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I. INTRODUCTION.

The problem of finding formal quasi-periodic series in a small parameter £ of the solutions of certain
analytic differential equations, depending on &, occupied many astronomers and mathematicians during the
last century (Lindstedt, Gyldén, Poincaré). What they were looking for was formal series in £ , which have
coefficients that are analytic quasi-periodic functions, and which satisfy the differential equation as if the
series were convergent. One version of this problem is to find quasi-periodic series for a fixed frequency w,
in which case one requires that all the coeflicients are quasi-periodic with frequency w.

In general, such series exist if one supplies a certain number of constants to the equation, and the problem
then becomes one of “killing the constants” for the particular equation or class of equations considered. This
problem was solved by Poincaré who showed that, for a generic class of Hamiltonian systems, there exists a
formal solution for any fixed frequency w for which such solutions exist when € = 0. (Though, for example,
the equations of the planetary problem in celestial mechanics are not generic in this sense, Poincaré’s work
applies also to them, and he established the existence of a formal solution also in this case. The frequencies
are not, however, determined by the 0:th order approximation - the Kepler approximation - but by the first
order approximation - the Lagrange approximation.)

Poincaré constructed in several ways quasi-periodic series expansions of the formal solution, i.e. con-
vergent trigonometric series expansions for each of the coefficient of the formal solution, which he named
after Lindstedt who made a major contribution to the solution of the problem. It is important to note that
a quasi-periodic series expansion of the formal solution for a fixed frequency is not unique. This in contrast
to the formal solution itself, for which we shall reserve the term Lindstedt series.

We shall now describe the problem more formally.

The Hamiltonian problem.

We first formulate the generic condition on the frequency vector w in R”. This is the Diophantine

condition
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for some 7 > v — 1 and some positive constant K. The norm is | w |=| w! | +...+ | w"” |.

Let

1
ho(z,9) = (w,y) + 5 (¥, Q(@)y) + O°(y), (z,9) € T" x & C T” x R
where () is symmetric, and consider the perturbed analytic Hamiltonian ho(z,y) + £2hq(z,y,€). By scaling
the variables y by € and then dividing the Hamiltonian by €, we get a function of the form (w,y) + eh(z,y),
where h depends on £ and is equal to hy(z,0,0) + 1 (y, Q(z)y) for e = 0.

If welet J = ( 0 I), then t — (z(t),y(t)) = (tw,0) + X (tw) is a quasi periodic solution to the

-I 0
Hamiltonian system
b Oy
dt oy’ dt Ox
if and only if X satisfies
0X (z) = eJh'((x,0) + X (z))

where 0 is the directional derivative in the direction w. It is far from obvious that this equation has a formal
solution in ¢ - a Lindstedt series - but, as we have remarked above, this is indeed the case in general. The
generic condition for this is that det < @) ># 0, where < () > is the mean value over T".

Once the formal problem settled, Poincaré raised the question of convergence, i.e. if the Lindstedt series
corresponds to really existing quasi-periodic solutions or not. He showed that the general formal quasi-
periodic solution with varying frequencies (which he also showed to exist) is divergent, or, more precisely,
not uniformly convergent in initial conditions and €. The divergence being an effect of the well-known small
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divisors. The question remained, however, if the Lindstedt series for a fixed frequency (corresponding to fixed
initial conditions) is convergent, uniformly with respect to £. In ”Les méthodes nouvelles de la mécanique
céleste”, vol II, section 149, [1] he discusses this question in detail without being able to decide it.

An essential part of the difficulty in proving the convergence of the Lindstedt series resides in the fact that
it is given to us by a quasi-periodic series expansion which most naturally turns out to be absolutely divergent
(in a sense we shall explain). So if the Lindstedt series converges, there must be very sharp compensations of
signs between different terms of these series expansions. But since the absolute divergence is so fast, these
compensations must be extremely precise. This led Poincaré to the conclusion that convergence is extremely
unlikely. Today we know, through the works of Kolmogorov, Arnold and Moser [2, 3,4] in the fifties and early
sixties, that, for a fixed generic frequency, the Lindstedt series is convergent. (The so-called KAM-technique
used for the proof of this consists of an iteration process on function spaces and has no relation to formal
series at all.)

In this paper we shall describe the Lindstedt series together with a natural quasi-periodic series expan-
sion, and we shall explain why it is absolutely divergent. We shall then describe a large class of compensations
for the terms in the series expansion, and by taking into account these compensations, we shall obtain new
quasi-periodic series which are absolutely convergent. This we shall prove by generalizing Siegel’s method
[5], a method developed by Siegel in the early forties which gives very good estimates of certain products
of small divisors. In a second step we shall prove that these new series are, indeed, an expansion of the
formal solution, which thus must be convergent. In order to do this, we shall resurrect the constants. As
we mentioned above, supplying constants makes formal quasi-periodic expansions possible (for Hamiltonian
systems and others). We shall show that, supplying even more constants makes these expansions (for a fixed
generic frequency) absolutely convergent. Only then, the problem of ”killing the constants” comes in.

Content of the paper.

In section IT we shall describe the Lindstedt series and discuss its convergence properties.

In section IIT we describe Siegel’s method. It consists of 3 lemmas. The first lemma gives an estimate
of certain - linear - products of small divisors, and the third lemma gives an estimate of more general -
non-linear - products. The step between these two results uses an arithmetical property which is described
in his second lemma.

The products estimated by Siegel’s method are of a very particular type, which we may call non-resonant.
In the expansion of the Lindstedt series, however, there appears also resonant products for which Siegel’s
estimates do not hold. In section IV we shall therefore undertake a substantial generalization of Siegel’s first
lemma in order to get good estimates not of resonant linear products of small divisors but of certain sums of
such products (proposition 4). In section V we apply Siegel’s idea in order to get a generalization also of his
third lemma, thereby obtaining good estimates for certain sums of resonant non-linear products (proposition
5).

We have not tried to formulate these estimates in the most general way but rather aimed at a formulation
which is relevant for the Hamiltonian problem. Others are of course possible. In [6], for example, another
generalization, which is relevant for linearization of a vector field on a torus, is given but not proven. This
will follow as a special case of the estimates we give in this paper.

In section VI we describe new series which are absolutely convergent. Then we show that these new
series also are an expansion of the formal solution which, thus, is shown to be convergent.

Acknowledgment. This work was done during several visits at the IHES, Bures-sur-Yvette, for whose
hospitality the author is grateful.



II. THE CLASSICAL APPROACH TO THE HAMILTONIAN PROBLEM -
ABSOLUTELY DIVERGENT SERIES.

Let F = F(z,y) be an analytic mapping T" x ) — R¥*, where T = R/(27Z) and (2 is a neighborhood
of the origin in R¥. F' may depend analytically on certain parameters. Let 0 = (V ,w) be the derivative in
the direction w, and consider the equation

(%) 0X(z) =eF(z,X(z))—C, <X>=0

for a mapping X : T — R* and a constant vector C' in R#. X and C will, of course, depend on the
parameter £ which is assumed to be small.

Supplying the constant C is necessary in order to have a solution X since the left hand side has mean
value 0, and, therefore, the right hand side also must have a mean value that vanishes. Fixing the mean
value < X >= % fT,, X (x)dz is necessary in order to have uniqueness, and, since we admit that F can
depend on parameters, it is no restriction to let it be 0.

The problem of finding quasi-periodic solutions to a Hamiltonian system can be formulated as equation
(*) when p = 2v and
F(z,y) = JW((z,0)+y)

where h(z,z') is defined on T” x ;, Q; open in R”, and Jh' is the symplectic gradient of h, i.e. the
Hamiltonian vector field.

The formal solution and its series expansion.

There exists a formal solution of (*)

X(z) ~ ZEka(:L') (1)1
k>1

C ~ Y £y (1)
k>1

i.e. power series in £ which, when evaluated formally in (*), give an identity for any power of . This formal
solution is unique, i.e. the functions X (z) and the vectors Cj are uniquely determined. What interest us
here is to estimate them. For this we shall study the series expansion of Xy (x) and Cy, in terms of the given
data F(x,y). This series expansion is obtained by trivial comparison of coefficients in the equation (x), but
to describe it we must introduce some notations.

Let F(z,y) = 3250 Fj (z)(y)? and let F(j,w) = Fj (w), w € Z", be the w:th Fourier coefficient of Fj.

So F'(j,w) is a (symmetric) j-linear mapping. Then
Xp(@) = (VD)7 Ai(6,0)F (8, v)eV Tt toee) (2

Cr = (V=DM Ay(5,0)F(5,0) (2)2

where summation runs over all v = (vy, ...,v;) € ['(k) = (Z")* and § = (61, ...,01) € A(k) C N,

In order to give meaning to this expression, we define the composition of two multilinear maps L; and
Li7 .7 2 17 by
LjLz'(Xl, ceny Xz'-i—j—l) = LJ (Lz(Xl, ceey X,), Xz'+1, ceey Xi—i—j—l)

and we let Ly L;L; = (LyL;)L; (which is equal to Lj(L;L;) whenever this is defined, i.e. for j,k > 1). So

F(5,v) = F(0k,vp)...F(61,v1)
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is a well-defined multi-linear mapping, and is also a vector, if

Y 6> k—j+1 (1<j<k) and &= k-1

Jj<i<k 1<i<k

A(k) is the set of all sequences (91, ..., d;) for which these k conditions hold.

If we now introduce these series in (*) and identify the coefficients of the formal ”monomials” F(3y, vp)....
F(81,v1), we obtain recurrence relations for A1 (§,v) and Ay (8,v) which determine these numbers uniquely.
So there is a unique set of numbers A; (6,v) and A2(d,v) such that (1)+(2) solves (*) formally for any F.

But the series (1) are unique also in a stronger sense. In fact, the Xj:s are well-defined functions and
the Cj:s are well-defined vectors (since w is Diophantine), and they are uniquely determined by F. For a
fixed F', however, the particular series expansion (2) of X}, and C}, is not unique, i.e the coefficients A1 (d,v)
and A2 (d,v) are not uniquely determined by F. (They are independent of F!) For example, if F is linear
in y with Fj(z) nilpotent, then there are many other series of the form (2) which represent the same formal
solution.

”Killing the constants” and the Lindstedt series.

In the Hamiltonian case, (1)+(2) gives a formal solution to
80X (z) = eJh ((%,0) + X(z)) - C, <X >=0.

C, however, is not 0 in general. But one can introduce 2v parameters < X >= (A1, A2) with which one
may hope to kill the vector C € R?”. It is easy to see, however, that C is independent of \; and that we
therefore only have v parameters available. So ”killing the constants” is here a real problem. That it can be
solved, under the condition det < @ ># 0, was shown by Poincaré by an argument which uses the symplectic
character of the problem. We shall now describe this argument.

We have a formal solution (1)+(2) to
OX(z) =eJh ((z,X2) + X(z)) - C, <X >=0 (3)

where each X and C} depend analytically on A\o. We must show that we can determine Ay as a formal
series in € in such a way that C vanishes.
If we write L
C
e=(&)

and if we observe that

O (< Q> /\2>
o 0
modulo €2, we can solve
ct'=0 (4)

formally and uniquely for As = A\y(€), since det < @ >7# 0. A priori, this kills only a part of the constants,
and it may seem likely that not all C' vanish for A2 so determined. But, indeed it does.

Lemma 1. C =0 for Az = A\a(e).

Proof. In order to show this, we must use the symplectic character of the problem. From classical
perturbation theory we have the following result due to Poincaré ([1], section 126):

There is a formal mapping ®(z,y) = Ek21 e*¥®y(x,y), each &y being analytic in z € T? and in
Y, A2 for small values of y and A2, and there is a formal series f(y) = > ;5 e¥ fi(y), each fi being
analytic in y and Xg, such that ®(z,y) = (®!(x,y), ®2(z,y)) = (z,y) + B(z,y) is exact symplectic,

i.e.
@*(Z yide;) = Z yidz;
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and
(w, 8%(z,y)) +eh(D(x,y) + (0, X2)) = (w, y) + & (1)-

The series f(y) is unique. ®(x,y) is not unique, but gets uniquely determined by the additional
condition that < ®( ,y) >=0 for all y.

Differentiating the above equality once, using that & is symplectic and letting y = 0, we get, for
5 0
%@ =200~ (L g )5 )

8X (z) = eJh' ((z, ot < B2(,0) >) + X (2)) — eJf'(0) — £®'(2,0)Jf'(0), <X >=0

0
where f'(y) is the gradient of f considered as a function of z and y, i.e. f'(y) = (Qi(y) )
oy
Now %5(0) =< @Q > X2 + O(e), and, since < @ > is non-singular, we can define a unique formal series
X2(g) such that f/(0) = 0 for Ay = Az (e). o
With A2 so chosen, we get a formal solution X, C' = 0 to the equation

OX () = eJh' (2, Aa(e)+ < ®%(,0) >) + X(2)) - C, <X >=0.

This formal equation has a unique formal solution. But X, C, for As = Az(¢), is also a formal solution of
this equation, so we conclude that B B
X=X,C=C.

Hence C = 0 for Ay = \a(e)+ < ®2( ,0) >.
This implies that the formal series A2(g)+ < ®2( ,0) > solves the equation (4). By the uniqueness of
the solution of (4), it follows that

)\2(6) = )\2(6)— < (I>2( ,0) > .
This proves the lemma. I

Hence, the Hamiltonian problem has a formal solution (1); when the mean value )2 is determined
according to (4) - the Lindstedt series. If we now ask about the convergence of the Lindstedt series, the most
natural thing to do is to consider the explicit expansion given by (2);. In order too describe this expansion
we shall first introduce some notations.

Index sets.

Definition. A simple index set is a finite subset A of Z together with a § € A(k), k = #A. An index
set is a disjoint union of simple index sets.

Notice that a subset of Z is canonically isomorphic to {1,...,k} for some k, so we can always assume
that A is such a set. Or, equivalently, we can consider ¢ as a mapping A — N.

Lemma 2. For any simple index set A, J there is a unique (partial) ordering < on A such that

(i) 6(z) = #{immediate predecessors of = in A, =<} (y is a predecessor of z if y < x, and it is immediate
if for no z it holds that y < 2z < z);

(ii) y < z implies y < z;

(i) y < z and y < z < z implies z < .

Conversely, any ordering < satisfying (ii) and (iii) is of this form.

Proof. The proof is an easy induction on #A4 = k.

Notice that §(1) = 0 and let & be the smallest element (with respect to <) in A such that r = §(z) > 1.
Then z — 7,2 — (r —1),...,x — 1 are the immediate predecessors of z. Let A' = A\ {z—r,...,x —1} and define
dar € A(k—7) by dar(y) =0(y) if y € A’ \ {z} and §4/(z) = 0. The first part now follows by induction.

To prove the second part, let < be an ordering satisfying the assumptions. Let z € A have immediate,
but no other, predecessors (such elements always exists if #4 > 1), and let B = {z} U {predecessors of =}
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and A" = A\ {predecessors of z}. By induction, there are §4» € A(k—r) and 6p € A(r+1),r+1=#B.
We now define § € A(k) by d(y) = dar(y) if y € A"\ {z}, 8(y) =dB(y) if y € B\ {z}, and d(z) =r. 1

We say that A, is a linear index set if < is a total ordering, i.e. if 6(1) =0, §(2) = ... =0(k) = 1.
A sub index set of A,d4 is a subset B C A together with dp € A(r), r = #B, which is defined by the
induced ordering on B according to lemma 2. Notice that 0p # d4/B in general.
Any subset of A is again an index set for the induced ordering. In particular, for any z,y € A, = <y,
the sets
[z,y]={z€d:2 <2<y}, Al@)={z€A:z=<z}

are sub index sets. Other such sets are ]z,y], [z,y[ and ]z,y[ which are equal to [z,y] minus {z},{y} and
{z,y}, respectively. Notice that the sets [z,y], ]z, y] etc. are totally ordered for the induced ordering.

For z in an index set A we let 'z denote the unique immediate predecessor of z if such an element
exists. The immediate successor of z is always unique, if it exists, and will be denoted by z'. Throughout
this paper, any primed indices will have this meaning.

An index set has a natural decomposition into simple sub index sets:

A=ADBU..UA®D"), s>2
if A is not simple (b! < ... < b® being the maximal elements);
A={D}UAMB*)U..UA®DY), s5>0

if A is simple (b being the maximal element in A and b' < ... < b® being its immediate predecessors).
The number of different index sets on A is not very large.
Lemma 3. #A(k) < 4%
Proof. Notice that #A(k) < N(k, k), where

N(k,n) = #{(z1,...,xn) e N" 121 + ... + z, = k}.
An easy induction gives that N(k,n) < 2"nT* 1
Description of the coefficients.

Let now A = {1, ..., k} be provided with the ordering defined by . Then we associate to v : A — Z" a
mapping v = 5,0 : A = C through

Y0(@) = (Y v(y),w).

y=z

This representation is a bijection. So we can, given 4, represent v by 7 in an unambiguous manner. Notice
that this representation behaves well for restrictions to subsets B of the form B = A(z), but not to arbitrary
subsets. For example, if A = [a,b] and B =|c¢,d[, and if v is represented by +, then v/B is represented by
(v —7(c))/B, while /B represents the mapping o, where 9(c') = 3, 2. v(y) and © = v otherwise.

Let’s now return to the description (2) of the formal solution. Let (§,v) € A(k) x I'(k), and consider
the natural decomposition of A = {1, ..., k} with respect to ¢:

A= {pJUuduU..UA', >0

where b = k is the maximal element. Let v = 75, and notice that v(b) vanishes if and only if ) _ , v(z) = 0.
Clearly A1(d,v) = 0 when v(b) = 0, and A2(d,v) = 0 when ~(b) # 0. Then equation (*) gives the
following recurrence relations for the coefficients:

YOAL(B,0)F(8,0) = F(3(0),v(b)(Vey s V1), Vi = Ai((6,0)/A)E((8,0)/AY)



if y(b) # 0;
0 = F@),0(0) (Vs V1) = Aa(8,0)F(8,0), Vi = Aa((6,0)/A)F((6,0)/AT)

if v(b) = 0. ((6,v)/A? is of course to be understood as the restriction of the mapping 6,v : A — N x Z” to
the subset A' C A.)
From this we easily get

A (8,v) = { (Iloear(@) ' ify(z) #0forall z e A
n 0 otherwise 5)

Ma(0) = { M@oY A0 =0

otherwise
where A1(8,v/A \ {b}) is the product [] A1(6,v/A?).
Convergence and divergence of the formal solution.

The series (2) are absolutely convergent if w is Diophantine, as we have assumed. By this we mean that

Yo > M) | F@ryvr) | | F(61,01) | (6)

deA(k) vel'(k)
converges, i = 1,2. In fact, there are numbers 0 < s,r < 1 such that
| F(j,w) |< Ops~de~vIT

for all j and w, where the constant Cr depends on the supremum norm of F’ over some complex neighborhood
of T x Q.
Since #A(k) < 4%, the series (6) can be estimated by

(4Cp)Fs™ 4 37 sup | Ay(d0) | e ulbertir,
vel (k) IEAK)

And this series converges if supsea(xy | Ai(d,v) | is a polynomial in | vy | +...+ | vk |, which is the case as we
see from (5). Hence, the series (2) converge absolutely to X and Cy, for each k.

By absolute convergence of (1)+(2) we mean convergence of (1) when Xy (z) and Cj, are replaced by (6).
This is clearly sufficient (but not necessary) for the convergence of (1). But such absolute convergence does
not take place in general. To see this, it suffices to consider the linear case.

Example. If A= {1,...,k} and ¢ is a linear index set, then
A1 (8,0) = ((v1,w){v1 +vo,w)...(v1 + V2 + ... +vp,w))7!

whenever this is defined, and = 0 otherwise.
Let now w be such that | (w,w) |< C' | w |7**! and choose vy = w, va = v4 = ... = v, = e = (1,0, ...,0)
and v3 = v5 = ... = Vg1 = —e (assuming k even). Then

v—1

| AL (8,0) |=] (w,w) || (w+ew) | 5> (C"|w|F )k

If now | w |= k (such w can always be found for arbitrary large k by a well known theorem of Dirichlet - see
for example [7]), then we get

| A1 (8, 0) | e=(oilttionhr s (o | | |"5 e2r)k.
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Hence, (6) increases much to fast to be compensated by a factor ¢*. This shows that there is no absolute
convergence. (One would, of course, obtain an even worse estimate by letting vy = .... = v, = 0. This case
is less serious, however, since in many cases 2} (0) is 0 or nilpotent, as we shall see below.)

Notice that the very large value of A; (8, v), compared with e¥ | F'(§,v) |, has been obtained by repetition
of many very bad small divisors in the product - a resonant product. If no such repetitions occur - a non-
resonant product - then we have a much better estimate (lemma 4).

Remark. In order for (1) to converge for certain (classes of) F, | Xi(z) | and | Cy | must be much
smaller than (6). This requires that there are compensations of signs between different terms in (2). But
since (6) diverges so fast, these compensations must be very precise. This, however, is precisely what happens
in the Hamiltonian case - there is conditional convergence of (1)+(2) with compensations of signs, but no
absolute convergence.

II1. SIEGEL’S METHOD.

Many of the coefficients A;(d,v) have a very good estimate. If 5 ,(z) # 7s5,0(y) whenever z < y, then
we have the following result due to Siegel [5]:

FOICONECiay oL | MRS (7)
Ui#O

In the series (1)+(2), however, there are many terms for which 5, does not have this property, and
then this estimate cannot hold, as we have seen in the above example.
We shall now give Siegel’s proof of (7).

Siegel’s first lemma.
Lemma 4. Suppose that A, is linear, i.e. §(1) =0, §(2) = ... = 8(k) = 1. If v = ~5,, is injective, then

| A(§0) | < 2777 @)Y T eG) I

1<j<k

Proof. We can assume that v # 0, since otherwise A1(d,v) = 0.
The estimate is obvious for & = 1, so we proceed by induction on k. Let x be such that

| (@) |= maz{| v(j) |: j € A},

Then 1
|7(2) [> gmaz(| v(z) = 7(2) |,| v(z") = ~(2) |)

where, of course, these two inequalities reduce to one if x = 1 or k. By induction it follows that

I[T1@ =@ 1T [T G 17 < 277 @ k)P T 1e@) |7 xT
j

J#e 1<j<k
where | 0@) + (') |
+ v(x
T=27"K " @) (n )
| (@) [| v(e') |
Since I is less than 1, the result follows. (This holds if z # k. When x = k then the induction is even easier.)
|



Remark. As we have seen above, this estimate is not valid without the assumption that ~ is injective.
However, one can weaken this assumption in the following way:
if, for any i < j such that (i) = v(j), there is an ¢ < I < j such that | y(I) |<| v(3) |, then the
estimate remains valid. (This is an easy variant of lemma 4.)
One can weaken the assumption even more to the cost of getting a bigger constant. For example,
if, for any 7 < j such that v(Z) = v(j), there is an ¢ < ! < j such that | y(I) |< 3| v(¢) |, then the
estimate remains valid with the constant 272K instead of 27T K.

These simple observations will play an important role later.
Siegel’s second lemma.

Lemma 5. Let vq,...,v,, r > 0, and uy,...,us, s > 2, be positive integers such that

N N
V14 tvrtur ot us =N, up ...+ ug > 5 and u; < 5
Then
(v1..vpui.u?) "t < 274N B,

Proof. We shall prove the lemma under the weaker assumption that the v;:s and wu;:s are real numbers
larger than 1.

Since v + ... + v, < 2" ly;...v,, it suffices to prove the inequality for r < 1.

Since (u; + u2)? < 4(ujus)?, we can apply the same argument to u; + ug if u; + uz < % Hence, we
can assume that u; + u; > % for all 7 # j. In particular, s < 3.

Suppose s = 3 and suppose u; < us < uz. Then us is strictly less than % and (u1 — t)(ua +t) < urus

for positive t. Hence, we can assume that u; = 1. By the same argument we can assume that us = 1 or

N

ug = 5. Then u; +uz < % (except when N = 3, in which case the result is trivial), so we can use the

preceding argument to reduce this to the case s = 2.
If s = 2, then the above argument works to show that u; = 1 or up = &

5 -
For these different cases the verification of the lemma is immediate. 1
Siegel’s third lemma.

Lemma 6. Let v = ~5,. If v(z) # v(y) whenever z < y, then
| A1(G,0) | < 277 @R T [oG) P72 D2 [oG) D7

1<j<k 1<j<k
;70 ==

Proof. We can assume that v # 0, since otherwise A1 (d,v) = 0.
The lemma is true if #A4 = 1, so we can proceed by induction on #A.

Let _
B=Y vy and |B|=Y |v(@)|

yeB yEB
for any subset B of A.
Consider the set {2 :| A(z) |> 3 | A [}. This set is totally ordered, hence of the form [a,b], where
A = A(b). We can decompose A according to [a, b]:

Al
AZ

AS
10 B(2) B(b)



Here A(z) = {z} U A('z) U B(x) for each z €]a,b], where 'z is the predecessor of z in [a,b], and
A(a) = {a}UA®U...UAY, s > 0, is the natural decomposition. Each A? is a simple non-void index set, while
the B(z):s may be void, simple or non-simple.

We shall use the following convention:

[, c; is the product of all ¢;, @ € I, which are # 0, and it is 1 if no such ¢; exist. In particular, it
is 1if I = (. In agreement with this, we let [[c be cif ¢ # 0, and be 1 if ¢ = 0.

@ = CII v@) I »®)

z€A a<z<b B yeB

Now we have

where B runs over all non-void B(z), = €]a,b] and all A®. We can now apply lemma 4 to the first factor,
and lemma 6 (by induction) to the others:

IT @1 <27t e xR I (@) + B(@) |7 x | Aa) |7

a<z<b a<lz<b

|H,y |1<2T1(23T+1K#BH|U |3T(2|B|)
yeEB yEB

Putting this together gives

TR FA ] o) T QI AN x I x I

z€EA
where N
ho= @ Dy 2 A
L= (I @B@) II le@ I @14 "] 1va P
a<z<b a<z<b 1<z<s

If | v(a) |= 0, then s > 2, and if | v(a) |[< | A |, then s > 1. In both cases we can use lemma 5 to
estimate I». Hence,

Lixl < @)Fed | A 2] At gy

which is less than 1. (Notice that s > 2 if #[a,b] = 1.)

Suppose now | v(a) [> 3 | A|. If s = 0, then | A(a) |=| v(a) |. If, moreover, all B(z) = 0, z €]a, b], then
we are in the linear case and the result follows from lemma 4. So we can assume that some B(z) is non void
and estimate I» by 2727 | v(a) |72". Then I; x I < 1.

If s > 1, then we can also estimate I by 2737 | v(a) | 73", and, hence, I; x I, < 1.

This finishes the proof of the lemma. 1

Remark. The constant 23"+ K is certainly not optimal and can easily be ameliorated. The exponent
371 can be decreased to %T, but we don’t know if this is the best.

Remark. Siegel’s result gives absolute convergence of (1)+(2) in one particular case. This is when F is
of "holomorphic type” and Fi(0) = 0. By holomorphic type we mean that F is the restriction to (0D)” x (2
of a holomorphic function on D” x €2, D being the unit disc in C, i.e. Fj(w) = 0 unless w € N”. These
assumptions imply that ﬁ’(é, v) = 0 whenever ~s, does not fulfill the assumption of lemma 6. So we can
assume that (7) holds for all A;(§,v), and we get

1

|Xk(.7}) | + |Ck | S [23T+3CFKCTW

]k
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where C; is a constant that only depends on 7.
Hence, we have absolute convergence of (1)+(2). The assumptions on F', however, is very restrictive

Remark. Siegel’s method has been applied to many problems of holomorphic type: linearization of
holomorphic maps near an elliptic fixed point [5,8,9]; linearization of holomorphic vector fields near an
elliptic stationary point [10]; construction of invariant symplectic submanifolds for a holomorphic symplectic
mapping near an elliptic fixed point [11]. A variant of Siegel’s method has been developed by Brjuno [12].

IV GENERALIZATION OF SIEGEL’S FIRST LEMMA.

Resonances on linear index set.

We assume that we are given an index set A = A(b) together with a mapping v: A — C. We assume
that A is linear = [a, b], though this will be of no importance.

Definition. A y-resonance is a pair (¢,d) € A X A, ¢ < d, such that v(c) = v(d) and Je,d[# 0. A short
~-resonance is a pair (¢,d) € A x A, ¢ < d, such that y(c) = v(d) and ]c,d[= 0.

According to this definition, a short y-resonance is not a y-resonance.

Let (e, f) be another y-resonance. We say that (e, f) is smaller than (c,d) if [e, f] C [¢,d]. ”Smaller
than” defines an ordering on the resonances, and notions like mazimal or largest and minimal or smallest
will refer to this ordering.

We say that (e, f) and (¢, d) are non-overlapping if one is smaller than the other, or if they are disjoint.
By this we mean that e, f]N]c,d] = 0. Notice that if (¢,d) and (d, e) are resonances, then they are disjoint
according to this definition.

A set or a family of resonances is called non-overlapping if all its elements are pairwise non-overlapping.
A particular such family is the trivial family Jy which consists of no resonances at all.

Let J be a family of non-overlapping family of resonances. We define its support to be

suppd = U(c,d)EJ]cad['

For any z € A we define v(J)(z) in the following way:

if there is no (c,d) € J such that z €]e,d], let v(J)(z) = vy(z);
otherwise, take the smallest (¢,d) € J such that z €], d[, and let v(J)(z) = y(z) — v(c).

Example. As an illustration we consider A = {1, ..., 10} with its natural ordering. Suppose (1,6), (3,5)
and (8,10) are resonances with respect to v, and let J consists of all these three resonances. Then the value
of y(J)(z) is y(4) —v(3) if x =4, y(9) —v(8) if x = 9, y(x) —v(1) if z = 2, 3,5, and y(x) for the other values
of x.

Definition. J is said to be admissible if v(J)(x) # 0 for all z € A. We denote by ad(y) the set of all
admissible families.

Besides that v may vanish, non-admissibility is due to the existence of "multiple” resonances. If, in the
example above, v(3) = (1), then J is not admissible. But ”multiple” resonances are not forbidden. For
example v(4) = y(1) does not prevent J from being admissible.

Remark. Some care must be taken with the concept of admissibility when we are considering ”restric-
tions” to some subset B of A.

If J is a family of non-overlapping resonances in A (y- resonances), let J/B = {(c¢,d) € J : ¢,d € B}.
Then clearly J/B is a family of non-overlapping resonances in B (i.e. 7/B-resonances). But J/B will in
general not belong to ad(y/B) even if J € ad(vy). This is so since v(J/B) # «v(J)/B in general.
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For ”extensions”, the situation is the same. If J is a family of non-overlapping resonances in B (i.e.
«/B- resonances), then it is clearly a family of non-overlapping resonances in A (i.e. vy-resonances). (In fact,
it is a family of non-overlapping +'-resonances for any v’ : A — C such that 4'/B = v/B.) But J may not
belong to ad(7y) even if it belongs to ad(y/B).

Lemma 7. Let J € ad(v) and let (¢,d) € J. If (e, d) is a resonance, e # ¢, then (e,d) & J.

Proof. Suppose (e,d) € J. Since (¢, d) and (e, d) are not disjoint, one, (¢, d) say, must be smaller than
the other. Let (g, h) be the smallest resonance in J such that g < ¢ < h. Since (g, h) is smaller than (e, d),
we have h < d. But (¢,d) must be smaller than (g, h), so it follows that d < h. Hence, h = d and therefore
v(J)(e) =~(e) —v(g) = 0. This contradiction proves the lemma. I

Lemma 8. Assume 7(b) # 0. Let ¢ € A = A(b) and suppose (¢, b) is a resonance. Then

ad(v/A\]c,b]) x ad(y = ~v(c)/]e,b]) x {{(c,b)}}
is the set of all families in ad(y) which contain the resonance (c, b).

Proof. (c,b) is a resonance, {(c,b)} is the family which consists of this single resonance, and {{(c,b)}}
is the set which consists of this single family.

The product of two sets of families is defined by identifying (.J, .J) with JU.J. Let now J = J;UJ,U{(c,b)}.
If the right hand side is an element in the product, then clearly J is a family of non-overlapping vy-resonances
containing (¢,b). And if J € ad(vy) contains (c,b), then, by lemma 7, J = J/A\]e,b] U J/]e,b] U {(c,b)}.
Also the admissibility carries over from one side to the other since v(J)(z) = v(J1)(z) if z € A\]e,b],
Y(J)(@) = (v = 7(e))(J2)(2) if @ €]c, b], and y(J)(b) = (b). 1

The following proposition describes inductive relations for the set of admissible families.

Proposition 1. Assume 7(b) # 0. Let by,...,b, be all the indices in A\ {b} such that (b;,b) is a
resonance, and let

S;j = ad(y/A\]bj, b)) x ad(y — ~(b;)/1b;, bl)-
Then 1)
ad(y) = Uj=1(S; x {{(b;,0)}}) U ad(y/A\ {b})
and
2) S; Cad(y/A\ {b}), and if b; < bj, then S; N S; = 0.

Proof. In order to prove 1), we decompose ad(y) as E1U...UE, UEy, where Ej is the set of all families
that contain (bj,b), and Ey = ad(vy/A\{b}). This decomposition is disjoint, by lemma 7, and the description
of E; follows from lemma 8. The first part of 2) is also obvious, and, in order to prove the second part, we
let J=J1UJs €S;, b; <b;. Since 0 # (7 —v(b;))(J2)(b;) it follows that J» must contain a resonance (c, d)
such that ¢ < b; < d and y(b;) # v(c). But then (¢,d) and (b;,b) will overlap, so J can not belong to S;.
This proves 2). 1

Of course, since A is a linear it always holds that either b; < b; or b; < b;. Hence, the proposition has
the obvious

Corollary. #ad(y) < 2#4-1
An equivalence relation on ad(vy).

From now on it is essential that A = [a, b] is linear.
Definition A v-resonance (¢, d) is said to be critical if

| y(z) [ > 3]~(e) ]

for all z €le, d].

Notice that any two critical resonances are non-overlapping.
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In a remark to Siegel’s first lemma (lemma 4) we have explained why the critical resonances are im-
portant. From this point of view it would appear natural to replace the constant 3 by 1, but our argument
requires a constant larger than 1.

Definition. Let J be an admissible family. We let C'(vy,J) be the family of all y-resonances in J

together with all critical (y/A\ suppJ)-resonances, and we let C'(y, J) be the family of all maximal elements
in C' (v, J).

C(v, J) is an admissible family of pairwise disjoint y-resonances. Notice also that a critical y-resonance
which lies in A\ suppJ is a critical (y/A \ suppJ)-resonance, but there are critical (y/A \ suppJ)-resonances
which are not critical as y-resonances.

Definition. We say that J and J in ad(y) are equivalent, J ~y J, if

Cly,J) = C(y, ).
Let [J], denote the equivalence class of J. [J], is minimal if C(v,J) is void, and it is mazimal if
C(v,J) = {(a,0)}.

Notice that C(vy,J) is void if and only if J is the trivial family, and there are no critical vy-resonances
at all. Moreover, there is at most one minimal class in ad(v), and it consists precisely of the trivial family.
We shall now describe the structure of the maximal classes.

Proposition 2. Let C(vy,J) = {(¢;,d;) : ¢ < n}, and let C; = [¢;,d;] and v; = v/C;. Then

[y = H [J/Cily-

1<i<n

Proof. We first want to prove that [J], C [],<;<,[J/Ci],. This amounts to proving that if J~y T,
then J /Ci ~; J/C;. Clearly J /C; € ad(vy;), so it suffices to show that

C(v/Ci, J/Ci) 3 (ci, dy)

which is pretty obvious.

In order to prove that [J]y D [[;<;<,[J/Cily;, let Ji ~4, J/C;. Then clearly J=JiU...UJ, € ad(v),
and we must show that J ~. J, i.e.

C(v,J) = {(ci,di) : i <n}
or, since there are no critical y-resonances contained in A \ Ui<;<n]ci, di,
C(v,J) D {(ei,di) = i < n}.

Hence, we must show that (¢1,di) € C(v, J). Tt is clear that either (ci,d;) € J or (¢1,dy) is a critical
(v/A \ suppJ)-resonance. So the only way for (c1,d;) not to lie in C(v,.J) would be that there existed a
critical (y/ A\ suppJ)-resonance (e, f) which contained (1, d;). Since critical resonances are non-overlapping,
it follows that (e, f) does not overlap any (c¢;,d;), and, hence, neither e nor f are contained in ]¢;, d;[.

Since (e, f) is not a critical (/A \ suppJ)-resonance, there must be an z €le, f[\suppJ such that

3[y(e) [ = [v(z)].

This = must lie in suppJ since (e, f) is a critical (/A \ suppJ)-resonance, and, hence, = €]c;, d;[ for some 1,
i = 2 say. Since (cq,d2) is critical for (y/A \ suppJ), it follows that

[v(z) | > 3[v(e2) |-

14



Finally, ¢z must lie in ]e, f[, and since ¢, ¢ suppJ, we have

[7(e2) | > 3[(e) ]

Hence,
3lv(e) [ 2 [y(@) | > 3[v(ca) | > 9[~(e) |

which gives a contradiction. Hence, (¢1,d;) € C(v,J). This proves the proposition. I

Remark. Let v/ = «/]a,b[. If v does not vanish at a or b, then ad(y') C ad(y) and [J], C [J], for any
J € ad(®').

If v(a) and v(b) only are attained at a and b, respectively, these inclusions are equalities. But if this is
not the case, then, not only ad(y') # ad(y) but it may happen that [J],» # [J], Nad(y'). For example if
(a,b) and (c,d) are the only y-resonances, and (a, b) is critical and (c,d) is not critical, then [Jy],» = {Jp}
but [Jpl, = ad(7).

Hence, it is important to keep track on the domain of definition of «, and it may be harmful to use v
to denote v/]a, b.

Since, by proposition 2, each class which is not minimal is a product of maximal classes, it will be
important to understand the maximal classes. Suppose 7y(a) = v(b) and let

S'(y) = {J € ad(y = v(a)/]a,b]) {| () |> 3 [ (b) | for all z €la,b[\suppJ}

and
S*(v) = ad(y —~(a)/]a,b) \ S (%)
Lemma 9. S1(v) is a saturated subset of both ad(y — y(a)/]a,b]) and ad(vy/]a,b]).

Proof. Clearly S'(v) is a subset of ad(vy'), v' = v/]a,b[. In order to show that S(v) is saturated,
we must prove that if J; ~, J» and J; € S'(v), then J, € S'(y). Suppose not. Then there exists
x €]a, b[\suppJ2 such that

31v(a) | 2 [~v(=) |-

Since J; € S'(y) we have that z € suppJ;, and, hence, there is a resonance (c,d) € C(v',J;) such that
¢ <z < d. Since (¢,d) € C(v', J2), it follows that

| y(z) [ > 3]~() |

Finally, since ¢ € suppJi we also have that

[ v(e) | > 3]|~(a)|.
So we have proved that
31v@) [ = [v()[> 3]v(e)|> 9]|(a) |

which gives a contradiction. Hence, Jo € S'(vy) and S'(v) is saturated in ad(v/]a, b[).

Let now v" = (v —~(a))/]a,b[). In order to prove that S'(v) is saturated in ad(y""), we must prove that
if Ji ~yn Jo and J; € S(v), then J> € S'(y). We now argue as above. So suppose not. Then there exists
z €la, b[\suppJ> such that

3@ | > [~(=) |-
And there is a ¢ & suppJ; such that
| v(@) —~(a) | > 3[~v(c) —~(a) |

and
[v(e) | > 3|v(a) |-
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So we have
3| v(a) |

v

17(2) | > 3170 | =4[ (a) |
(-3 190 = 271> 51|

v

which gives a contradiction. Hence, Jo € S*(vy) and S'(v) is saturated in ad(y — v(a)/]a, b[). 1

Remark. It is only in the proof of the fact that S'(v) is saturated in ad(y — v(a)/]a,b[) that we need
the factor 3 in the definition of a critical resonance. Indeed, one can replace 3 by any constant d > 1+ /2,
but nothing smaller.

Proposition 3. Let J € ad(v) and let (c,d) € C(v,J). Then
[7/le,d]ly = (S"(v/le,d]) x {Jo, {(c, )}}) U (S*(7/le, d]) x {{(c,d)}}.

Proof. We can assume that (¢,d) = (a,b). Lemma 8 implies that ad(y — v(a)/]a,b[) x {{(a,b)}} is the
set of all families J € ad(y) which contains (a, b) and, hence, are equivalent to J. On the other hand, S*(7)
is precisely the set of all families J which are equivalent to J but which does not contain (a,b). This proves
the proposition. 1

Generalization of Siegel’s first lemma.

If J € ad(y), then we define numbers p(v, J)(z) in the following way. We have to distinguish two cases:
either it is the case that v(z) = y('z) - 'z denotes the immediate predecessor of z - and there is a d such
that (z,d) € J, or this is not the case. Now we let

in the second case

1
pl. () = § T .
TIE ~ yeled\supp(/lad) 77y 1 the first case.

Let
3(y,0) = > [[ s, D@D, 2(y) = ¥(y,0ad(y))

JeD zcA

for any subset D C ad(7), and let
<I>'( ) — d <I>( ) — P
v) = Yz)2=0, Yz =Y R

Definition. A short ~y-resonance (c,d) is said to be simple if neither ('c,c) nor (d,d') are short -
resonances.

Proposition 4. Suppose that A = [a,b] and ¢ is a linear index set. Let v : A — Z¥ and let v = 75,
Assume that all short ~y-resonances are simple.

Then
| @0y, [J]y) | < #[J,@CK)#4 T |o(@) 7
SA

and, in particular,
| ®(y) | < #ad(y) K74 ] | o) 7.

zEA
v(z)#0

Moreover,
#ad( K@V E)# T o) 7.

zEA
v(z)#£0

| ®'(7) |

IA
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Remark. At the end of section VI we shall describe a simplified problem - linearization of a vector field
on a torus. In that problem all short resonances are automatically compensated, so one can simply assume
that there are no short resonances at all, in which case the expression for p(7y, J) is much simpler since we
always are in the second case.

In the Hamiltonian problem, however, not all short resonances are compensated for. Those that are not
are always simple, because B (0)2 = 0, and it may therefore seem like they give rise to at most a ”squaring”
of a small divisor. But a simple short resonance may be followed by a (non-short) resonance giving rise to
a triple repetition of a small divisor, and such a triple may repeat itself many times. The idea behind the
particular formulation of p(vy,J) in the first case is to compensate for such triple repetitions.

The basic compensations.

From now on we assume that all short y-resonances are simple and y(a) # 0.

Case 0.
Suppose that there are no resonances. Then

I »@™

a<z<b

if v # 0. (If  vanishes, then ®(y) = 0.) In this case we can estimate ®(y) by Siegel’s argument. (Lemma
10 describes a slightly stronger result which we will need.)

Lemma 10. Assume that all short y-resonances are simple. Assume that v never vanishes and that
there are no critical y-resonances. Then

|H,y 1|< 22T+4K#A H |2‘r‘

z€[a,b]
v(z)#0

Proof. We shall proceed by induction on #A as in the proof of lemma 4. Notice that we can assume
K =1.

Choose z so that | y(z) | maximizes | v | on A, and take the smallest such z if there are several. If
| ¥(z) |[> 1, then we can take away = and apply induction to A \ {z}, except if there is a resonance (c,d)
such that  is the only element in J¢,d[. But then | y(c) |> 3 and we can apply induction to A \ {c}.

So we can assume that | v |< 1, and it suffices to show the estimate for | [],v(z)™2 | under the
assumption that v # 0.

Now this result just follows as in lemma 4. Choose x so that | y(z) | maximizes | v | on A and z is
minimal. Induction works on A \ {z} except if there is a resonance (¢, d) such that z is the only element in
Je,d[. But in that case we have

[ () |2 imaw(l (v(e),w) |, ] (v(c),w) 1)

and induction applies on A \ {c}. 1

Case 1.
Suppose that there is only one resonance (a,b), and that it is non critical. Then

(7)) = (@™ [ v@7v®) = @) [ (@) =)y B) !

a<z<b a<lz<b

if v # 0. (If v vanishes, then we have only the second term.) Then we can apply Siegel’s argument to each
of the two terms. The first one is estimated by lemma 10 and the second one follows from lemma 11.
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Lemma 11. Assume that y(a) = y(b) # 0 and that all short y-resonances are simple. Assume also
that 4" = v — v(b)/]a, b[ never vanishes, that there are no critical 4'-resonances, and that there is a ¢ €]a, b
such that | v(c) |[< 3| v(b) |. Then

|7@ T (@) =v@)y(®) 17t < 4R2@THE)#A2 TT Jo(@) PT]v(a) |7

a<z<b z€la,b]
v(z)#0

Proof. Since the result is trivial for #A4 = 3, we shall proceed by induction on #A4. We can assume
K=1.

Arguing as in lemma 10, it suffices to prove the estimate for | y(a) [T, <, <, (v(x) —v(b))?y(b) |~ under
the assumption that v # 0.

Choose z such that | /(z) | maximizes | 4" | and z is minimal. If z is the unique index in ]a, b[ such
that [ y(z) | < 3[~(b) |, then, for any y €]a, ],

| v(z) —v(b) [>] v(y) —v(b) [> % | v(z) —v(b) |
and, hence, .
[ 7(y) = 7(b) |2 ymaz(] ("), w) |, (v(y),w) |)-

And we can apply induction on A\ {'b}, for example.
If there is a resonance (e, f) such that z is the unique element in Je, f[, then | v/(z) |< 3| v'(e) |. Hence,

[ 7'(e) 12 imam(l (v(e),w) || (v(e"),w) |)-

So in this case we can proceed by induction on A\ {e}.
If nothing of this is the case, then we do induction on A\ {z}. 1

Case 2.

Suppose that there is only one resonance (a, b), and that it is critical. Then v # 0, and ®(v) is the same
as in case 1. But now each of the two terms is too big and it is only by considering their difference that we
get a good estimate. We argue in the following way.

Let ¢ minimize | v | on Ja,b[. Then | v(c) [> 3 | 7(b) |, and the function f(2) = [, cpV-(x)" is
holomorphic for z € {w € C:| w |<| 7(c) |}. By Cauchy estimates we get

1l o) | — -1 #A-2 1
o [ FE 7@ [T (5 1) | =2 )7 < 277778 £(0) | @ 7@ =10

where we have used that | f(z) |< 2#4~2 | £(0) | when | z |[< L | y(c) |, and that | y(c) — v(b) |

2
<8(5 | 7(0) | = [ () D).
Hence, it suffices to estimate

@)t I @) (o) — ()
a<z<b
and this can be done by Siegel’s argument.

Lemma 12. Assume that v(a) = v(b) # 0 and that all short vy-resonances are simple. Assume also
that v' = v/]a, b[ never vanishes, that there are no critical v'-resonances, and that | v(c) |> 3| v(b) |, where
¢ is determined so that | v(c) |= min{| v(y) |: @ < y < b}. Then

[7(@) JT @@ —v®) 7" < 4@ HE)#A2 T 1v(@) Py |7

a<lz<b z€la,b]
v(z)#0
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Proof. Since the result is trivial for #A4 = 3, we shall proceed by induction on #A. We can assume
K =1.

Arguing as in lemma 10 it suffices to prove the estimate for | v(a)[1,c,<,¥(2)?>v(b) |~* under the
assumption that v # 0.

Choose z so that | y(z) | maximizes | v | and z is minimal. If 2 = ¢, then, for all y €]a, b],

[ (@) |=]7(y) |

and, hence,
I 7(y) |2 %maw(l {v(y),w) || (v(y"),w) |).

And we can apply induction on A \ {'b}.
If there is a resonance (e, f) such that z is the unique element in Je, f[, then | v(z) |[< 3| v(e) |. Hence,

[v(e) > %maw(l (v(e),w) |, | (v(e'),w) |)-

So induction applies on A \ {e}.
If nothing of this is the case, then we do induction on A\ {z} 1

Case 3.
Suppose that there are only two resonances (a,b) and (a',b), and that (a’,b) is non critical. Then

&(7) = y(a) @)t I @ 0 - v@) @)t [ (@) = (@) ) !

a’'<z<b a' <x<b
+7@™( Y (@) =) [ (@) =2 @) ()7
a'<z<b a'<z<b

if v # 0. (If v vanishes, then we have only the second and the third term.)
Then we get estimates for each term separately by Siegel’s argument. The first term is estimated by
lemma 10 and the two others by lemma 13.

Lemma 13. Assume that v(a) = v(a') = vy(b) # 0 and that all short y-resonances are simple. Assume
also that v = v — «(b)/]d’, b[ never vanishes, that there are no critical 4'-resonances, and that there is an
index ¢ €]a’, b[ such that | v(c) |< 3| v(b) |- Then, for any y €la’, ],

| H@)(y(y) =v®) TT (@) —v@)r) 7 < 4K2@THE)#A ] o) P v(@) |7

o' <z<b z€]a,b]
v(z)#0

Proof. By exactly the same argument as in the proof of lemma 11 we see that it suffices to treat
#A =4, in which case the estimates are trivial. I

-1

Remark. Under the assumptions of lemma 13 we have | v(a') |7'< 4 | y(c) — v(b) |~'. So we can

replace v(y) — v(b) by 4v(a') in the above estimate.

Case 4.

Suppose that there are only two resonances (a,b) and (a’,b), and that (a’,b) is critical. Then v # 0,
and ®(v) is as in case 3. But now we have to proceed differently.

Let ¢ minimize | v | on ]Ja',b[. Then | v(c) [> 3 | 7(b) |, and the function f(z) = [T, c,cpV:(2) " is
holomorphic for z € {w € C:| w |<| v(c) |}. By Cauchy estimates we get

1 | f(0) = f(v (b))
| v(a)y(a') | v(b)

where we have used that | f(z) |< 2#47% | £(0) | when | 2z |[< 1 | ¥(¢) |, and that | v(c) — 7(b) |
<8(5 [ () | = | 7(®) D

| ®(y) | = + () | < 2747282 [ £(0) || (@) |7 (| 7(e) = v(b) )
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Hence, it suffices to estimate

@)™ I 7@ () =y ()

o' <z<b

and this can be done by Siegel’s argument.

Lemma 14. Assume that y(a) = y(a') = v(b) # 0 and that all short y-resonances are simple. Assume
also that 7' = v/]a’, b[ never vanishes, that there are no critical v'-resonances, and that | v(c) [> 3| v(b) |,
where ¢ is determined so that | y(c) |= min{| v(y) |: ' <y < b}. Then

|7(@) I @0 —v®)?* |7t < 4k*@HE)#A T Jo(@) Pve) |7

a'<z<b z€]a,b]
v(@)#0

Proof. By exactly the same argument as in the proof of lemma 12 we see that it suffices to treat
#A = 4, in which case the estimate is trivial. I

Remark. If we replace v by v, = v — 2z, then lemmas 10-14 remain valid for all complex numbers 2
such that | z |[< Smin{| v(z) |: = € A} if we just multiply the constant by 2#4. This is obvious since then
| (@) =2 (>5[ 7() |-

Remark. The estimates are not optimal. In lemma 10, for example, the total weight of the exponents

in [T | v(x) |?>" is (#A)27. But one can show, by the same type of argument, that there is an estimate with
total weight (#A)7. Moreover, the constant 2274 can be replaced by 27+2.

Proof of proposition 4.

We observe that the estimate is obvious for #A4 = 1, so we proceed by induction on #A.

Suppose that C(v, J) is void. In this case [J], consists of only the trivial family, and there are no critical
resonances. The estimate then follows from lemma 10.

Let’s now consider the case when C(v,J) contains resonances. Let (c¢,d) be such that either (¢,d) €
C(v,J) and v(c) # v(¢), or (',d) € C(~,J) and v(c) = v(c') — we can assume that no (d,e) belongs to
C(v, J). From proposition 2 it follows that

(71, = [I/le,dlly x [T/ A\le, ]}y
where 4" = v/[c,d] and v = v/ A\]¢,d]. And then

(v, [J]y) = (v, [/l dlly) x v(c) x @(v", [T/ A\]e, d]]y).

Hence, it suffices to prove that

|2, B) | < #E@HK)*T T (@) T 4(a) [
ok

in the following two cases: E = [J], and (a,b) € C(v,J); E = [J], and (a',b) € C(v, J).
By proposition 2 and 3 it suffices to prove this estimate in the following four cases:

E=[Jly—ym x {{(a,b)}}, J €Sy

E=[J}y x{Jo. {(a,0)}}, JeS'(M)

where 7' = v/]a, b[;
E = [Jly—m x {{(@,0)}}, J €S (y/la',b])

E =[Jly x {Jg,{(a’,b)}}, J €S (v/[d,b])
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where 7' = v/]a’, b[ and v(a) = vy(a').

Case 1.
Since

B(7, [Tly—npy X H{(@,0)}}) = = (@) 8y = (), [T]yr—y)¥()

we can proceed by induction. It is therefore sufficient to consider the case when C'(y' —«(b), J) is void, and
then the result follows from lemma 11 since J € S%(7).

Case 2.
We have

O(y, [Ty x {0, {(a;0)}}) = (@)@, [T]y) = (Y = (), [T}y ))v(b) "

Now z = ®(v' — 2,[J],) is holomorphic for
| 2 [<|7(¢) [= min{| v(2) |: x €]a, b[\suppJ}

- this domain only depends on [J],,. And since 3 | y(a) |<| y(c) |, because J € S'(v), we get by Cauchy

estimates
| @(v, 1y x {Jo,{(a,0)}}) | < 2#4728 | &(v,[J]y) || v(a)(7(c) — v(a)) [ .

We can now proceed by induction, and it suffices to consider the case when C(v',J) is void. Then the
estimate follows from lemma 12 since J € S*(7).

Case 3.
We have

o(y, [J]'y’—'y(b) X {{(alab)}}) =
— (@) (@) T R(Y = v (5), [Ty —y) YD) + (@) T R (Y = 7 (B), [T]yr— )Y (D)

where ® (v = 7(8), [Tl () = &2 — 2, [T —y(6)) ot

For the first term we can proceed by induction, and it suffices to consider the case when C(v' —~(b), J)
is void. Then we can apply the remark to lemma 13.

The second term is a derivate so we can, using Cauchy estimates, estimate it by

2| ‘ l|S1(1};_ o) | V(G)—1<1>(’Y; - 'Y(b), [J]’Y’*’y(b))('y(c) _ ’Y(b))_lw(b)_l | <

25472 | y(a) T @y — 4(B), [Ty —(v) (v(€) = ¥(0)) "My (B) 7" |

where ¢ is determined in order to minimize | y(z) —y(b) | over z €]a’, b[—suppJ. (Notice that c only depends

on [J]’Y’*’Y(b)')
Now we can proceed by induction, and therefore we only need to consider the particular case when
C(y' — ~(b), J) is void. Then the estimate follows from lemma 13.

Case 4.
We have

'1)(77 [J]’Y' X {J(Bv {(alvb)}}) =
v(@) " (@) T () TR, [T]y) — B(Y — (), [T]y) + (D)@' (' — 7(b), [J]4)]-

The bracket expression is the beginning of a power series expansion of a holomorphic function, so we can,
by using Cauchy estimates, estimate it by

2#A382 | (', [T]y0) || v(B) P ¥(c) = ~(b) |2

where ¢ is determined in order to minimize | y(z) | over z €]a’,b[\suppJ. (Notice that ¢ only depends on
the class [J],.)
Now it suffices to consider the case when C(v/,J) is void, and then we can apply lemma 14.
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This concludes the proof of the first estimate proposition 4. In order to prove the second estimate we
observe that the first estimate is valid for ®(v;,[J],), as long as | z |< 3 | v(z) | for all = ¢ suppJ, if we just
multiply the constant by 2#4. And that ®(v,,[J],) is a holomorphic function in this domain. The second
estimate then follows from the first by a Cauchy estimate. 1l

V GENERALIZATION OF SIEGEL’S THIRD LEMMA.

Resonances on index set.

Let A = A(b) be a general index set, and let v : A — C be given. Then we can define y-resonances and
short y-resonances exactly as in section IV, and all results from Resonances on linear index sets remain
true. The proofs are exactly the same except for the estimate of #ad(y), which in the linear case appears
as an immediate corollary of proposition 1. This result we formulate here as

Lemma 15. #ad(y) < 2#4-1,

Proof. We refer to the decomposition of proposition 1. Suppose that b; is a smallest element among
b1, ...,bn, and let a be the immediate predecessor of b in [by,b]. Then we can assume that y(a) # (b), since
otherwise ad(y — v(b)/]b;,b[) would be void. We can now change A and v to A’ and 4’ : A" — C in the
following way. A’ is obtained from A by letting b, be the maximal element for the ordering, all other relations
remain the same, and 7' is the same as 7 except in the maximal element b;, where we let v/(b1) = v'(a). A
little reflection shows that #ad(y') > #ad(v).

In this way we can proceed inductively. Hence we can assume that all b;:s lie on a totally ordered subset,
i.e. b < bj or b; < b; for all 4, j, and then lemma 15 follows immediately from proposition 1. I

In the case when A = A; U...U A, is non-simple we clearly have ad(y) = ad(y/A;) X ... x ad(vy/A,).

For J € ad(y) we recall the definition of the numbers p(v, J)(xz). We have two cases: either it is the
case that y(z) = v('z) - a condition which requires that x has a unique immediate predecessor - and there
exists a d such that (z,d) € J, or this is not the case. (Notice that when v = 75, then « has a unique
immediate predecessor 'z with v(z) = v('z) if and only if (§(z),v(z)) = (1,0).) Now p(v,J)(z) is defined
by the formula of section IV. Also ®(vy) and ®’'(~y) are defined as in section IV.

Generalization of Siegel’s third lemma.

Proposition 5. Let 6 € A(k) and v € I'(k) and define 7y : A — C by v = 75,. Assume that all short
~-resonances are simple. Then

| @(y) | < #ad()@"THE)#A T 1o(@) F7 @) Jv(@) )°

z€A z€A
v(2)#0

Proof. For any subset B of A, we let | B | and B be defined as in lemma 6. Moreover, it will be
convenient to use the same product convention:

[, ci is the product of all ¢;, @ € I, which are # 0, and it is 1 if no such ¢; exist. In particular, it
is 1if I = (. In agreement with this, we let [Jc be cif ¢ # 0, and be 1 if ¢ = 0.

Notice first that if A = [a,b] is linear, then the estimate follows from proposition 4. This takes, in
particular, care of the case #A = 1, so we can proceed by induction on #A.

Decomposition of ®(v).
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Let T be the largest totally ordered subset [a,b] of A = A(b) such that
]' !
| A(@) | > 5 [A@) ], z€lab
Let’s say that a resonance (¢,d) cuts T if ¢ ¢ T and d € T. We now define

E = {J€ad(y):no (c,d) € J cuts T}

and
E(e,d) = {J € ad(v) : (¢,d) € J and no other resonance in J cuts [d,b]}

for any ~-resonance (c,d) that cuts 7T'.
Now we have

o(7) = ®(v,E)+ > _ (v, E(c,d))

where summation runs over all resonances that cuts 7', and
E = ad(v/la,b]) x ad(y/A\ [a,b])

E(c,d) = ad(v/[d, b]) X ad(y —v(c)/]e,d]) x {(c,d)} x ad(y/A\]c, b]).
We observe first that
®(7, E) = 2(v/[a, b)) 2(v/A \ [a,b])

since (d(a), v(a)) # (1,0). Secondly, if it is not the case that ¢ has a unique predecessor ‘¢ with v(c) = vy('¢),
then

®(v, E(c,d)) = 2(v/[d, b)) 2(y — v(c)/le, d]) @ (~/ A\]e, b]).
On the other hand, if this is the case, then

®(v, E(c,d)) = @(v/[d, b){2(v = v(0)/le; dDy(0) ™" = @' (v = 7(e)/]e, d]) } @ (v/ A\]'e, B]).
Hence, it suffices to treat these three cases. Since the appearance of the factor #ad is completely trivial,

we shall simply suppress it in the estimations below.

First case: ®(7/[a,b])®(v/A\ [a,b]).
We decompose A according to [a, b]:

Al
a T b
A2
A?
B(x) B(b)

Here A(z) = {2z} U A('z) U B(x) for each z €]a,b], where 'z is the predecessor of z in [a,d], and
A(a) = {a}UA®U...UAL, s >0, is the natural decomposition. Each A? is a simple non-void index set, while
the B(z):s may be void, simple or non-simple.

We get from proposition 4,

| @(v/[a,b]) | < (@ TK)# 5 T |v(z) + Be) 7 x | Afa) |7
a<z=b
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and, by induction, we have

| ®(v/B) | < @“HK)#E x ] |v(@) I x(2| B|)~°
zeB

for any non-void B = B(z), = €]a,b], or B = A" L

We shall now take the product of all these estimates. We observe that | v(z) + B(z) | equals | v(x) |
when B(z) = ), and is less than 2 | v(z) || B(z) | when B(z) is non-void. But in the latter case we have a
factor 2 | B(z) | in the denominator. Hence we get

(2147—+6K #A H | ol |87— (2 | A |)—6‘r x I
€A

I = @ n)#ei T 214 )™ ([] 1o(@) N5 [ Ale) P (2] A D

1<i<s

and we only need to prove that I < 1.
We have | A(a) |> (3 )" LAY, n=#[a,b], and | A" |< 1| A(a) |
Suppose first | v(a) |2 5 | A(a) |. If | v(a) |=| A(a) |, then we estimate I by

@12y #l | y(a) | 787 Aa) 77 (2] AT
and the result follows. But if | v(a) |<| A(a) |, then s > 1 and we can estimate I by
(212207 u(a) | 5] Afe) P (2] AT

and the result follows again.
Suppose now instead that | v(a) |< 3 | A(a) |. Then s > 2, and the result follows by applying lemma 5

(II 1o@@ > T @147~

1<i<s

Second case: ®(v/[d, B))®(y — (c) /Je, d)(v/ A\Jc, b).
Let e be the smallest element in [a, b] such that e €]c,d], i.e. [e,d] = [a, b]N]c,d]. We shall decompose A

according to ]e, bl:
d € d b
; i B(d) [l? (e) [& (d) [ZB ()

Here A(z) = {z} U A('z) U B(z) for each z €]c,b], where 'z is the predecessor of z in [c,b]. The B(z):s
may be void or simple or non-simple.
We get by proposition 4,

to

| @(v/[d,b]) | < (2> HK)#H 5 ] | o(@) + Bl@) [P x | Ale) |7
d<z=b

since A(d) = A(c).
Also by proposition 4,

| ®(y —(0)/le,d]) | < @ FOR)#Hedl s T | v(z)+B@) |-
c<zr=d
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If now ¢ < e < d, then

v(e)+Ble) = — > v(x)+ B(x)

c<z<d
z#e
since A(d) = A(c), and we have
| ®(v —()/le,d]) | < @ TOK)#Ux T |v(@)+B(@) [*7 x |v(d) + B(@) |7 .
c<z<d
z#e

So in both cases, e < d and e = d, we get an estimate of ®(v/[d,b])®(y — v(c)/]e,d]) which is independent
of v(e) and B(e).
By induction we have

| ®(v/B) | < @ K)#E x ] |v(@) I x(2| B|)~°
z€B

for any non-void B = B(z), = €]¢,b], or B = A(c).
Putting these estimates together gives

(214T+6K #A H | vz |87' (2 | A |)76T x I
z€EA

I = (2—107)#]c,b](H | 1)( ST H2 | B —67 2 | A |)
and we shall now show that I < 1.
If a < e, then

B> 3 1A@1> Q)" 1Al n=#le,] < #eb

DN | =

and the the result follows.

If e = a, then | A('e) |< % | A(e) |, where ‘e is the predecessor of e in [c,b]. But since A(e) =

{e} U A('e) U B(e), it follows that

|v(e) [+ Ble) | =
So if B(e) =0 or v(e) = 0, then

A@ 1> () 14].

DN | =

@) > (" A] o |B@)|> ()" Al

respectively, and in both cases the result follows. And otherwise we have | v(e) | + | B(e) | < 2| v(e) |
| B(e) | and the result also follows.

Third case: ®(v/[d, B){®(y = v(0)/le dDv(c) " — &'(y = 7(0)/le, )} (v/A\J'e, ).
We decompose A as in the second case:

c € d b
Ale) O o—@ -------@-----------@-----
B(c) B(e) B(d) B(b)

The term is a sum of two pieces. The first one is estimated as in the second case just by replacing A(c)
by A('c) and multiplying by | A('c) | because of the factor y(c)~!. For the second term we proceed in the
same way. Hence, we get

| ®(v/[d,b]) | < (2> TSK)# 5 ] | v(@) + B@) > x | A(c) |7
d<z=<b
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since A(d) = A(c) = A('¢), and

| @' (y = v(e)/le;d]) | < (27K T | o(@) +B(x) [*7 x | v(d) +B(@) [*T .
C:;jd
By induction we have

| @(v/B) | < @ K)#P x T |v(@) 7 x(2| B|)~°
z€EB

for any non-void B = B(z), z €]a,b], or B = A('c).
Putting these estimates together gives

(214T+6K #A H | vlz |87' (2 | A l)—G‘r x I
r€A

1= @ H#NT [ve) D=5 ([] 21 Ble) D=7 (@ A D

We must now show that I < %, but this is just a repetition of the arguments in the second case.
This proves proposition 5. 1

Remark. We have not tried to get the best constant and the estimates can certainly be ameliorated.
We don’t know which is the best exponent, but it seems likely that it is smaller than 8 When there are no
short resonances we have the same estimate with exponent 37 instead of 8.

VL. ABSOLUTELY CONVERGENT SERIES.

We can now write down new series:

~ Y EFVEDTE ST ST A6, v)F(8,0)eY ot tuen (8)1

k>1 SeA(k) vel' (k)
C o~ Y V=D ST D AGvE©G) (8)s
k>1 SEA(k) veET (k)

which we define in the following way:

() = X readrr) aeaP(r, I)(@)(=1)#7  if there are no short ~-res.
Aj(d,v) = (¢, d) with §(d) > 2
0 otherwise

and
A3(6,0) = {ﬁi(‘iv/A\{b}) if (5) = 0

5(0,v) =0 otherwise

where v = 75, and b = k.

By proposition 5 and lemma 15 these series are absolutely convergent if, as in the Hamiltonian case,
F1(0)2 = 0. (This is so because F1(0)? = 0 implies that A%(8,v)E(6,v) = 0 unless all short -y ,-resonances
are are simple.) And even though, in general, (8) does not converge to a solution of (*), we have not
just replaced the absolutely divergent series (1) + (2) by some absolutely convergent series. The coefficient
A% (6,v) is a sum of products of small divisors, one of which is A; (4, v). Hence, the series (8) contain (1)+(2)
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- they are obtained from these latter by adding a large number of monomials ﬁ’(é, v) with coefficients of type

[I((1)(@)~ (=1)*.
So the series (8) will be a solution of (*) if and only if all these added terms sum up to 0. However, this
is not always the case. In general we have

8X () = eF(z,X(z)) — C — R()

with some R(z) # 0. But we are not so far away. We shall show that R(z) = DX (z) for some matrix
D = D(e), independent of . Moreover, we shall show that, besides the mean value of X, there are more
free parameters available, and by choosing these parameters appropriately one can, in the Hamiltonian case,
make both C' and D vanish.

Interpretation of the series.

Let
G(z,e) = Zeka(w) = eF,(z, X (x))-

k>1
A simple calculation shows that G; = F; and

Gr(e) = > Y (G+DFn@)(X, (@), X, (@)

1<j<k—1 v1+---+ej
=k—1

for k > 2. Here Fj;(x)(X,;(%),...,X,, (2)) is a linear map, i.e. a matrix. Since F}jy; is symmetric, it doesn’t
matter in what order we evaluate it on the vectors X,;(z),..., X,, (). This remark also explains the factor

G+1).
For the Fourier coefficients we have

Grw) = (V=D 37 3" (@, + DEFG,v; kA6, v/{1, .k~ 1})

SEA(k)  veT(k)
v+ Fop=w

where F'(8,v; j) is the matrix defined by
F(8,v;j)V = F(8k, ). F(8; + 1,0;)VEF(8;_1,vj_1)-. F (81, v1)

for each vector V. For §,v € A(k) x I'(k), the sets A = {1,...,k} and A’ = A\ {k} are index sets. A’ has a
natural decomposition A' U...U A%, and we understand by A}(8,v/A’) the product [] Aj(d,v/A?).

We now consider the equation
(%) 0Z = (G —D)Z —eZG1(0), <Z>=1I

for a mapping Z : T — gl(R*) and a constant matrix D. This equation has a formal solution

Z(x) ~ I+Zaka(x), D ~ Zaka

k>1 k>2

of the form

Z(z) = Z (V-1 Z Z 91(L,U)CA¥LJ.(v]-)....éH(vl)e‘/__1<”1+"'”f’$>

1<5<k viteFij peD(H)
=k

D, = Z (\/__1)_j+1 Z Z QQ(L,’U)GLJ-(’l)j)....éLl(Ul).

1<5<k 11t te 9el(f)
=k
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Let t1 + ...+t =k > j and v € ['(j). We write {1,...,5} = [a,}], and we consider ¢,v as a mapping on
[a,b]. We let y(z) = (3, <, v(y),w)-

Lemma 16. Suppose G1(0)? = 0. If G, (v;)...G., (v1) # 0, then

®(v/[a,b]) if there are no short y-res. (c¢,d) with ¢(d) > 2
and if (1(a),v(a)) # (1,0)

Qi (e,v) = ¢ —®'(y/]a,b]) if there are no short y-res. (¢,d) with +(d) > 2
and if (v(a),v(a)) = (1,0)
0 otherwise,
Qa(1,0) = {Ql(L,v/[a,b[) if v(b) = 0 and (#[a,b] > 2 or ¢(a) > 2)
20 0 otherwise.

(Here we shall understand Q4 (¢, v/0) to be 1.)

The reason why we must distinguish between those short v-resonances (¢,d) for which +(d) > 2 and
those for which ¢(d) < 1 is that the former ones are automatically compensated for in the recurrence relations
for the Q;:s by the presence of the term D in (**), while the latter ones are not compensated for because of
the term £Z(2)G1(0). In ®(v), on the other hand, we have compensated for no short y-resonances at all.

Proof. We have the following recurrence relations:

’Y(b)ﬂl([‘av) = Ql(Lav/[aab[) - Q2(l‘av)
- Z Ql(Lav/[a:bj])Q2(Lav/]bjab]) - faﬂl(bav/]aab])

1<5<n

where by < ... < by, b = bp41, are all the indices in [a, b such that y(b;) = (b), i.e. (bj,b) are y-resonances
except eventually (by,,b) which may be a short vy-resonance. &, is 1 or 0 according to if (v(a),v(a)) = (1,0)
or not.

From this we get that Q2(t,v) = Q1(¢,v/[a, b]) when v(b) = 0, and 0 otherwise.

Now we turn to ;. Clearly, Oy is 0 when v(b) = 0, so we assume that v(b) # 0. Also, it follows by
induction that Q(¢,v) = 0 if there is a short y-resonance (¢, d) with +(d) > 2. Hence, we can assume that
there are no such short resonances.

Consider now the decomposition ad(y) = UE; given in proposition 1. We have

(y) = Y B(y,Ej).

0<j<n+1

Suppose first that &, = 0, i.e. (¢(a),v(a)) # (1,0). We have the following relations:

(7, Enpr) = %‘P(W/[a,b[,ad(v/[a,b[);

if v(b;) # 0 and v(bj11) # 0, then

B(y, E;) = —‘ﬁ(v/[a,bj])@(v—v(b)/]bj,b[)%;

if v(b;) =0, then E;_; is void and ad(v/[a, b;]) = ad(v/[a,bj_1]), so

O(v,Ej1) + ®(v,Ej) =

—00. /[ B) B0 = 10)/ By ) g + 0 oD (= 10/ ) s

Now the statement follows by induction on #A.
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Suppose next that &, = 1. Then we can assume &, = 0, because Gy (0)2 = 0, and using the preceding
result we get

1
YO (1,0) = (s, 0/[a,b]) — Wﬂl(bav/]a, o))
= D A, 0/la, ;) = 7= (1, 0/1a, b;1) 3 (1, 0/105, B
1<j<n (b)

from which we immediately deduce the result. I

We can now expand Z and D in the monomials (8, v;j). Then we get

Zo = WD Y Y Y A )6 + DFE, v eyt O
1<j<k 6€A (k) vel' (k)
Dy = (V=D YT 3 Y A6, 35)(8 + DE(S,v55) (9)2
1<j<k 6€A(k) vel (k)
where
®(v/[a,b])®(v/A\ [a,b)]) if there are no short y-res. (c,d) with §(d) > 2
and if (6(a),v(a)) # (0,0)
A3(6,v;a) = § —®'(y/]a,b])®(7/A\ [a,b]) if there are no short y-res. (c,d) with d(d) > 2
and if (6(a),v(a)) = (0,0)
0 otherwise
and

A6, v;a) = {6\3(5,1)/A \ {b};a) ify(b) =0 and #A > 2

otherwise.

Consider now the the equations

{8X(a:): eF(z,X(z)) — C — DX (), X <X>=0
0Z(x) = (EF’(x X(z)) —D)Z(x) —eZ(x)F1(0), <Z>=1I.

(% % %)

Proposition 6. If F1(0)2 = 0, then the series (8) + (9) satisfies (¥*¥).

Proof. The second equation is fulfilled by the very definition of (9), so we only need to consider the
first one.
The recurrence relations are:

Y)AL(6,0) = Af(G,v/AN{D}) = A5(6,0) = D AG(S,v/A\ Ab;);05)AL(6,0/A(b;))

1<j<n

where b, ..., by, are all the indices in A\ {b} such that v(b;) = v(b).

These relations are certainly fulfilled if v(b) = 0, so we assume that y(b) # 0. If there is a short
~-resonance (¢, d) with §(d) > 2, then everything vanishes. So we can assume that there are no such short
~-resonances. Moreover, if, for example, (b,,b) is a short y-resonance, then the relations are also fulfilled.
Hence, we can assume that all (b;,b) are y-resonances.

Under these assumptions we must show that

Y0)B(7) = (v/AN{DY) = D By —7(b)/1s, L) B(v/A(b;)) (/AN [b5, b))

1<j<n

wher
- 500ty = {20 i) £ 50
VO = =D it () =)
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This is a trivial verification, of the same type as in the proof of lemma 16, which we leave to the reader.

Hence, when F}(0)2 = 0 it follows from proposition 5 and lemma 15 that the series (8)+(9) converge to
a solution of (***). In particular, the series (8) converge to a solution of

0X(z) =eF(z,X(x)) —C -DX(z), <X>=0

for some constant vector C' = C; and some constant matrix D = D.. C. and D, are analytic in € and vanish
at € = 0, and the first derivative of D, also vanishes at € = 0.

The solution X depends on the choice of mean value < X > which we can consider as free parameters.
But there are more parameters. In fact, the series (8) also solve

X (z) = e{F(z,X(z)) + eNX (z) — eF'(1,0)X (2)} — C — DX (z), <X >=0

for some constant vector C' = C. and some constant matrix D = D., and for all constant matrices N such
that N2 = 0. C. and D, are analytic in N and ¢ and vanish at € = 0, and now D = ¢(N — F(1,0)) modulo
g2. This means that (8) is independent of the mean value < %(., 0) >, which we are free to vary as we like.

Or, equivalently, we can consider F/(1, 0) are free parameters in the series (8), only subject to the condition

~

F(1,0)2 =0, which can be chosen independently of the mean value < %(., 0) >.
”Killing the constants”.

In the Hamiltonian case, we are now confronted with the problem of killing all constants C' and D.
As parameters we have, as in the case discussed in section II, the mean values < X >= (A1, A2), or rather
just Ag, since all the constants are independent of A;. But now we also have ﬁ’(l, 0). These parameters are
sufficient to make both C' and D vanish.

Consider
0X (x) =eJh ((x,\2) + X(z)) — C — DX(x), <X>=0
0Z(x) = (eJh'((z,A2) + X(z)) — D)Z(x) —eZ(x)N, < Z>=1.
where N = (8 ]\04>, M symmetric. By replacing D by D + e < Jh'"( ,X2) > —eN we can bring this

equation on the form (***), so it has a unique analytic solution X, Z, C, D, which depends analytically on
A2 and M. We shall now show that if det < ) ># 0, then Ay and M can be determined so that C' = 0 and

D =0.
Dl D2 Cl
o= (5 ) o= (&)

If we write
and if we observe that
DZE(O <Q>—M) C:E(<Q>A2)

0 0 0

modulo €2, then we can solve
D+ (D*)* =0, C'=0 (10)

uniquely for Ay = \a(e), M = M(e), since det < @) ># 0. A priori, this kills only a part of the constants,
but in fact all C' and D vanish for these values of Ay and M.

Lemma 17. C =0and D =0 for Ay = Aa(e), M = M(e).

Proof. In order to show this, we proceed as in lemma 1 and use the result of Poincaré which we have
formulated there.
Differentiating the equality given there once and letting y = 0, we get for

X(z) = ®(z,0) — << q>2(0,0) >>
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that
: X (z) = eJh ((z, \o+ < ®%(,0) >) + X(2)) —eJf'(0) —®'(2,0)Jf'(0), <X >=0

where f'(y) is the gradient of f considered as a function of x and y, i.e. f'(y ( 91 (y . Differentiating
r o\ »
once more and letting y = 0 we get for Z(z) = (I + ®'(z,0)) (0 W) JW=I+<?2 ( 0) >

0Z(x) = eJh" ((z, Ao+ < B*(,0) >) + X (2))Z(z) — eZ(x) T f"(0) (é Ig,) o ed(2,0)71(0),

<Z>=1I
Now 2—5(0) =< @ > A+ O(e), and, since < ) > is non-singular, we can define a unique formal series

Xz2(€) such that f/(0) = 0 for A = Az(¢). And for this choice of Ay we let M = M(e) = %(O)W_l.
With A2 and M so chosen, we get a formal solution X, C=0, Z, D=0 of the equation

{a{c(x) = eJh ((z, hot < 2(,0) >) + X (x)),_ . <X>=0
0Z(z) = eJh"((w, Aot < 82(,0) >) + X (2))Z(2) —eZ(x)N, <Z>=1I

This formal equation has a unique formal solution. But X, C, Z, D, for Ay = Az(¢) and M = M (e), is also a
formal solution to this equation, so we conclude that
X=X,0=C,Z=2,D=D.
Hence
C=0 and D=0

for Ay = Aa(e)+ < ®2(,0) > and M = M(e). )
This implies that the formal series As(g)+ < ®2( ,0) > and M (¢) formally solve the equations (10). By
the uniqueness of the solution of (10), it follows that these series converge and that

M(e) = M(e) Aa(e) = Aa(e)— < %(,0) >.

This proves that C' and D vanish for Ay and M chosen according to (10). I

We can now summarize our result in the following theorem, where we refer to the formulation of the
Hamiltonian problem in the Introduction.

Theorem.

Let F(z,9,00) = JH((z,02) +9) = 2520 Fj(z,X2)(y)?, and let F(j,w) be the w:th Fourier coefficient
of Fj if (j,w) # (1,0), and let £(1,0) = (0 M

0 0 ), M symmetric, be arbitrary parameters.
Then the series

Z‘f Z Z AL(6,0)F(8,v)eVHurtFvia)

k>1 S€A(k) vET (k)

where

(¢, d) with 6(d) > 2

> read(y) zea P(1, I)(@)(=1)#7 if there are no short -res.
Al (6,v) =
0 otherwise

there is a y-res. (z,d) € J
m otherwise

T@ ~ Lyeledhsupp(d/led) 50w L (0(2),v(2)) = (1,0) and
p(y,J)(z) =
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(A=A{L,..,k}, v =), converges to a solution of
0X (z) =eJh ((z,)2) + X(x)) —C — DX(z), <X >=0

for some constant vector C' and some constant matrix D and for all M and Xs. (C and D are uniquely
determined by equations (***).)
The convergence is uniform since

|AT(G,0) | < @R ] | o) P .
v(z)#0

Both X, C' and D are analytic functions of z, £, A2 and M, and

_(CYY (<@ > X
o=(G)=("%
_ (D' D*\ _ [0 <Q@>-M
p=(p p)=<(o **57)
modulo 2.

Moreover, if g%’;(x, 0) = Q(z) has a non-singular mean value, i.e. if det < @ ># 0, and if \y and M are
determined by
D*+(D*)* =0, C'=0

then both C' and D vanish, and X is a solution of

0X (z) = eJh'((z, X2) + X(z)), <X >=0.

Other examples.

Example 1. The problem of linearizing a vector field on the torus T can also be put on this form.
Let F(z,y) = G(z + y). Then the diffeomorphism z — z + X (z) conjugates the perturbed vector field
w+eG(x) — C with the linear vector field w if and only if X and C satisfy equation (*). The formal solution
(1) has an expansion (2) which is absolutely divergent. That, despite this, the formal solution is convergent
was first shown by Arnold using KAM-technique [13]. X .
Let’s now consider the formal solution of (***). Since Fj(0) = G’(0) = 0 this solution is convergent,
and we obtain for X’
I+ X'(z)) =eG'(z + X(x))(I + X'(z)) — DX'(z)
= (eG'(z + X(z)) — D)I + X'(z)) + D

and for W = Z-!
W (z) = —W (x)(eG'(z + X (z)) — D).

Hence,
OW (z)(I + X'(z))) = —W (z)D.
This implies that < W > D = 0, and, since W(z) = I + O(g), that D = 0.
Hence, the absolutely convergent series given by (8) solve this conjugation problem.
This case is much easier than the Hamiltonian case since ﬁ’l(O) = 0 and, therefore, all short resonances
are compensated for by the recurrence relations. As a consequence, one can assume that there are no short

resonances at all, and this simplifies the estimations of the coefficients a lot. Also, in this case the estimates
are much better:
| A1(6,0) | < MK T (@) [
v(z)#0

for all 6 € A(k) and v € T'(k).

32



Example 2. The simplest and most illuminating example of compensations of signs, however, is just
the linear matrix equation

0Z(x) = (eFi(z) — D)Z(x), <Z>=1
This equation has a formal solution which is convergent for ¢ sufficiently small, in contrast to the equation
0Z(x) = e (x)Z(x) — D, <Z>=1
which also has a formal solution, but which in general is divergent.
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Postscript 1996. The large class of compensations that ”explains” what KAM-theory proves — namely
that formal solutions for quasi-periodic motions converge — was found in the years 1985-88. The basic idea
was presented in reference [6] and the whole analysis, applied to Hamiltonian systems was given in Report
2 — 88 of the Department of Mathematics, University of Stockholm. This result was presented at several
conferences these years, part of it was published in the book Analysis etc (P. Rabinowitz and E. Zehnder
(eds.), Academic Press, 1990), and an application of these ideas to a conjecture by Gallavotti was published
in the proceedings of a conference on Nonlinear Dynamics in Bologna (G. Turchetti (ed.), World Scientific,
1988). Since then there have been many improvements, simplifications and applications of these ideas, in
particular by Gallavotti and collaborators, by Chiercha and Falcolini, and by Ecalle and Vallet.

The original report itself has, for different reasons, never been published. We do believe however that it
— with its somewhat semi-direct approach — still may have some interest, besides an obvious historical one.
The present article differs from the report only in minor respects: several misprints have been eliminated;
some smaller errors, in particular in the proof of lemma 1, have been corrected: a few short explanations
have been added.

We like to express our gratitude to Prof. G. Gallavotti for his interest and kind insistence in the
publication of this work.
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