)

where U U qi i− =−1 , f U f U fi i i( ) − ( ) =−1 δ . It is emphasized that J here is the Jacobian matrix

of total system. It is noted that equation (62) is an approximate one. For the polynomial-only

problems, we can gain the exact alternative of equation (62) by using theorem 3.1. Without

loss of generality, equation (57) can be restated as

f U LU N U N U b( ) = + ( ) + ( ) + =( ) ( )2 3 0, (64)

where LU, N(2)(U) and N(3)(U) represent the linear, quadratic and cubic terms of the system of
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equations. The Jacobian matrix of the system is given by

J
f U

U
L

N U

U

N U

U
= ( ) = + ( ) + ( )( ) ( )∂

∂
∂

∂
∂

∂

2 3
. (65)

By using theorem 3.1, we have

JU LU N U N U f U= + ( ) + ( ) = ( )( ) ( )2 32 3 . (66)

Therefore, we can exactly establish

J U J U f U f U yi i i i i i− = ( ) − ( ) =− − −1 1 1 (67)

After some simple deductions, we get

J U U gi i i−( ) =−1 , (68)

where g J J U yi i i= − −( ) +− −1 1 . It is worth stressing that equation (68) differs from equation

(62) in that it is exactly constructed. In the same way of deriving the BFGS updating formula,

applying equations (63) and (68) yields

J J
J q g q

q q
i i

i
T

T= −
−( )

−
−

1
1 . (69)

Furthermore, we have

J I
U q

q q
J

J q J U y q

q q
i

i
T

T i
i i i

T

T+






= −

− −( )−
−

− − −1
1

1 1 1 , (70)

where I is the unite matrix. Note that left term in bracket of the above equation is the unite

matrix plus a rank-one matrix. By using the known Shermann-Morrison formula, we can

derive

J J
J U q

q q q U

J q J U y q

q q

J q J U y q U q

q q q U q q

i i
i i

T

T T
i

i i i
T

T

i i i
T

i
T

T T
i

T

= −
( )

+
−

− −( )

+
− −( ) ( )

+( )

−
− −

−

− − −

− − − −

−

1
1 1

1

1 1 1

1 1 1 1

1

(71)

The above equation (71) can be simplified as

J J rqi i
T= +−1 (72)

where

γ = −
+

−
− −( )

+
− −( )

+( )
− −

−

− − − − − − −

−

J U

q q q U

J q J U y q

q q

J q J U y q U

q q q U q q
i i

T T
i

i i i
T

T
i i i

T
i

T T
i

T
1 1

1

1 1 1 1 1 1 1

1

(73)

By employing the Shermann-Morrison formula to equation (72), we finally have

J J
J r q J

q J r
i i

i
T

i

T
i

−
−
− −

−
−
−

−
−= −

( )( )
+ ( )

1
1
1 1

1
1
1

1
11

. (74)
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The updating formulas (69) and (74) are a modified version of the following original BFGS

formulas:

J J
J q f q

q q
i i

i
T

T= −
−( )

−
−

1
1 δ

(75)

and

J J
J f q q J

q J f
i i

i
T

i

T
i

−
−
− −

−
−
−

−
−= −

−( )
( )

1
1
1 1

1
1
1

1
1

δ

δ
, (76)

where f is defined as in equation (63). One can find that modified updating formulas (69)

and (74) look slightly more complicated compared to the original BFGS formulas (75) and

(76), but in fact, the required multiplication number of both are nearly the same, only about

3n2 operations. In a similar way, equation (68) can also be utilized to derive the modified DFP

quasi-Newton updating matrix formulas. Theoretically, the present updating formulas

improve the accuracy of the solution by establishing themselves on the exact equation (68)

instead of the approximate quasi-Newton equation (62). The basic idea of the quasi-Newton

method is a successive update of rank one or two. Therefore, it is noted that equation (68) is

not actually exact due to the approximate Jacobian matrix yielded in the previous iterative

steps. It may be better to initialize Jacobian matrix J via an exact approach. In addition, it is a

puzzle for a long time why one-rank BFGS updating formula performs much better compared

to the other two-rank updating schemes such as DFP method [17]. In our understanding, the

most possible culprit is due to the inexactness of quasi-Newton equation (62). Therefore, this

suggests that the updating formulas of higher order may be more attractive in conjunction

with equation (68), which will include more additional curvature information to accelerate

convergence. It is noted that in one dimension, the present equations (69) and (74)

degenerates into the original Newton method by comparing with the fact that the traditional

quasi-Newton method becomes the secant method. The performances of the present

methodology need be examined in solving various benchmark problems.

Also, the theorem 3.1 provides a practically significant approach to examine the deviation

between the approximate and exact Jacobian matrices by vector norm

err J Jˆ ˆU f U - U U f U( )[ ] = ( ) ( ) ( ) , (77)

where Ĵ U( )  is the approximate Jacobian matrix of f(U), f U( ) and f U( ) are defined in

equations (64) and (66), respectively.



23

5. Pseudo-Jacobian matrix and its applications

The efficient numerical solution and analysis of nonlinear systems of algebraic equations

usually requires repeated computation of the Jacobian matrix and its inversion. Function

differences and hand-coding of derivatives are two conventional numerical methods for this

task. However, the former suffers from possible inaccuracy, particularly if the problem is

highly nonlinear. The latter method is time-consuming and error prone, and a new coding

effort is also required whenever a function is altered. Recently, the automatic differentiation

(AD) techniques receive an increased attention. However, straightforward application of AD

software to large systems can bring about unacceptable amounts of computation. Either

sparsity or structure of the systems is necessarily used to overcome the limitation. On the

other hand, the SJT product approach presented in section 2 is a simple, accurate and efficient

approach in the evaluation of the Jacobian matrix of the nonlinear systems with the

formulation-H form. However, this approach is not applicable for general nonlinear system

formulation-K. It is clear from the preceding review that a generally applicable, simple and

efficient technique is, at least now, not available for the evaluation of the Jacobian matrix. In

addition, the inversion of the Jacobian matrix is a more computationally expensive task. Our

work in this section is concerned with the construction of the pseudo-Jacobian matrix of one

rank to circumvent these difficulties. It is emphasized that the pseudo-Jacobian matrix

presented below is in general applicable for any nonlinear algebraic systems with no restricted

to polynomial-only problems.

Consider a general form of nonlinear initial value problem

dU

dt
LU N t U= + ( ), , (78)

where L is a given nonsingular matrix and N(t, U) is a given vector of nonlinear functions.

N(t, U) can be expressed in a form

N t U N t U
n

U U

wv U

T

T

, ,( ) = ( ) ( )







= ( )

° −( )1 1

, (79)

where n is the dimension size of equation system, U° −( )1  is the Hadamard inverse of vector U

as explained in definition 2.2 of section 2. It is necessary to bear in mind that all elements of

unknown vector U can not be equal to zero when using formula (79). We can avoid the zero

elements by using a simple linear transformation
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U U c= + , (80)

where c is a constant vector. In the following discussion, we assume without loss of generality

that no zero elements present in vector U. Therefore, by using formula (79), equation (78) can

restated as

dU

dt
L wv U

A t U U

T= +[ ]
= ( ),

(81)

Note that w and v are vectors. Therefore, wvT is a matrix of one rank. Compared with

equation (40), it is seen that both have an explicit expression with a separated matrix form.

The difference lies in the fact that nonlinear terms are expressed as a one-rank modification to

linear term in equation (81) with no use of Jacobian matrix, while equation (40) represents

nonlinear terms via the respective Jacobian matrices. For convenient in notation, wvT is here

defined as the pseudo-Jacobian matrix, which is a fundamental idea for the ensuing work. In

fact, it is noted that the pseudo-Jacobian matrix can be derived for general linear and

nonlinear terms with no limited applicable of polynomial-only systems.

As we have done in section 4.1, equation (81) can be applied to examine the local stability of

the explicit and implicit methods when applied to nonlinear problems. For example, consider

iterative equation (41) of the explicit Euler method and utilize stability condition inequalities

(43) and (45), we have

h
L wv L w vT T

p
2 2

+
≤

+
, (82)

where w and v vary with Un. Some elaborate results on L+ wvT can be found in [18]. For the

implicit method, consider iterative formula (54) of the back difference method, we have

U I L wv h Un
T

n+
−

= − +( )[ ]1
1

, (83)

where w and v change with Un+1. Therefore, for the A-stable back difference method, the local

stability condition is to hold the negative definite of matrix L wvT+ .

It is emphasized here that the above procedure of applying the pseudo-Jacobian matrix to the

stability analysis of the explicit Euler and implicit back difference methods is of equal

applicability to all explicit, implicit and semi-implicit methods such as the Runge-Kutta,

Rosenbrock, Gear backward difference and fully implicit Runge-Kutta methods, etc.
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In the following, we establish the relationship between the pseudo-Jacobian matrix and

original Jacobian matrix. Consider the nonlinear terms in equation (66), by using theorem 3.1,

we have

J U N U N UN = ( ) + ( )( ) ( )2 32 3 , (84)

where JN  represents the Jacobian matrix of the nonlinear terms. It is observed that equation

(84) can not determine the Jacobian matrix JN  uniquely in more than one dimension. By

multiplying 
1 1

n
U

T° −( )( ) , we get

J U
n

U N U N U
n

U

J

N

T T

N

1
2 3

11 2 3 1° −( ) ( ) ( ) ° −( )( )







= ( ) + ( )[ ] ( )







=
)

(85)

where ĴN  is the pseudo-Jacobian matrix of the orignal Jaobian matrix JN. So we have

)
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L

M M O M

L

J J
n

U

U

U

U
U

U

U

U

U

U

U

U

J p UN N
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= ( )1

1

1

1

1

2

1

2

1

2

1 2

, (86)

where p(U) is defined as the deviation matrix between the original Jacobian and pseudo-

Jacobian matrices for polynomial-only problems. Similar relationship for general nonlinear

system is not available.

It is straightforward that this pseudo-Jacobian matrix can be employed to directly extend the

linear iterative Jacobi, Gauss-Seidel and SOR methods to nonlinear system of equations. In

addition, this concept can be applied to the Newton method to avoid the evaluation and

inversion of Jacobian matrix. For the sake of brevity, they are not presented here.

6. Some remarks

In this study, the Jacobian matrix is established as a bridge between linear and nonlinear

polynomial-only problems. Some significant results are achieved through the application of

the theorem 3.1. It is worth stressing that although the theorem 3.1 was verified through the

use of formulation-K and formulation-H given in section 2, it holds true no matter which

approaches are employed in the expression of nonlinear analogue term and the evaluation of

the Jacobian matrix. As was mentioned in section 2.1, any nonlinear algebraic polynomial-
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only equations can be expressed as the formulation-K form and theorem 3.1 can thus be

exhibited for general nonlinear polynomial equations. For example, consider very simple

mixed quadratic and cubic nonlinear algebraic equations [19]

x x

x x
1
2

2
2

1
3

2

1 0

0 75 0 9 0

+ − =
− + =





 . .
(87)

It can be expressed in the formulation-K form as

ψ x Lx G x x R x x x F( ) = + ⊗( ) + ⊗ ⊗( ) + =× ×2 4 2 8 0 , (88)

and by using theorem 3.1, we have

ψ x L J x J x x F( ) = + ( ) + ( )





+ =( ) ( )1

2

1

3
02 3 (89)

where x=(x1, x2), F, L, G2×4 and R2×8 are the constant vector and coefficient matrices. J(2)(x)

and J(3)(x) are the Jacobian matrix of the quadratic and cubic nonlinear terms, respectively.

Nonlinear term XAX, in which X is a rectangular matrix of the desired values and A is

constant coefficient matrix, often appears in optimal control, filter and estimation. Theorem

3.1 is the same effective for such nonlinear term. Interested readers may try more cases. It is

interesting to note that equation (89) is in fact identical in form to the familiar derivative

expression of scalar polynomial function. In the practical applications, it is not actually

necessary to express nonlinear algebraic equations in the formulation-K form like equation

(88). It is stressed that theorem 3.1 provide a convenient approach to express nonlinear system

of equations as linear-form representation without the use of linearization procedure such as

the Newton method. It is also well known that a very large class of real-world nonlinear

problems can be modeled or numerically discretized polynomial-only algebraic system of

equations. The results presented in this paper are in general applicable for all these problems.

Therefore, this work is potentially important in a board spectrum of science and engineering.

This paper is confined within the integral-order nonlinear problems. In fact, the theorem 3.1 is

also applicable for fractional order nonlinear polynomial-only problems. We will further

involve the problems of such type in the subsequent paper.

The concept of the pseudo-Jacobian matrix can be used for general nonlinear system of

equations without restriction to polynomial-only problems. Due to its one-rank feature, the

evaluation of inverse is avoided in various nonlinear computation and analysis, which results

in a considerable saving in computing effort.
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In sections 4.1 and 5, the explicit and implicit Euler methods of two simplest integrators are

typically studied to avoid that the complexity of special integration methods obscures the

exposition of the present fundamental strategy and make it hard to understand. It is very clear

that the same procedure can be easily extended to nonlinear stability analysis of general

explicit and implicit methods. For the A-stable methods, it is found that the local stability of

solutions can be assured if the time-varying coefficient matrix sustains negative definite,

which provides a clue how to construct some stable integrators for nonlinear initial value

problems.

The present work may be in itself of theoretical importance and provides some innovative

viewpoints for the nonlinear computation and analysis. Numerical examples assessing these

given formulas and methodologies are presently underway. A further study of various

possibilities applying the Hadamard product, SJT product, theorem 3.1 and pseudo-Jacobian

matrix will be beneficial. For example, according to theorem 3.1, all nonlinear polynomial

systems of equations can be expressed as a separated matrix linear system with variable-

dependent coefficient matrix by using the Jacobian matrix. Therefore, the analysis of these

Jacobian matrices may expose essential sources of some challenging problems such as

numerical uncertainty [11], shock and chaotic behaviors.
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