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Abstract

W e presen t a mo di�ed v ersion of the classical Hilb ert's space �lling curv e and w e asso ciate to

this curv e a geo desic lamination on the disk together with a transv ersal measure. The lamination

helps us to understand ho w the p oin ts of the in terv al are mapp ed to the square. W e generalize

this construction to space �lling curv es from the in terv al to the regular n -gon.

AMS sub ject classi�cation (2000): 28A80, 26A27, 53C22.

1 In tro duction

The �rst space �lling curv e w as in tro duced b y P eano [6 ] in 1890. The dra wing of this curv e w as

sho wn in [7]. During the follo wing y ear Hilb ert [3] published another example of a space �lling curv e.

Later other curv es w ere in tro duced, among others b y Leb esgue [5 ], Sierpi �nski [12 ], Sc ho en b erg [11 ].

All these examples are based on the represen tation of the n um b ers on the in terv al in some in teger

base and an iterated function system on the plane. Hilb ert's curv e w as done using base 4 and

P eano's in base 9. The digits of the represen tation of the n um b ers are used to kno w the order in

whic h to apply the maps of the iterated function system. More recen tly , space �lling curv es ha v e

b een studied among others [8 , 9 , 10 ], and references within. In [10 ] is describ ed the history of the

space �lling curv es. In a di�eren t con text, in [1 ] another t yp e of space �lling curv e w as in tro duced.

This curv e has a ric h dynamical b eha viour. And it has b een studied later in [13 , 14 ]. In [13 ] the

author constructed a geo desic lamination on the disc asso ciated to the space �lling curv e de�ned

in [1 ]. This lamination helps us to understand the geometry and the dynamics in v olv ed.

�
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W e w ould lik e to asso ciate a geo desic lamination to a space �lling curv e suc h that p oin ts joined

b y geo desics are mapp ed to the same p oin t in the plane b y the space �lling curv e. In the classical

examples it is not p ossible to asso ciate a geo desic lamination to the space �lling curv e with these

prop erties as w e shall explain. Therefore w e mo di�ed Hilb ert's classical space �lling curv e. W e

asso ciate to this new curv e a geo desic lamination on the disk with the desired prop ert y . This

lamination comes with a transv erse measure, whic h helps us to understand the geometry of the

space �lling curv e. The symmetries of the lamination are the symmetries of the square, i.e. are

giv en b y the dihedral group D

4

. The results are summarized in Theorem 1.

Geo desic laminations on the disk ha v e b een studied previously in di�eren t con texts. In [4 ] and

references within, geo desic laminations are used in the study of quadratic Julia sets. In [13 , 15 ]

geo desic laminations turn up as geometric mo dels of some t yp e of sym b olic dynamics.

In section 4 the iterated function system on the square is c hanged, so that the squares are visited

in a di�eren t order from the clo c k-wise or an ti clo c k-wise in Hilb ert's mo di�ed curv e. W e obtain a

di�eren t curv e, from whic h w e get a di�eren t lamination, sharing the same prop erties as the previous

one. Ho w ev er it has few er symmetries. W e also explain that essen tially these t w o laminations are

the only laminations asso ciated to this t yp e of curv e on the square.

The constructions sho wn in this pap er can b e generalized to higher dimensions.

In the last section w e de�ne, in a similar w a y , space �lling curv es from the in terv al to the regular

n -gon. In this case w e can also construct geo desic laminations with similar prop erties. Ho w ev er

there are some di�erences b et w een the case n ev en and o dd.

2 Revised v ersion of the Hilb ert's curv e

W e shall describ e the construction of Hilb ert's classical space �lling curv e, via iterated function

systems (IFS), as is done in [10 ].

De�nition 2.1 ([2 ], page 80) A n iterated function system or IFS c onsists of a c omplete metric

sp ac e X to gether with a �nite set of c ontr action mappings.

The con traction mappings induce a map on the space of all compact subsets of X . W e consider this

space pro vided with the Hausdor� metric, here the induced map is a con traction. Its �xed p oin t is

called the attr actor of the IFS.

Let f H

0

; H

1

; H

2

; H

3

g b e an IFS on R = f x + iy 2 C j 0 � x; y � 1 g , where

H

0

( z ) =

z i

2

; H

1

( z ) =

z

2

+

i

2

; H

2

( z ) =

z

2

+

1+ i

2

; H

3

( z ) = �

z i

2

+

i

2

+ 1 :

Let f h

0

; h

1

; h

2

; h

3

g b e an IFS on I = [0 ; 1], where h

k

( t ) = t= 4 + k = 4, for 0 � k � 3. The attractor

of the former IFS is the square R and of the latter is the in terv al I . This IFS on the in terv al

de�nes the n umeration system base 4, i.e. t =

P

1

n =1

a

n

= 4

n

, with 0 � a

n

� 3 if and only if

t = lim

n !1

h

a

1

� � � h

a

n

( I ).

The space �lling curv e �

H

: I ! R is de�ned as

�

H

( t ) = lim

n !1

H

a

1

H

a

2

� � � H

a

n

( R ) ;

where t =

P

1

n =1

a

n

= 4

n

. This map is con tin uous and surjectiv e.

W e will consider a mo di�ed v ersion of this curv e: Let f H

0

; H

1

; H

2

; H

3

g b e an IFS on R and

f h

0

; h

1

; h

2

; h

3

g b e an IFS on I = [0 ; 1], where

H

0

( z ) = �

z

2

+

1+ i

2

; H

1
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2

+

1+ i

2
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� z i
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+
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Figure 1: The classical Hilb ert's curv e.
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Figure 2: The mo di�ed Hilb ert's curv e.

And

h

0

( t ) =

8

<

:

t

4

+

7

32

if 0 � t <

1

8

t

4

�

1

32

if

1

8

� t < 1 ;

h

1

( t ) =

8

<

:

t

4

+

15

32

if 0 � t <

1

8

t

4

+

7

32

if

1

8

� t < 1 ;

h

2

( t ) =

8

<

:

t

4

+

23

32

if 0 � t <

1

8

t

4

+

15

32

if

1

8

� t < 1 ;

h

3

( t ) =

8

<

:

t

4

+

31

32

if 0 � t <

1

8

t

4

+

23

32

if

1

8

� t < 1 :

Note that h

k

( t ) = h

0

( t ) + k = 4 for k = 1 ; 2 ; 3. W e will denote b y I

k

= [ k = 4 ; ( k + 1) = 4) = h

k

( I ), for

k = 0 ; 1 ; 2 ; 3, these are the in terv als de�ned b y the IFS.

And the space �lling curv e �

M

: I ! R is de�ned in a similar w a y , as the classical curv e:

�

M

( t ) = lim

n !1

H

a

1

H

a

2

� � � H

a

n

( R ), where t = lim

n !1

h

a

1

h

a

2

� � � h

a

n

( I ). Since eac h h

k

and H

k

is

a con traction, t and �

M

( t ) are w ell de�ned. In a similar w a y to the classical case w e can pro v e that

�

M

is con tin uous and surjectiv e. F urthermore, it can b e pro v ed that it is H� older con tin uous, with

exp onen t 1 = 2.

One of the main di�erences in these t w o curv es is that in the classical v ersion �

H

(0) = 0 and

�

H

(1) = 1. And in the revised v ersion the images of the p oin ts 0, 1 = 4, 1 = 2, 3 = 4, 1, i.e. the extremities

of the in terv als that de�ned the IFS on the in terv al, are the same p oin t: (1 + i ) = 2, the geometrical

cen tre of the square R .

3 Geo desic lamination on the disk

Let D

2

b e the closed unit disk in the plane, and S

1

its b oundary . W e iden tify S

1

with I = [0 ; 1).

Since the image of 0 and 1 are the same under the maps of the IFS on the in terv al. W e think of the

IFS: f h

0

; h

1

; h

2

; h

3

g as acting on the b oundary of the disk.
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Figure 3: The geo desic lamination �.

The construction of the geo desic lamination � is as follo ws: W e consider the extremities of the

in terv als de�ned b y the IFS, i.e. t

k

= k = 4 with k = 0 ; 1 ; 2 ; 3. And w e join pairwise consecutiv e

extremities, i.e. w e join t

k

with t

j

, where j = k + 1 (mo d 4) for 0 � k � 3, b y arcs of circles that

meet the b oundary of S

1

p erp en ticularly . If w e think in the h yp erb olic disk, these arcs are geo desics

there. Therefore w e will call these arcs geo desics.

Let a

1

: : : a

n

b e a w ord in the alphab et f 0 ; 1 ; 2 ; 3 g . W e join b y a geo desic the p oin t h

a

1

� � � h

a

n

( t

k

)

with h

a

1

� � � h

a

n

( t

j

), where j = k + 1 (mo d 4) for k = 0 ; 1 ; 2 ; 3. W e do this for all p ossible w ords

in this alphab et and later w e tak e the closure in the Hausdor� top ology of D

2

. The elemen ts of D

2

are either geo desics or p oin ts in S

1

. In the latter case the p oin ts are called de gener ate ge o desics .

De�nition 3.1 A geo desic lamination on D

2

is a non-empty close d set of ge o desics of the disk and

that any two of these ge o desics do not interse ct exc ept at their end p oints.

Prop osition 3.1 � is a ge o desic lamination on D

2

.

Pro of: Let a

1

� � � a

m

and b

1

� � � b

l

b e t w o w ords in the alphab et f 0 ; 1 ; 2 ; 3 g . Supp ose that there is an

in tersection b et w een the geo desics that join the images of the t

k

's under h

a

1

� � � h

a

m

and h

b

1

� � � h

b

l

.

Therefore the in teriors of h

a

1

� � � h

a

m

h

a

m +1

( I ) and h

b

1

� � � h

b

l

h

b

l +1

( I ) ha v e non-empt y in tersection, for

some 0 � a

m +1

; b

l +1

� 3. This is not p ossible, unless one of the w ords: a

1

: : : a

m

a

m +1

, b

1

: : : b

l

b

l +1

is a sub-w ord of the other, since the in teriors of h

k

( I ) and h

j

( I ) are disjoin t for k 6= j . �

Prop osition 3.2 The lamination � is invariant under the gr oup of symmetries of the squar e D

4

.

Pro of: Let R

1 = 4

: I ! I b e the rotation b y 1 = 4. Since h

k

( t ) = R

k

1 = 4

( h

0

( t )), for 0 � k � 3. W e ha v e

that for an y t

j

and an y w ord a

1

� � � a

m

: R

1 = 4

( h

a

1

� � � h

a

m

( t

j

)) = h

b

1

h

a

2

� � � h

a

m

( t

j

) where b

1

= a

1

+ 1

(mo d 4). So b y the construction of the lamination, it follo ws that � is in v arian t under the rotation

R

1 = 4

.

The symmetry related to the in v ariance under the reection along the horizon tal edge is equiv alen t

to the fact if t; t

0

are joined then 1 � t , 1 � t

0

are also joined. It follo ws from h

k

( t

j

) = 1 � h

3 � k

( t

r ( j )

)

for 0 � j; k � 3, where r (0) = 1, r (1) = 0, r (2) = 3 and r (3) = 2. The in v ariance under the reection

in the v ertical axis comes from the fact: h

k

( t

j

) = (2 + k ) = 4 � h

k +1

( t

r ( j )

) for k = 0 ; 2 and 0 � j � 3.

The in v ariance under the reection in the diagonals is obtained in a similar w a y . �
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Figure 4: The construction of C

Æ

.

Prop osition 3.3 L et � b e an element of � with end p oints b and b

0

. Then �

M

( b ) = �

M

( b

0

) .

Pro of: By the construction of � there are geo desics �

k

suc h that they join the images under the

IFS of the t

k

's. And they con v erge to � .

If the end p oin ts of �

k

are b

k

and b

0

k

then �

M

( b

k

) = �

M

( b

0

k

). So b y the con tin uit y of the space

�lling curv e: �

M

( b ) = �

M

( b

0

). �

Ho w ev er the con v erse of Prop osition 3.3 is not true. If w e tak e a p oin t in the b oundary b et w een

H

k

( R ) and H

k +1

( R ), di�eren t from the cen tre of R : (1 + i ) = 2, then its preimages lie in I

k

and I

k +1

so they cannot b e joined.

These prop erties allo w us to de�ne a map � : � ! R as follo ws: Let � b e a geo desic of � with

end p oin ts b , b

0

. So �( � ) := �

M

( b ) : By Prop osition 3.3 this map is w ell de�ned. The map � is

con tin uous and surjectiv e since �

M

has these prop erties.

Remark: In the classical case w e do not end up with a lamination b ecause the four p oin ts that

are mapp ed to the cen tral p oin t of the squares are not b oundary p oin ts of the in terv als that de�ne

the IFS, i.e. I

j

with j = 0 ; 1 ; 2 ; 3. So if these p oin ts are joined and w e iterate the pro cess, w e end

up with crossings in the geo desics. This situation is also found in the other classical space �lling

curv es: P eano's, Leb esgue's, etc.

3.1 The transv erse measure to the lamination

Let Æ b e an y arc in D

2

joining t w o distinct geo desics of the lamination. It can b e slid along the

geo desics to w ards the b oundary of the disk according the t w o p ossible directions in whic h the

geo desics can b e orien ted. This pro cedure giv es rise to a Can tor set in the b oundary of the disk,

sa y C

Æ

. More precisely: Let �

1

and �

2

b e the geo desics in � that are joined b y an arc Æ . This

pro cedure de�nes t w o disjoin t in terv als on the circle J = [ b

1

; b

2

] and J

0

= [ b

0

2

; b

0

1

] where b

k

; b

0

k

are

the end p oin ts of �

k

for k = 1 ; 2. Let � b e a geo desic in the lamination suc h that its end p oin ts lie

on the same in terv al J or J

0

, w e remo v e from J [ J

0

the op en in terv al whose extremities are the end

p oin ts of � . See �gure 4. The set C

Æ

is obtained in this w a y when all the geo desics in � with end

p oin ts in J or J

0

are considered.

Let Æ b e an y transv erse arc to �. W e de�ne � ( Æ ) = M

s

0

( C

Æ

) where M

s

0

is the s

0

-Hausdor�

measure and s

0

is the Hausdor� dimension of C

Æ

.

Prop osition 3.4 F or every tr ansverse curve Æ to � , the Hausdor� dimension of C

Æ

is s

0

= 1 = 2 .

Before pro ving this prop osition w e need to describ e the structure of the sets of the form h

a

1

� � � h

a

n

( I ),

and ho w h

a

1

� � � h

a

n

h

a

n +1

( I ) �ts in the previous set. W e call cylinders all the set of the form

h

a

1

� � � h

a

n

( I ) for a

1

: : : a

n

a w ord in the alphab et f 0 ; 1 ; 2 ; 3 g . In order to understand the structure

of the cylinders, w e giv e the follo wing mo del for them:

Let

0 � x

1

< y

1

< y

2

< x

2

� x

3

< y

3

< y

4

< x

4

� 1

5
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Figure 5: Di�eren t t yp e of cylinders.

with the relations

j y

2

� y

1

j

j x

2

� x

1

j + j x

4

� x

3

j

=

1

4

;

j x

2

� y

2

j + j y

3

� x

3

j

j x

2

� x

1

j + j x

4

� x

3

j

=

1

4

;

j y

4

� y

3

j

j x

2

� x

1

j + j x

4

� x

3

j

=

1

4

;

j y

1

� x

1

j + j y

4

� x

4

j

j x

2

� x

1

j + j x

4

� x

3

j

=

1

4

:

The extremities of the cylinder asso ciated to an y w ord, sa y a

1

: : : a

n

, will b e the p oin ts x

j

's.

And the y

j

's will b e the extremities of its sub cylinders, i.e. the cylinders asso ciated to the w ords

a

1

: : : a

n

a

n +1

. Let us consider [ x

1

; x

2

) [ [ x

3

; x

4

), w e will see all the cylinders are of this form. See

�gure 5. There are t w o p ossibilities:

� If x

2

= x

3

w e sa y that the cylinder is of t yp e 1.

� If x

2

< x

3

, w e sa y that the cylinder is of t yp e 2.

Starting with the in terv als I

1

, I

2

, I

3

, I

4

and using induction one can pro v e the follo wing fact

ab out the cylinders:

If the cylinder corresp onding to the w ord a

1

: : : a

n

is of t yp e 1 then the cylinder corresp onding

to a

1

: : : a

n

j is of t yp e 1 if j = 1 ; 2 ; 3 and is of t yp e 2 if j = 0. And if the cylinder corresp onding to

the w ord a

1

: : : a

n

is of t yp e 2 then the cylinder corresp onding to a

1

: : : a

n

j is of t yp e 1 if j = 1 ; 3

and is of t yp e 2 if j = 0 ; 2.

Prop osition 3.5 The lamination � is obtaine d by joining by ge o desics the neighb ouring extr emities

of the cylinders, for al l the cylinders and then taking the closur e, in the Hausdor� top olo gy, of the

union of al l these ge o desics.

Pro of: By joining neigh b ouring extremities of [ x

1

; x

2

) [ [ x

3

; x

4

) w e mean joining x

2

with x

3

and x

1

with x

4

.

Let h

a

1

� � � h

a

n

( I ) b e a cylinder. Its extremities are of the form: either h

a

1

� � � h

a

n � 1

( t

k

) for some

0 � k � 3, or h

a

1

� � � h

a

l

(

~

t ), for some 1 � l � n , where

~

t = 1 = 8, the discon tin uit y p oin t of the maps

h

k

: I ! I ; note h

k

(

~

t ) = t

k

. Since the neigh b ouring extremities corresp ond to images of consecutiv e

t

k

's. The neigh b ouring extremities of a cylinder are joined b y geo desics, according to the de�nition

of the lamination �.

On the other hand. Giv en h

b

1

� � � h

b

n

( t

k

) and h

b

1

� � � h

b

n

( t

j

), with j = k + 1 (mo d 4). These

p oin ts are neigh b ouring extremities of the cylinder h

b

1

� � � h

b

n

h

k

( I ). �

Pro of of Prop osition 3.4: Without loss of generalit y w e can supp ose that the end p oin ts of Æ are

on geo desics that join extreme p oin ts of the same cylinder, and w e can supp ose that this cylinder

is of t yp e 2. So the cylinder is of the form [ x

1

; x

2

) [ [ x

3

; x

4

), whic h is sub divided in to the follo wing

cylinders: [ x

1

; y

1

) [ [ y

4

; x

4

), [ y

2

; x

2

) [ [ x

3

; y

3

), [ y

1

; y

2

) and [ y

3

; y

4

). In the �rst step of the construction

of the limit set C

Æ

the in terv als [ y

1

; y

2

), [ y

3

; y

4

) are remo v ed (see �gure 6).

So C

Æ

is obtained as in tersection of cylinders: C

Æ

= \

j � 0

K

j

, where in this case K

0

= [ x

1

; x

2

) [

[ x

3

; x

4

), K

1

= K

1

1

[ K

2

1

, K

1

1

= [ x

1

; y 1) [ [ y

4

; x

4

) and K

2

1

= [ y

2

; x

2

) [ [ x

3

; y

3

). Note that K

1

1

and K

2

1

6



x

1

y

1

y

2

x

2

x

3

y

3

y

4

x

4

Æ

Figure 6: The construction of C

Æ

.

�

M

( K

1

1

)

�

M

( K

2

1

)

Figure 7: The image of a cylinder under �

M

and its sub-division.

are cylinders of t yp e 2. W e con tin ue the sub division of these cylinders in the same w a y as for the

paren t cylinder. This pro cess can b e describ ed in term of an IFS, f '

1

; '

2

g suc h that K

j

1

= '

j

( K

0

)

for j = 1 ; 2. This IFS satis�es the op en set condition. Since eac h '

j

has a con traction factor of 1 = 4,

the resulting Can tor set has Hausdor� dimension 1 = 2. Moreo v er it can b e pro v ed using standard

tec hniques that 0 < M

1 = 2

( C

Æ

) < 1 . �

Prop osition 3.6 L et Æ b e any ar c tr ansversal to � whose end p oints ar e in the ge o desics �

1

and

�

2

. The image of the set C

Æ

under � is the line se gment that joins �( �

1

) and �( �

2

) .

Pro of: Without loss of generalit y w e can supp ose that the end p oin ts of the arc Æ are in the

geo desics that join extreme p oin ts of a cylinder of t yp e 2. Sa y [ x

1

; x

2

) [ [ x

3

; x

4

). See �gure 6. As w e

sho w ed in the pro of of Prop osition 3.4, C

Æ

= \

j � 0

K

j

where K

0

= [ x

1

; x

2

) [ [ x

3

; x

4

), K

1

= K

1

1

[ K

2

1

,

K

1

1

= [ x

1

; y 1) [ [ y

4

; x

4

] and K

2

1

= [ y

2

; x

2

) [ [ x

3

; y

3

). The cylinder K

0

is mapp ed b y �

M

in to a

sub-square of R . By the de�nition of the space �lling curv e �

M

( x

1

) and �

M

( x

2

) are opp osite corners

of this sub-square.

The cylinder [ x

1

; x

2

) [ [ x

3

; x

4

) is sub divided in to the sub-cylinders: [ x

1

; y

1

) [ [ y

4

; x

4

), [ y

2

; x

2

) [

[ x

3

; y

3

), [ y

1

; y

2

) and [ y

3

; y

4

). And the image under �

M

of eac h of these cylinders corresp onds to a

sub-square of �

M

( K

0

). All these squares ha v e the same area and they in tersect in only one p oin t, the

cen tre of �

M

( K

0

). So �

M

( K

1

) is the collection of t w o of these four sub-squares. Then �

M

( \

n

j =0

K

j

)

is a collection of small squares whose diagonal are in the line segmen t that joins �

M

( x

1

) and �

M

( x

2

).

So in the limit w e get �

M

( \

j � 0

K

j

) is the line segmen t that joins �

M

( x

1

) and �

M

( x

2

). �

Let F : � ! � b e a map on the lamination, de�ned as follo ws. Let � b e a geo desic on the

lamination with end p oin ts b and b

0

(if � is degenerate b = b

0

). So the image of � under F is the

geo desic that joins f ( b ) and f ( b

0

) where f is the expanding map on the in terv al de�ned b y the

in v erses of the maps in the IFS, i.e. f ( t ) = h

� 1

k

( t ) if t 2 I

k

. The con tin uit y of F follo ws from the

con tin uit y of f . On the other hand if � 2 � is suc h that it joins h

a

1

� � � h

a

n

( t

k

) and h

a

1

� � � h

a

n

( t

j

),

for n � 2 and j = k + 1 (mo d 4), then F ( � ) joins h

a

2

� � � h

a

n

( t

k

) with h

a

2

� � � h

a

n

( t

j

). If n = 1

then F ( � ) = 1 = 8, and it can b e easily c hec k ed that this p oin t is a degenerate geo desic. Therefore

F (�) � �.

The domain of F can b e extended to the set of equiv alence classes of transv erse curv es to the

lamination �. Giv en Æ and Æ

0

t w o transv erse curv es to �, w e sa y that Æ � Æ

0

if the end p oin ts of eac h

7



curv e lie in the same pair of distinct geo desics and C

Æ

= C

Æ

0

. Therefore � ( Æ ) = � ( Æ

0

). W e extend

the de�nition of the map F to the transv ersal curv es to � and their equiv alence classes. The curv e

F ( Æ ) is de�ned as a curv e transv ersal only to all F ( � ) where � are the geo desics transv ersal to Æ . It

is clear that this de�nition is extended to the equiv alence classes of transv ersal curv es.

Prop osition 3.7 The map F has the pr op erty F

�

� = 2 � .

Pro of: By de�nition F

�

( � ( Æ )) = � ( F

� 1

( Æ )) = M

s

0

( C

F

� 1

( Æ )

). On the other hand the Can tor set

C

Æ

is of the form \

j � 0

K

j

where K

j

is a �nite union of closed in terv als, as sho wn in the pro of of

Prop osition 3.4. So f

� 1

( C

Æ

) = \

j � 0

f

� 1

( K

j

) and C

F

� 1

( Æ )

= f

� 1

( C

Æ

). Since f is 4 to 1 and eac h of

the branc hes of f

� 1

, i.e. the maps h

k

's, is a con traction with a factor of 1 = 4, w e ha v e

M

s

0

( C

F

� 1

( Æ )

) = M

s

0

( f

� 1

( C

Æ

)) = M

s

0

(

3

[

k =0

h

k

( C

Æ

)) =

3

X

k =0

M

s

0

( h

k

( C

Æ

)) =

= 4

1 � s

0

M

s

0

( C

Æ

) = 2 M

s

0

( C

Æ

) = 2 � ( Æ ) :

Hence F

�

� = 2 � . �

W e can summarize the previous results in the follo wing Theorem:

Theorem 1 Ther e exists a ge o desic lamination � on the disk, asso ciate d to Hilb ert's mo di�e d sp ac e

�l ling curve �

M

. This lamination has the fol lowing pr op erties:

1. The end p oints of e ach element of � ar e mapp e d to the same p oint in the squar e by the sp ac e

�l ling curve �

M

.

2. � is invariant under the gr oup of symmetries of the squar e, the dihe dr al gr oup D

4

.

3. The lamination has a tr ansverse me asur e � and ther e is a c ontinuous map F : � ! � , so that

F

�

� = 2 � .

4. F or any tr ansverse ar c to � , ther e is a limit set on the b oundary of the disk, whose Hausdor�

dimension is 1 = 2 . A nd, the image of this limit set under �

M

is a str aight line b etwe en the p oints,

which ar e the images under �

M

of the end p oints of the ge o desics, joine d by the tr ansverse ar c.

4 Another v ersion of the Hilb ert's curv e and the corresp ond-

ing lamination

In this section, w e will sho w a v ariation of Hilb ert's mo di�ed space �lling curv e studied previously

in the pap er. In a similar w a y as b efore, w e construct a geo desic lamination asso ciated to this curv e,

whic h has the same prop erties as the previous one. Ho w ev er it has few er symmetries. It is not

in v arian t under the dihedral group D

4

. But it is in v arian t under rotation b y 1 = 4.

W e consider the IFS, f

^

h

0

;

^

h

1

;

^

h

2

;

^

h

3

g on the in terv al:

^

h

0

( t ) =

8

<

:

t

4

+

1

64

if 0 � t <

15

16

t

4

�

15

64

if

15

16

� t < 1 ;

and

^

h

k

( t ) =

^

h

0

( t ) + k = 4 for k = 1 ; 2, or 3. Let f

^

H

0

;

^

H

1

;

^

H

2

;

^

H

3

g b e the IFS on R , de�ned b y:

^

H

0

= H

3

,

^

H

1

= H

1

,

^

H

2

= H

2

and

^

H

3

= H

0

. Here H

k

is the map of the IFS on the square studied

previously . But w e mo di�ed the order in whic h the squares are visited.
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3

1 2

0

Figure 8: Other v ersion of the Hilb ert's mo di�ed curv e.

Figure 9: The geo desic lamination asso ciated to the other v ersion of Hilb ert's curv e.

The space �lling curv e

^

�

M

: I ! R is de�ned in the same w a y as b efore:

^

�

M

( t ) = lim

n !1

^

H

a

1

^

H

a

2

� � �

^

H

a

n

( R ) ;

where t = lim

n !1

^

h

a

1

^

h

a

2

� � �

^

h

a

n

( I ). This map is con tin uous surjectiv e and

^

�

M

( t

j

) = (1 + i ) = 2.

Up to re-lab eling of the indices of the maps of the IFS on the square, these t w o laminations

are the only t w o whic h supp ort space �lling curv es on R . This is mainly b ecause the space �lling

curv e should start and �nish at the cen tre of the square, and the curv e visits this p oin t four times in

total. The square is sub divided in to four equal sub-squares. The lamination studied in the previous

sections is obtained when the sub-squares are visited in clo c k-wise ( or an ti clo c k-wise) order, as

sho wn in �gure 2. W e obtain the second lamination when w e re-lab el the indices of the IFS on

the plane suc h that there is a sub-square whic h is follo w ed b y its diagonally opp osite subsquare, as

happ ens in the order sho wn in Figure 8.

In a similar w a y one can obtain a space �lling curv e on to the cub e in R

3

. Here the IFS consists

of 8 maps and the corresp onding laminations ha v e 8-sided h yp erb olic p olygons.

9



Figure 10: Geo desic laminations asso ciated to space �lling curv es on the Hexagon.

5 Space �lling curv es on the n -gon and geo desic laminations

In this section w e will generalize the previous constructions of space �lling curv e and its asso ciated

geo desic lamination to space �lling curv es that map the in terv al to a regular n -gon. W e omit the

pro ofs and computations since they are similar to those giv en in the previous sections. Let G b e the

regular n -gon inscrib ed in the unit disk and ha ving z = 1 as one of its v ertices. There are di�erences

b et w een the cases n ev en and o dd.

Let us supp ose that n is ev en. W e will consider the follo wing IFS on the regular n -gon:

f H

k

g

k =0 ;:::;n � 1

, where H

k

( z ) = e

i 2 k � =n

( z + 1) = 2. The attractor of this IFS is the n -gon, G . Unlik e

the IFS studied in the previous sections this IFS, if n 6= 4, do es not satisfy the op en set condition,

i.e. H

j

( G ) and H

k

( G ) in tersect in a set of p ositiv e Leb esgue measure, for some j 6= k . But it has the

imp ortan t prop ert y: the in tersection of all H

k

( G ) is the origin, the geometrical cen tre of the n -gon.

Let f h

k

g

k =0 ;::: ;n � 1

b e an IFS on the in terv al I , where

h

0

( t ) =

8

<

:

t

n

+

n � 1

2 n

2

if 0 � t <

n +1

2 n

t

n

�

n � 1

2 n

2

�

1

n

if

n +1

2 n

� t < 1 ;

and h

k

( t ) = h

0

( t ) + k =n for k = 1 ; : : : ; n � 1. In a similar w a y , as b efore, w e de�ne the space

�lling curv e as: �

G ( n )

( t ) = lim

m !1

H

a

1

H

a

2

� � � H

a

m

( G ), where t = lim

m !1

h

a

1

h

a

2

� � � h

a

m

( I ). This

map is w ell de�ned, con tin uous and surjectiv e. F urthermore the images of the p oin ts k =n , i.e. the

extremities of h

k

( I ), is the origin z = 0, the cen ter of the n -gon.

As in the previous sections, w e can asso ciate a geo desic lamination to this space �lling curv e.

This lamination is in v arian t under the dihedral group D

n

, i.e. it has the same symmetries as the

n -gon. W e can pro v e in a similar w a y as in the previous sections that this lamination has all the

prop erties exp ounded in Theorem 1. Although the IFS on the n -gon has o v erlaps, Prop osition 3.6 is

still v alid. This is due to the fact that w e eliminate the cylinders that cause o v erlaps on the n -gon,

when the limit set C

Æ

is constructed. So w e end up with sub-gons that do not ha v e o v erlaps on their

in teriors. W e summarize the prop erties of this lamination in Theorem 2.

If w e re-lab el the indices of the IFS on the plane so that H

k

( G ) are arranged an ti clo c k-wise or

clo c k-wise w e get the same lamination. Ho w ev er if w e arrange the sub-gons H

k

( G ) suc h that there

is at least one sub-gon whic h is follo w ed b y its diagonally opp osite, w e obtain a di�eren t lamination.

In this case w e ha v e to de�ne a new IFS on the in terv al. F or instance w e use the follo wing IFS on

the n -gon, whic h has the desired prop ert y: f

^

H

k

g

k =0 ;::: ;n � 1

, where

^

H

k

= H

r ( j )

and r is the re-lab el

function on the indices:

r ( j ) =

8

<

:

0 if j = 0

j + 1 �

n

2

if n= 2 � j � n � 1

n � j if 1 � j < n= 2 :

10



Figure 11: Geo desic lamination asso ciated to a space �lling curv e on the triangle.

W e consider the IFS, f

^

h

k

g

k =0 ;::: ;n � 1

on the in terv al, where

^

h

0

( t ) =

8

<

:

t

n

+

n � 2

n

2

+

1

2 n

2

if 0 � t <

n +1

2 n

t

n

�

3

2 n

2

if

n +1

2 n

� t < 1 ;

and

^

h

k

( t ) =

^

h

0

( t ) + k =n for k = 1 ; : : : ; n � 1. In a similar w a y w e obtain a space �lling curv e

^

�

G ( n )

and

a geo desic lamination

^

�( n ). This geo desic lamination has the same prop erties as the lamination

asso ciated to �

G ( n )

. Ho w ev er the symmetries are di�eren t. This lamination is not in v arian t under

the dihedral group D

n

. It is in v arian t under rotations b y 1 =n . In summary w e get the follo wing

Theorem:

Theorem 2 L et G ( n ) b e the r e gular n -gon, for n even. L et �

G ( n )

,

^

�

G ( n )

b e the sp ac e �l ling curves

fr om the interval to the n -gon, de�ne d ab ove. Then, ther e ar e ge o desic laminations �( n ) and

^

�( n ) on

the disk, asso ciate d to �

G ( n )

and

^

�

G ( n )

r esp e ctively. These laminations have the fol lowing pr op erties:

1. The end p oints of the elements of �( n ) (

^

� ( n ) ) ar e mapp e d to the same p oint in the n -gon by

the sp ac e �l ling curve �

G ( n )

(

^

�

G ( n )

).

2. �( n ) is invariant under the gr oup of symmetries of the n -gon, the dihe dr al gr oup D

n

. A nd

^

� ( n ) is invariant under the r otation by 1 =n .

3. F or any tr ansverse ar c to �( n ) , ther e is a limit set on the b oundary of the disk, whose Hausdor�

dimension is s

0

= log 2 = log n . A nd, the image of this limit set under �

G ( n )

is a str aight line

b etwe en the p oints, which ar e the images under �

G ( n )

of the end p oints of the ge o desics, joine d

by the tr ansverse ar c. Similarly for

^

�( n ) .

4. Each lamination has a tr ansverse me asur e � and ther e is a c ontinuous map F : �( n ) ! �( n )

(or F :

^

� ( n ) !

^

�( n ) ), so that F

�

� = n

1 � s

0

� .

If n is o dd, w e consider the follo wing IFS on the plane: f H

k

g

k =0 ;::: ;n � 1

, where H

k

( z ) =

e

i 2 k � =n

( Lz + 1 � L ) and L = 1 = (1 + cos( � =n )). The attractor of this IFS is the n -gon. Here some

11



images of G under the maps of the IFS, o v erlap in a set of p ositiv e Leb esgue measure. The in tersec-

tion of all H

k

( G ) is the origin, the cen tre of the n -gon G . The IFS on the in terv al is: f h

k

g

k =0 ;::: ;n � 1

,

where

h

0

( t ) =

8

<

:

t

n

+

1

n

2

+

1

n

3

if 0 � t <

n

2

� n � 1

n

2

t

n

+

1

n

2

+

1

n

3

�

1

n

if

n

2

� n � 1

n

2

� t < 1 ;

and h

k

( t ) = h

0

( t ) + k =n for n = 0 ; : : : ; n � 1. W e de�ne, as b efore, a space �lling curv e with the

same prop erties. And w e obtain a geo desic lamination on the disk, whose symmetries are giv en b y

rotation b y 1 =n . Summarizing w e get the follo wing Theorem:

Theorem 3 L et G ( n ) b e the r e gular n -gon, for n o dd. L et �

G ( n )

b e the sp ac e �l ling curve fr om

the interval to the n -gon, de�ne d ab ove. Then, ther e is a ge o desic laminations �( n ) on the disk,

asso ciate d to �

G ( n )

. This lamination has the fol lowing pr op erties:

1. The end p oints of e ach element of �( n ) ar e mapp e d to the same p oint in the n -gon by the sp ac e

�l ling curve �

G ( n )

.

2. �( n ) is invariant under the r otation by 1 =n .

3. F or any ar c tr ansverse to �( n ) , ther e is a limit set on the b oundary of the disk, whose Hausdor�

dimension is s

0

= log 2 = log n .

4. Each lamination has a tr ansverse me asur e � and ther e is a c ontinuous map F : �( n ) ! �( n ) ,

so that F

�

� = n

1 � s

0

� .
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