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R. DE LA LLA VE

Abstra ct. W e use the graph transform metho d to pro v e exis-

tence of in v arian t manifolds near �xed p oin ts of maps tangen t to

in v arian t subspaces of the linearization.

In con trast to the b est kno wn of suc h theorems, w e do not as-

sume that the corresp onding space for the linear map is a sp ectral

subspace. Indeed, w e allo w that the spaces in v arian t under the

linearization do not ha v e an in v arian t complemen t.

W e also do not need that the sp ectrum of the op erator restricted

to the spaces satis�es the usual dominance conditions.

W e pro v e some uniqueness theorems and sho w ho w this can b e

used to pro v e results for o ws.

More general theorems ha v e b een pro v ed in [CFdlL03a ] b y an-

other metho d.
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2 R. de la Lla v e

1. Intr oduction

If X is a Banac h space and F : X ! X F (0) = 0 is a lo cal di�eo-

morphism there are man y theorems in the literature establishing the

existence of manifolds in v arian t under F whic h are tangen t to in v arian t

spaces of the linearization of F at 0.

These classical theorems usually assume that there is a decomp osi-

tion

(1) X = E

1

� E

2

whic h is in v arian t under D F (0) (often the spaces E

1 ; 2

are sp ectral

subspaces for D F (0)). That is:

(2) D F (0) E

1

= E

1

; D F (0) E

2

= E

2

;

and suc h that they satisfy the domination condition:

(3) k D F (0) j

E

1

k � k D F

� 1

(0) j

E

2

k < 1 :

The conclusions of the classical in v arian t manifold theorems (See [Rue89]

for a comparison of di�eren t in v arian t manifold theorems) are that one

can �nd a manifold W in v arian t under F , tangen t to E

1

at the origin,

so that one can think of W as a non-linear analogue of E

1

.

The goal of this pap er is to w eak en somewhat the conditions (2)

and (3) in the stable and pseudo-stable manifold theorems. The main

result, Theorem 3.1 only needs as h yp othesis w eak er v ersions of (2)

and (3). The Theorem 3.1 con tains results for stable and pseudo-stable

manifolds.

More explicitly , w e will assume that the space E

1

is in v arian t under

the map, but w e will not assume that the decomp osition (1) is in v arian t

under D F (0). (in particular, w e will not assume that the decomp osi-

tion corresp onds to sp ectral subspaces). Also, w e will not assume that

domination (3) happ ens. F or most of the results on stable manifolds

presen ted here, it will suÆce to assume that

(4) k A

� 1

2

kk A

1

k

2

< 1 :

(where A

1 ; 2

are the restriction of A to the spaces E

1 ; 2

resp ectiv ely , see

(9) for a more precise de�nition).

In v arian t spaces for a linear without an in v arian t complemen t o ccur

naturally as the spaces asso ciated to the eigen v alues of a non trivial

Jordan blo c k. F or a Jordan blo c k , ev en if the space generated b y

the eigen v alue { or the generalized eigen v alues of smallest index { is

in v arian t, there is no in v arian t complemen tary space. See Example 3.7.

Some situations where in v arian t subspaces without in v arian t comple-

men ts app ear in a natural w a y are: sk ew pro duct systems, bifurcations
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of systems with nilp oten t part and { an application that has motiv ated

us signi�can tly { the o ws of resonan t systems.

As a motiv ation to w eak ening the assumption (3), w e note again

that the situation of a non-trivial Jordan blo c k happ ens in resonan t

systems. W e ma y w an t to asso ciate in v arian t manifolds to the spaces

generated b y the eigen v alues. W e also note that the con v ergence to the

origin in a linear con traction is dominated b y the eigen v alues closest to

the unit circle, not the eigen v alues closest to the origin (In the case of

a non-trivial Jordan blo c k, the con v ergence to the equilibrium is also

tangen t the space corresp onding to the eigen v alue).

Hence, in the study of asymptotic con v ergence of non-linear systems,

it is in teresting to giv e meaning to manifolds asso ciated to the eigen v al-

ues closest to the unit circle { the so called slow manifolds . In [dlL97 ]

and [CFdlL03c ] one can �nd a more comprehensiv e discussion of slo w

manifolds and their role in applications.

The goal of this pap er is to presen t pro ofs of results on existence of

in v arian t manifolds of the ab o v e results that are based in the graph

transform metho d. The results w e presen t will co v er the usual strong

stable manifold theorem and the pseudo-stable ones. The pro ofs pre-

sen ted here are based in rather w ell kno wn v arian ts of the graph trans-

form approac h.

W e will presen t the results in the generalit y of Banac h spaces, since

assuming �nite dimensional spaces do es not simplify the pro ofs. One

motiv ation for our w orking in Banac h spaces is that, in this w a y , the

results lift immediately to in v arian t foliation theorems using a w ell

kno wn device [HP70]. (As it turns out, in some of the results pro v ed

here, when doing the lifting in [HP70], one do es not obtain foliations

as w as observ ed in [JPdlL95].

The pap er [CFdlL03a ] con tains results on existence of in v arian t man-

ifolds asso ciated to v ery general in v arian t spaces, whic h, in particu-

lar are not required to ha v e a complemen t. The pap er [CFdlL03b ]

studies the dep endence on parameters of these manifolds. The pap er

[CFdlL03c ] is concerned with simple pro ofs, applications and examples.

The results presen ted here (except for the results on pseudo-stable

manifolds and the tec hnical use of fractional regularities) are less gen-

eral than those in [CFdlL03a ] and the metho d of [CFdlL03a ] has sev-

eral adv an tages { see the discussion in those pap ers {. Nev ertheless,

w e hop e that the presen t note could b e useful for p eople more famil-

iar with the graph transform metho d than with with parameterization

metho d of [CFdlL03a ].

One to ol that w e will use is \c onic al norms" or w eigh ted norms whic h

also pla ys a role in [CFdlL03a ]. As w e will see this is the k ey tec hnical
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to ol that allo ws to w eak en (3) . See Remark 4.5 for a discussion of

alternativ es and the reasons wh y one can impro v e (3) with them.

W e p ostp one the statemen t of the main results till Section 3 so that

w e can in tro duce some notation. The pro ofs of the statemen ts will

follo w in subsequen t sections.

2. Not a tion

W e consider the Banac h spaces C

k + �

, k 2 N , � 2 [0 ; Lip ] endo w ed

with the usual uniform norms as w ell as the spaces C

1

with its usual

F rec het top ology and C

!

endo w ed with a Banac h top ology based on

taking sups of a complex extension. When the size of the extension is

imp ortan t, w e will denote it as a subindex, for example in C

!

�

.

That is, w e denote, when k 2 N ,

k � k

C

k

( U ;X )

= max

i =0 ;::: ;k

(sup

x 2 U

j D

i

� j ) :

When r = k + � , k 2 N , � 2 (0 ; Lip ]

k � k

C

r

( U ;X )

= max

i =0 ;::: ;k

( k � k

C

k

( U ;X )

; H

�

( D

k

�))

where H

�

is the seminorm

(5) H

�

(�) = sup

x; ~x 2 U ;x 6= ~x

j �( x ) � �( y ) j � j x � y j

� �

:

W e note that, when � = 0, for functions normalized to �(0) = 0 w e

ha v e

k � k

C

0

� H

0

(�) � 2 k � k

C

0

W e adopt the con v en tion that Lip > � for an y � 2 [0 ; 1), nev erthe-

less, k + Lip < k + 1. In the arithmetic expressions suc h as (5),(7) , the

sym b ol Lip tak es the v alue 1.

Of course, the reader ma y c ho ose to ignore the b orderline cases where

Lip en ters. Indeed, w e note that the results and their pro ofs are signif-

ican tly easier for r � 2. Hence, in a �rst reading it could b e w orth to

concen trate in the case r > 2 ; r =2 N .

Giv en a regularit y index s as ab o v e, w e will denote

(6) ~s =

(

s ; s =2 N

s � 1 + Lip ; s 2 N

(In the notation ab o v e, w e note that when s = 1 ; ! , then ~s = 1 ; !

resp ectiv ely .

Tw o useful and elemen tary inequalities are (since they are so w ell

kno wn, w e omit a precise form ulation including assumptions on do-

mains and the existence of pro ducts)
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H

�

(	 � �) � H

�

(	) k � k

C

0

+ k 	 k

C

0

H

�

(�)

H

�

(	 Æ �) � H

�

(	)(Lip (�))

�

:

(7)

W e recall that a cuto� function is a function 	 suc h that it is iden ti-

cally equal to 1 in the ball of radius 1 and zero outside a ball of radius

2.

In �nite dimensional spaces, the existence of suc h a cut-o� function

is ob vious. Similarly , Hilb ert spaces { or Banac h spaces whose norms

whic h are smo oth functions out of the origin { do ha v e cut-o� functions.

Nev ertheless, there are in�nite dimensional Banac h spaces for whic h no

suc h smo oth cut-o� exists. F or example, the usual C

0

space of a closed

in terv al do es not ha v e smo oth cut-o� functions (see [DGZ93 ]).

3. St a tement of resul ts

The main result of this pap er is the follo wing Theorem 3.1. W e note

that Theorem 3.1 incorp orates results ab out stable and pseudostable

cases. The h yp othesis and conclusions on regularit y etc. are somewhat

di�eren t in b oth cases since the manifolds in the stable cases are {

roughly { as regular as the map, but in the pseudo-stable cases the

regularit y is also limited b y ratios of norms.

Theorem 3.1. L et X b e a Banach sp ac e. L et F : X ! X b e C

r

,

r 2 N + [0 ; Lip ] [ f1 ; ! g , r � 1 b e such that F (0) = 0 . Denote

D F (0) = A .

Assume that

A) Ther e exists a de c omp osition X = X

1

� X

2

into close d subsp ac es

such that the sp ac e X

1

is invariant under A. That is,

(8) A ( X

1

) � X

1

:

Note that we do not assume that X

2

is invariant under A .

Denote by �

1

, �

2

the pr oje ctions over X

1

, X

2

. Denote also

(9) A

1

= �

1

A �

1

; A

2

= �

2

A �

2

:

Assume furthermor e that we ar e in one of the fol lowing two c ases:

Stable case

B.1.1

k A

1

k < 1 :

B.1.2 L et s = min (2 ; r ) ,

Assume that we have the fol lowing we ak dominanc e c ondition

(10) k A

� 1

2

kk A

1

k

s

< 1 :
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In p articular, if r � 2 we just assume

(11) k A

� 1

2

k � k A

1

k

2

< 1 :

Pseudo-stable case

B.2.1

k A

� 1

2

k < 1 :

B.2.1 The sp ac e X

1

admits smo oth cut-o� functions.

B.2.2 F or some r e al numb er 1 � s , we have

(12) k A

� 1

2

kk A

1

k

s

< 1 :

Then, ther e exists U a neighb orho o d of 0 and a map � : U � X

1

! X

2

such that

i) � is Lipschitz in U and di�er entiable at the origin.

ii) �(0) = 0 , D �(0) = 0 .

iii) The gr aph of � is lo c al ly invariant under F . (In the stable c ase,

the gr aph of � is invariant.

iv.1) In the stable c ase we have:

� 2 C

~r

wher e ~r is de�ne d in (6) .

iv.2) In the pseudo-stable c ase we have:

� 2 C

~s

(wher e ~s is de�ne d in (6) ) for any s � r for which (12) holds.

Remark 3.2. Instead of conditions on the norms of the op erators in

(10) and (12), w e could ha v e used b ounds on the sp ectral radius b y

rede�ning the norms using adapted norms. By c ho osing an adapted

norm, w e can arrange at the same time that the norm of the op erator,

its diagonal blo c ks and the in v erses, are as close as desired to the

sp ectral radii of these op erators.

W e refer to the app endix of [CFdlL03a ] for a discussion of adapted

norms in upp er triangular op erators. Of course, in �nite dimensional

spaces, the construction of these adapted norms are elemen tary .

In man y w a ys, the form ulation in terms of sp ectral prop erties is

more in trinsic since the assumptions are indep enden t of the norm used.

Nev ertheless, in this pap er w e will just use the norm form ulation of the

h yp othesis.

Since w e will not use a sp ectral form ulation of the h yp othesis, the

statemen ts w ork just as w ell for real Banac h spaces and for complex

Banac h spaces. �
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Remark 3.3. The metho d of pro of will also pro vide with some unique-

ness statemen ts. W e will describ e them in Remark 4.11 and Remark

4.18. W e an ticipate, ho w ev er that the conditions that giv e uniqueness

are v ery di�eren t in the stable case and in the pseudo-stable case. In

the stable case, w e obtain uniqueness under the assumption of regular-

it y of the in v arian t manifold in a neigh b orho o d of the origin. In the

pseudo-stable case, w e obtain uniqueness b y imp osing conditions on

the b eha vior at in�nit y .

This leads to some apparen tly parado xical situations. F or example,

there are some cases where one space in v arian t for D F (0) satis�es the

h yp othesis of the stable part of Theorem 3.1 for the map F and the

h yp othesis of the pseudo-stable part for the map F

� 1

. Nev ertheless,

it could happ en { indeed it happ ens generically { that the manifolds

obtained applying the t w o results are di�eren t.

F urthermore, w e note that for the pseudostable results in Theorem

3.1, w e only obtain the uniqueness results when w e p erform some pre-

liminary preparations { describ ed in Section 4.1 for the map whic h

include arbitrary c hoices. Ev en if w e obtain a unique manifold for eac h

c hoice of the preparation, it could happ en { see Example 5.4 { that the

manifold pro duced dep ends on the preparation. Hence, the in v arian t

manifolds claimed in the pseudo-stable case of Theorem 3.1 are v ery

far from unique.

�

Remark 3.4. W e will obtain some results for o ws just b y applying

the results for maps to the time t map of the o w. Giv en the unique-

ness results alluded to ab o v e, it is not hard to sho w that one obtains

manifolds that are indeed in v arian t for the o w. W e ha v e dev elop ed

these rather standard argumen ts in Section 6.1. Note also that it is

quite p ossible to write a direct pro of of the results for o ws using an

strategy v ery similar to that used here. W e will indicate ho w this is

p ossible in Section 6.2. �

Remark 3.5. Note that in the pseudo-stable case, w e do not mak e an y

assumptions on what is k A

1

k other than (12) . This allo ws to consider

maps where

(13) k A

1

k � 1 :

Of course, due to (10) , w e need that the p ossible expansion of A

1

is dominated b y the con traction of A

� 1

2

(notice that in (12) w e are

requiring that s � 1).
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Ev en if it is not strictly logically necessary , in the study of pseudo-

stable manifolds one can assume without loss of generalit y (13) since

the case where (13) fails can b e study more eÆcien tly b y the metho ds

discussed in the stable case.

Pseudo-stable manifolds ha v e b een established b y the graph trans-

form in [HPS77] and b y other metho ds in [Irw80], [dlL W95 ]. Indeed

the treatmen t in this pap er is quite similar to that of [HPS77 ], the

only no v elt y is the remo v al of the assumption of in v ariance of the com-

plemen t, but the pro of w e presen t here in the pseudo-stable case is

essen tially the same as in [HPS77]. �

Remark 3.6. The use of ~r and ~s in the conclusions do es not b elong.

This is quite common in in v arian t manifold theory . Nev ertheless, to

impro v e the regularit y conclusions on the manifold from r � 1 + Lip

to r seems to require a separate argumen t. Suc h argumen ts are v ery

standard in the literature. In particular, one often uses the tangen t

functor tric k.

One p ossibilit y for suc h an argumen t is to deriv e a functional equa-

tion satis�ed b y the �rst deriv ativ e { it is a linear equation on the

deriv ativ e. Then sho w that the solutions of this equation are C

r � 1

.

W e refer to [CFdlL03a ] for argumen ts in a similar situation. Other

argumen ts whic h also giv e sharp regularit y o ccur in [ElB01 ]. W e will

not pursue this impro v emen t here. �

A simple example where Theorem 3.1 applies and the classical the-

orems do not { of course the results in [CFdlL03a ] do apply { is the

follo wing.

Example 3.7. Consider X = R

5

and a C

2

map F , le aving the origin

�xe d and such that the line arization at the origin is:

A =

0

B

B

B

B

@

1 = 2 1

1 = 2 1

1 = 2

2 = 5

1 = 3

1

C

C

C

C

A

:

Note that 1 = 2 > 2 = 5 > 1 = 3 > (1 = 2)

2

.
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Ther efor e, The or em 3.1 applies to either of the fol lowing splittings

(as wel l as others b ase d on the same ide as)

X

a

1

= f ( x; 0 ; 0 ; 0 ; 0) j x 2 R g X

a

2

= f (0 ; y ; z ; t; u ) j y ; z ; t; u 2 R g

X

b

1

= f ( x; y ; 0 ; 0 ; 0) j x; y 2 R g X

b

2

= f (0 ; 0 ; z ; t; u ) j z ; t; u 2 R g

X

c

1

= f ( x; 0 ; 0 ; t; 0) j x; t 2 R g X

c

2

= f (0 ; y ; z ; 0 ; u ) j y ; u 2 R g

X

d

1

= f ( x; 0 ; 0 ; 0 ; u ) j x; u 2 R g X

d

2

= f (0 ; y ; z ; t; 0) j y ; z ; t 2 R g :

It suÆc es to take a sp ac e invariant under the blo ck of 1 = 2 and adjoin

it or not the eigensp ac e c orr esp onding to 1 = 3 or the eigensp ac e c orr e-

sp onding to 2 = 5 . Of c ourse, mor e p ossibilities app e ar if the eigenvalues

2 = 5 , 1 = 3 would have had a non-trivial Jor dan blo ck.

Systems suc h as those considered in Example 3.7 app ear naturally

as the time one maps of systems with resonances. The time one map

of a resonan t system will often ha v e a non trivial Jordan blo c k. Un-

derstanding w ell the geometric prop erties at resonances seems to b e

an step to w ard pro viding explanations of man y empirically kno wn, but

not y et rigorously analyzed phenomena.

Upp er triangular couplings are called in the literature master-slave

systems. When the master and the sla v e are iden tical systems { whic h

often happ ens in electronics { the linearization has Jordan blo c ks.

Remark 3.8. W e note that the results of [dlL97 ], [ElB01 ], [CFdlL03a ]

apply also to situations in whic h rather than a gap condition w e ha v e

non-resonance conditions. In particular, w e could ha v e applied the re-

sults of those pap ers to Example 3.7 with 1 = 3 replaced b y 1 = 7. Nev er-

theless, the results of this pap er do not go through with suc h a c hange.

�

Remark 3.9. Note that the equations (10) and (12) ha v e the same

form.

Roughly sp eaking the regularit y obtained for the manifold is the

minim um of the regularit y of the map and the set of n um b ers s that

satisfy the condition in (10) or (12).

In the stable case, w e ha v e that the larger that w e tak e s , the eas-

ier is to satisfy (10) . Hence the limitations for the regularit y of the

conclusions come only for the regularit y of the map.

In the pseudo-stable case, (12) is false for large enough s . Hence,

the limitation for regularit y giv en b y (12) is a gen uine limitation whic h

ma y b e stronger than the limitation due to the regularit y of the map.

Another consideration is that, in order that the pro of go es through,

w e need to assume certain limitations on s . In the stable case, the
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pro of w e presen t go es through with s = 2. This is w eak er than the

usual domination condition s = 1. The reason wh y w e can tak e s = 2

is related to the fact that the nonlinear part of the map v anishes to

order s . If w e had D

i

N (0) = 0 for i � k , it w ould suÆce to tak e s � k .

This observ ation is further exploited in [dlL97 ] whic h, under extra non-

resonance conditions sho ws that one can mak e transformations whic h

mak e N to b e in a normal form so that it v anished to higher order. W e

will not discuss these impro v emen ts in detail.

In the pseudo-stable case, the order of v anishing of N do es not help

and w e just need to use the classical condition s � 1. �

4. Pr oof of Theorem 3.1

In this section w e will presen t the pro of of Theorem 3.1. W e will

presen t �rst the pro of for the stable case and then, the pro of for the

pseudo-stable case. Both pro ofs are based in the same functional equa-

tion and ha v e some common preparatory w ork, nev ertheless, the �nal

analysis will b e rather di�eren t.

4.1. Preliminaries. In this section, w e carry out some preliminary

preparations of the problem that can b e p erformed without loss of

generalit y . They simplify subsequen t analysis.

W e write

D F (0) = A

F ( x ) = Ax + N ( x ) :

Clearly , N (0) = 0, D N (0) = 0.

With resp ect to the decomp osition X = X

1

� X

2

, w e can write

(14) A =

�

A

1

B

0 A

2

�

:

W e will assume without loss of generalit y that

k x k

X

= max

�

k �

1

x k

X

1

; k �

2

x k

X

2

�

F urthermore, b y c hanging k�k

X

2

to k�k

�

X

2

= � k�k

X

2

with � suÆcien tly

large, w e can assume that

(15) k B k

X

2

! X

1

� "

where " is arbitrarily small. Later in the pro of w e will imp ose a �nite

n um b er of conditions that " has to satisfy .

As a consequence of (15) w e ha v e:

k A k � max

�

k A

1

k ; k A

2

k

�

+ "
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As standard in in v arian t manifold theory , w e observ e that if w e in-

tro duce a scaling F

�

( x ) = �F ( �

� 1

x ), w e ha v e that D F

�

(0) = D F (0),

hence none of the previous prop erties of the linear map are altered. A t

the same time can arrange b y taking � big enough that

(16) k N k

C

r

( B

1

)

� " :

Hence, w e will assume, without loss of generalit y that w e ha v e (15)

and (16).

4.1.1. Pr ep ar ations for the pseudo-stable c ase. In the pseudo-stable

case, w e need a further reduction that allo ws us to assume that N

is C

r

small in X

1

� B

1

( X

2

) where B

1

( X

2

) is the unit ball cen tered at

the origin in X

2

. Giv en a cuto� function 	 on X

1

, it suÆces to consider

the mapping

~

F ( x ) = Ax + 	(�

1

x ) N ( x )

Since w e ha v e arranged b y scalings that N is C

r

small in the ball of

radius 2, the Leibniz form ula for the deriv ativ es of pro ducts and the

form ula for the pro ducts of H� older functions sho w that

~

F is small in

the ball of radius 2.

Note that the map

~

F agrees with the map F in a neigh b orho o d of

the origin. Hence a manifold whic h is in v arian t for

~

F , will b e lo cally

in v arian t for F .

As w e will see later, the uniqueness results established for the pseudo-

stable case, will b e uniqueness results for the manifolds in v arian t under

~

F and whic h satisfy some conditions on the b eha vior at 1 . Since the

construction of

~

F out of F in v olv es the c hoice of the cuto� function

	, it is quite p ossible that di�eren t c hoices of 	 will lead to di�eren t

in v arian t manifolds for di�eren t

~

F and, hence, di�eren t lo cally in v arian t

manifolds for F .

4.2. A functional equation for the in v ariance. W e follo w a rather

standard v ariation of the graph transform metho d.

If x = ( y ; �( y )) is a p oin t in the graph of � w e ha v e

F ( x ) =

�

A

1

y + B �( y ) + N

1

( y ; �( y )) ; A

2

�( y ) + N

2

( y ; �( y ))

�

where N

1

, N

2

are shorthands for �

1

N , �

2

N resp ectiv ely .

The condition that F ( x ) is also in the graph of � reads { ignoring for

the momen t questions of domains on where the comp osition is de�ned{

(17) �

�

A

1

y + B �( y ) + N

1

( y ; �( y ))

�

= A

2

�( y ) + N

2

( y ; �( y )) :

The equation (17) is, furthermore formally equiv alen t { again ignor-

ing questions of domains of de�nitions of the functions { to

(18) �( y ) = A

� 1

2

�

�( A

1

y + B �( y ) + N

1

( y ; �( y )) ) � N

2

( y ; �( y ))

�

:
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Remark 4.1. The issue of equiv alence b et w een (17) and (18) are cer-

tainly not trivial. As w e will see when w e discuss uniqueness, di�eren t

equations whic h are formally equiv alen t, ma y ha v e di�eren t solutions.

As argued in [dlL W95], [JPdlL95 ] this is one of the reasons wh y di�eren t

notions of slo w in v arian t manifolds lead to di�eren t ob jects. See also

Example 5.4 where w e exemplify that the same formal equation ma y

ha v e v ery di�eren t solutions dep ending on the precise requiremen ts on

domains. �

W e will study (18) as a �xed p oin t problem.

W e denote b y T the op erator whic h to a function � asso ciates the

R.H.S. of (18) . That is

(19) T [�]( y ) = A

� 1

2

�

�( A

1

y + B �( y ) + N

1

( y ; �( y ))) � N

2

( y ; �( y ))

�

This op erator is not exactly the op erator asso ciated to the graph

transform, but it is closely related to it { the �xed p oin ts w e will

pro duce for T will b e also �xed p oin ts of the graph transform op erator

{ and sligh tly simpler. This is the op erator that is considered in man y

classical pro ofs, e.g. that of [LI83].

The pro of w e presen t consists in sho wing that the op erator T is w ell

de�ned on a space of functions, that it has a �xed p oin t and that the

�xed p oin t is suc h that it allo ws us to rev erse the formal deriv ation,

(that is, w e will sho w that the solution of (18) w e pro duce is also a

solution of (17) since w e will sho w that the domains and range matc h

so that w e can rev erse the deriv ation of (17) ).

The pro ofs of these results will b e di�eren t in the stable case and

in the pseudo-stable case. Both of them follo w the classical pro ofs of

in v arian t manifold theorems follo wing the metho d of the graph trans-

form. W e iden tify some space of functions whic h is mapp ed in to itself

b y T and on whic h T is a con traction. W e will presen t �rst the pro of in

the stable case and later the pro of for the pseudo-stable case. The cases

of C

1

and C

!

regularit y for the stable case will b e done separately in

Section 4.4.5.

4.3. F orm ulas for deriv ativ es. A result that w e will use b oth in the

stable and in the pseudo-stable cases is the follo wing purely formal

Lemma 4.2.

Lemma 4.2. Assume that for an op en set of y we c an de�ne T [�] as

in (19) .
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If � is C

i

, i � r , then T [�] is C

i

and, mor e over, we have

D

i

T [�] = A

� 1

2

D

i

�( A

1

+ B � + N

1

( � ; �)) �

�

�

( A

1

+ B D � + D

1

N

1

( � ; �) + D

2

N ( � ; �) D �)

�


 i

+ A

� 1

2

D �( A

1

+ B � + N

1

( � ; �)) D

2

N

1

( � ; �) D

i

�

+ A

� 1

2

D

2

N

2

( � ; �) D

i

�

+ R

i

( D � ; : : : ; D �

i � 1

)

(20)

wher e R

i

is a p olynomial in the derivatives of � whose c o eÆcients ar e

p olynomial expr essions involving the derivatives of F { up to or der i {

evaluate d at �

Pr o of. The form ula (20) can b e obtained from F aa Di Bruno form ula,

but is signi�can tly easier.

The main p oin t of (20) is that w e can iden tify the only term in

D

i

T [�] whic h con tains as a factor D

i

�.

The form ula (20) is easily established b y induction starting form the

ob vious case i = 1. Assuming that (20) is true, w e compute D

i +1

T [�]

b y taking one more deriv ativ e on b oth sides.

W e note that taking the deriv ativ e of R

i

w e do not obtain deriv ativ es

of � of order higher than i . T o establish that R is a p olynomial w e

compute the deriv ativ e of the terms b y using the pro duct rule. When

w e tak e a deriv ativ e of a factor D

j

�, w e obtain D

j +1

� and when w e

tak e the deriv ativ e of D

j

F Æ � w e obtain D

j +1

F Æ � D �. Both factors

are of the desired form.

T o establish the claims ab out the terms with higher deriv ativ es, it

suÆces to observ e that the only w a y that w e get deriv ativ es of order

i + 1 when w e tak e deriv ativ es of the expression is that, when w e apply

the pro duct rule, tak e the deriv ativ es on the factor D

i

�. If w e tak e

deriv ativ es on the other factors, w e obtain terms whic h are p olynomials

in deriv ativ es of order lo w er that i + 1 so that can consider them as

part of R

i +1

. �

4.4. Pro of of Theorem 3.1 in the stable case. W e no w start the

pro of of Theorem 3.1 when r < 1 . The cases r = 1 ; ! will b e

p ostp oned till Section 4.4.5

4.4.1. Some sp ac es of functions. In this section, w e in tro duce some

spaces and norms that w e will use later.

The main no v elt y with resp ect to most of the standard pro ofs of

in v arian t manifold theorems in the literature is that w e tak e adv an-

tage of the fact that the functions w e are seeking v anish at the origin

to second order (sligh tly less in the less regular cases). Hence w e can
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use w eigh ted norms (22) or norm based on deriv ativ es whic h lead to

stronger con traction prop erties for the op erator considered (see Prop o-

sition 4.3). This impro v ed con traction prop ert y is what allo ws us to

w eak en the dominance condition.

W e consider r = k + � k 2 N , � 2 [0 ; Lip ] and de�ne the spaces

�

Æ

0

; ��� ;Æ

k

; Æ

�

=

�

� : B

1

� X

1

! X

2

; � 2 C

r

;

k D

i

� k

C

0

( B

1

)

� Æ

i

; i = 0 ; : : : ; k ;

H

�

( D

k

�) � Æ

�

;

�(0) = 0 ; D �(0) = 0 ;

sup

y 2 B

1

�f 0 g

j D �( y ) jj y j

� s +1

< 1

	

(21)

where s is the same as that en tering in (10) , namely , s = min (2 ; r ).

Hence, when r � 2, the exp onen t of j y j in the last condition for the

deriv ativ e in (21) is � 1. In case r = 1 + � , the exp onen t � s + 1 is just

� � .

When � = 0, the parameter in the de�nition of � do es not pla y an y

role since Æ

k

and Æ

0

w ould con trol the C

0

norm of D

k

�. Hence, w e will

just suppress Æ

0

Hence, when dealing with in teger regularit y , w e will

use the notation �

Æ

0

;::: ;Æ

k

.

W e will assume that Æ

0

� 1 so as to mak e sure that N ( y ; �( y )) is

alw a ys w ell de�ned.

W e will endo w �

Æ

0

;::: ;Æ

k

; Æ

�

with the top ology induced b y

(22) j j j � j j j = sup

y 2 B

1

�f 0 g

j D �( y ) j = j y j

s

where, w e recall s = 2 whenev er r � 2, s = � when r = 1 + � ,

� 2 (0 ; Lip ] and s = 0 when r = 1.

It is not hard to c hec k that (22) is a norm in the space of functions

whic h satisfy the normalization �(0) = 0.

Note that the top ology induced b y (22) is �ner than the top ology

induced b y the C

0

norm.

An imp ortan t result [LI73 ] Lemma 2-5 is that when r = k + � , the

closure of � under C

0

{ a fortiori under the w eak er top ology w e consider

{ is con tained in the set of functions whic h are C

~r

and, whic h, moreo v er

satisfy

�(0) = 0 ; D �(0) = 0 ;

k D

i

� k

C

0

( B

1

)

� Æ

i

; 0 � i �

~

k ;

H

�;B

1

( D

r � 1

�) � Æ

�

:
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W e also note that when r � 2 and the space X

1

is separable, a

v arian t of the Ascoli-Arzel� a argumen t concludes that the space � is

precompact with the top ology giv en.

The follo wing t w o prop ositions study the b eha vior of j j j � j j j under

op erations that app ear frequen tly in the graph transform approac h.

The �rst prop ert y of the norm (22) that w e will use is that it b eha v es

v ery w ell under comp osition with con tractions.

Prop osition 4.3. L et � : B

1

! B

1

b e a C

1

function such that

�(0) = 0 ; k D � k

C

0

( B

1

)

� 1 :

Assume that j j j � j j j < 1 .

Then,

(23) j j j � Æ � j j j � j j j � j j jk D � k

s

C

0

( B

1

)

The main p oin t of the Prop osition is that w e obtain the exp onen t s

in the b ound in (23). In the most t ypical case r � 2, then the exp onen t

s = 2. Since k D � k

C

0

( B

1

)

is smaller than 1, this is quite w orth while.

Indeed, this is the reason wh y w e can impro v e (3) to (11) when r � 2

or to (10) for lo w regularities.

Pr o of. Clearly , the function � Æ � is C

1

and it satis�es D (� Æ �)(0) = 0.

W e estimate for y 6= 0

j D � Æ �( y ) j = j y j

s � 1

�

j ( D �) Æ �( y ) jj �( y ) j

s � 1

j D �( y ) j

j y j

s � 1

j �( y ) j

s � 1

� sup

y 2 B

1

�f 0 g

( j D � y j = j y j

s � 1

)

"

sup

y 2 B

1

�f 0 g

( j �( y ) j = j y j )

#

s � 1

� sup

y 2 B

1

�f 0 g

( j D �( y ) j )

from whic h it clearly follo ws that j j j � Æ � j j j is �nite and that it satis�es

the estimates in (23) . �

Prop osition 4.4. L et N

2

: X

1

� X

2

! X

2

satisfy D N

2

(0 ; 0) = 0 .

Assume that N

2

2 C

1+ �

, 0 � � � Lip . L et � b e a C

1+ �

function,

�(0) = 0 , D �(0) = 0 .

Then, the function � ( y ) = N

2

( y ; �( y )) satis�es

j j j � j j j � k N k

C

1+ �

+ k N k

C

1

j j j � j j j

wher e, as b efor e

j j j � ( y ) j j j = sup

y 2 B

1

�f 0 g

j D � ( y ) j = j y j

�

:
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Pr o of. W e ha v e

j D N ( y ; �( y )) j = j y j

�

� j ( D

1

N )( y ; �( y )) j = j y j

�

+ j ( D

2

N )( y ; �( y )) jj D �( y ) j = j y j

�

� k N k

C

1+ �

+ k N k

C

1

j j j � j j j

�

Remark 4.5. W e note that the in tro duction of the c onic al norm j j j � j j j

is mainly useful for the cases r 2 1 + [0 ; Lip ]. In the cases r � 2, w e

could just use the top ology induced b y k D

2

� k

C

0

( B

1

)

.

Since w e are considering spaces of C

2

functions whic h satisfy the

normalizations �(0) = 0, D �(0) = 0, w e see that k D

2

� k

C

0

is indeed a

norm.

F or our purp oses, the main prop ert y that w e need is that the norm

considered b eha v es w ell under comp osition with a con traction and that

w e ha v e impro v ed con traction prop erties analogous to (23) .

F or k D

2

� k

C

0

( B

1

)

w e ha v e

k D

2

(� Æ �) k

C

0

( B

1

)

� k D

2

� k

C

0

( B

1

)

k D � k

2

C

0

( B

1

)

+ k D � k

C

0

( B

1

)

k D

2

� k

C

0

( B

1

)

� k D

2

� k

C

0

( B

1

)

�

k D � k

2

C

0

( B

1

)

+ k D

2

� k

C

0

( B

1

)

�

whic h can b e used in a similar w a y as (23) pro vided that w e can mak e

D

2

� small.

Hence, w e could use k D

2

� k

C

0

in the subsequen t argumen ts rather

than the conical norm. The conical norm j j j � j j j turns out to b e some-

what simpler to estimate and, since j j j � j j j � k D

2

� k

C

0

the uniqueness

statemen ts in the conical norm are sligh tly more general (the spaces in

whic h the conical norm is de�ned include functions that are not C

2

).

In case that w e consider functions � whic h v anish to order k { whic h

is p ossible if N v anishes to order k , p erhaps after some preliminary

transformations whic h are p ossible under �nitely man y non-resonance

conditions {, it is p ossible to use the norms k D

k

� k

C

0

, The pap er [dlL97 ]

includes a general discussion of these norms and sho ws. In [CFdlL03a ],

these cases are studied with wigh ted norms with higher p o w ers. Other

norms whic h also lead to impro v ed con traction prop erties o ccur in

[ElB01 ]. �

4.4.2. The op er ator T is wel l de�ne d in the � sp ac es. W e will �rst

c hec k that the RHS of (18) indeed de�nes an op erator on � .



In v arian t manifolds 17

W e �rst note that using the con v en tions arranged in Section 4.1 w e

ha v e, for j y j � 1, � 2 �

Æ

0

;::: ;Æ

k

; Æ

�

j A

1

y + B �( y ) + N

1

( y ; �( y )) j � k A

1

k + "Æ

0

+ k N

1

k

C

0

� k A

1

k + 2 "

(24)

If w e imp ose the condition that " is small enough, w e can ensure

that the RHS of (24) is smaller than 1.

Once w e ha v e that the function T [�] is w ell de�ned in the indicated

domain, the c hain rule tells us that T [�] is C

r

.

Hence, the RHS of (18) can b e de�ned for all the � 2 �

Æ

0

;::: ;Æ

k

; Æ

�

.

4.4.3. The r ange of op er ator T on the sp ac es � . In this section, w e

sho w that T [ � ] is con tained in another set also of the form � but with

di�eren t parameters. In particular, w e will sho w that it is p ossible to

arrange with the prenormalizations in tro duced in Section 4.1 that one

can �nd domains � that get mapp ed in to themselv es.

Lemma 4.6. In the c onditions of The or em 3.1 after making the ad-

justments in Se ction 4.1 so that k B k , k N k

C

s

( B

1

)

ar e smal l enough,

s = min ( r ; 2) .

Then, it is p ossible to �nd Æ

0

; � � � ; Æ

k

; Æ

�

, satisfying Æ

0

= Æ

1

= 1 ,

Æ

i

> 0 as wel l as:

T ( �

Æ

0

=1 ;Æ

1

=1 ��� Æ

k

; Æ

�

) � �

Æ

0

=1 ;Æ

1

=1 ; ��� ;Æ

k

; Æ

�

:

Pr o of. First, it is clear b y the c hain rule that if � 2 C

r

, then T [�] 2 C

r

.

The fact that T [�](0) = 0 and D T [�](0) = 0 are just an easy

calculation.

W e denote

(25) �[�]( y ) = A

1

y + B �( y ) + N

1

( x; �( y )) :

Therefore:

D �[�]( y ) = A

1

+ B D �( y ) + D

1

N

1

( x; �( y ))

+ D

2

N

2

( y ; �( y )) D �( y ) :

(26)

W e estimate

(27) Lip (�[�]) � k D �[�] k

C

0

( B

1

)

� k A

1

k + " :

The fact that j j jT [�] j j j is �nite is a v ery easy consequence of Prop osi-

tions 4.3 and 4.4. (The op erator T just di�ers from the case considered

in Prop osition 4.3 b y m ultiplication in the left b y a linear op erator.)

The heart of the matter is to obtain estimates for the deriv ativ es of

T [�] and for j j jT [�] j j j in terms of those of �.

F rom (20) , using the triangle inequalit y , the Banac h algebra prop-

erties of m ultiplication, the form ula (27) and that for functions � 2
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�

Æ

0

;::: ;Æ

k

; Æ

�

, w e ha v e b ounds on the deriv ativ es, w e obtain that, when

� 2 � 2 �

Æ

0

;::: ;Æ

k

; Æ

�

, w e ha v e:

k D

i

T [�] k

C

0

( B

1

)

� k D �

i

k

C

0

( B

1

)

�

k A

1

k + 3 "

�

i

k A

� 1

2

k

+ P

i

( Æ

0

; : : : ; Æ

i � 1

)

(28)

where P

i

is a real p olynomial with p ositiv e co eÆcien ts.

The co eÆcien ts of P are obtained b y estimating the deriv ativ es of

N . Ev en if w e will not use it in this pap er { except for i = 1 ; 2 { w e

note that the p olynomial P

i

can b e assumed to b e arbitrarily small b y

assuming that k N k

C

i
is suÆcien tly small.

Similarly , using (7) w e estimate the Holder seminorm in the unit ball

as:

H

�;B

1

( D

i

T [�])

� H

�;B

1

( D �

i

)

�

k A

1

k + 3 "

�

i + �

k A

� 1

2

k + P

i

( Æ

1

; : : : ; Æ

i � 1

) :

(29)

The rest of the pro of of Lemma 4.6 will b e di�eren t according to

whether r � 2, r 2 1 + (0 ; Lip ] or r = 1.

F or r � 2, whic h is the main case, w e note that, b ecause of the

assumption (11) , w e can arrange as in Section 4.1, that

k A

� 1

2

kk D � k

2

C

0

( B

1

)

�  < 1

k D � k

C

0

( B

1

)

< 1 :

W e c ho ose Æ

0

= Æ

1

= 1 ; Æ

2

= 1. Because of (28) w e get

k D

2

T [�] k

C

0

�  Æ

2

+ P

2

(1 ; 1)

Recalling that w e can mak e the co eÆcien ts or P

2

as small as desired

b y arranging that k N k

C

2

, k B k are suÆcien tly small, w e can arrange

that

(30) k D

2

T [�] k

C

0

� 1 :

Using that w e ha v e the normalizations T [�] = 0, D T [�] = 0, w e

can use the mean v alue theorem to obtain from (30)

k D � k

C

0

� 1 ; k � k

C

0

� 1 = 2 :

This establishes the desired result for r = 2.

In case that r = k + � > 2, w e pro ceed to c ho ose the Æ

i

, Æ

�

so that

the desired conclusions hold. It is imp ortan t to emphasize that the

smallness conditions that w e will b e imp osing on k N k

C

2

, k B k will b e

indep enden t of k . This will b e the basis of the study of the C

1

case.

W e observ e that, w e ha v e for k � i > 2

k A

� 1

2

kk D � k

i

C

0

( B

1

)

� 

k

< 1 :
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Using (28) w e ha v e

k D

i

T [�] k

C

0

� 

i

Æ

i

+ P

i

(1 ; Æ

2

; : : : ; Æ

i � 1

)

Hence, w e can c ho ose recursiv ely Æ

i

so that k D

i

T [�] k

C

0

� Æ

i

.

Similarly , taking in to accoun t (29) w e obtain

H

�

[ D

k

T [�]] � 

k ;�

Æ

�

+ P

k ;�

(1 ; Æ

2

; : : : ; Æ

k

)

where 

k ;�

� k A

� 1

2

kk D � k

k + �

C

0

( B

1

)

< 1. Hence, it is p ossible to c ho ose

also the Æ

�

.

This �nishes the pro of of Lemma 4.6 in the case r � 2.

Remark 4.7. W e call atten tion that in this case, w e ha v e only used the

assumption (11) . This is somewhat w eak er than the usual dominance

condition (3) .

As it often happ ens, when considering the comp osition with con trac-

tions, deriv ativ es of higher order ha v e b etter estimates than deriv ativ es

of lo w er order.

In our case, w e deduced estimates for the lo w er deriv ativ es from those

for the higher deriv ativ es b ecause w e ha v e the normalization that �

has a second order tangency at zero, so that w e could estimate the �rst

deriv ativ e and the function b y the second deriv ativ e.

This is, of course related to the fact that, b y the de�nition of de-

riv ativ e, the nonlinear part has a tangency of order 2 with the linear

part.

The same t yp e of argumen t can b e carried out using deriv ativ es or

order higher than 2 if w e can ensure that N has a tangency of high

enough order. Indeed in [dlL97 ] it is sho wn that if A satis�es certain

non-resonance conditions, it is p ossible to mak e c hanges of v ariables

that reduce N so that high order tangencies are preserv ed. In suc h a

case, it is p ossible to use similar argumen ts with higher deriv ativ es and

obtain conditions w eak er than (11) b ecause the exp onen t of k A

1

k is

bigger than 2.

Argumen ts with a similar a v or but applied to somewhat di�eren t

op erators happ en in [CFdlL03a ].

W e also refer to Example 5.1 to sho w that some of these conditions

are necessary . �

No w, w e consider the range of the op erator T in the lo w regularit y

cases for whic h the use of the second deriv ativ e is not p ossible.

F or the case r = 1, w e observ e that the estimate (28) w e ha v e

k D T [�] k

C

0

� 

1

Æ

1

+ " where 

1

= k A

� 1

2

kk A

1

k . In this case, the as-

sumptions in Theorem 3.1 imply that 

1

< 1. Hence, w e can c ho ose

the Æ

1

= 1 so that k D T [�] k

C

0

� Æ

1

. Once w e ha v e that, w e can
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c ho ose Æ

0

> Æ

1

. Using the mean v alue theorem and the normalization

T [�](0) = 0, w e obtain that

T ( �

Æ

0

;::: ;Æ

k

; Æ

�

) � �

Æ

0

;::: ;Æ

k

; Æ

�

:

In the case r = 1 + � , 0 < � � Lip , w e c ho ose Æ

0

= 1, Æ

1

= 1, Æ

�

= 1.

By the c hain rule, w e ha v e D T [�] = ( D �) Æ � D �. Hence, using (7) ,

H

�

[ D T [�]] � k A

� 1

2

k

�

H

�

[ D �] Lip (�)

�

k D � k

C

0

+ k D � k

C

0

H

�

D �

�

:

Note that H

�

[ D �] � H

�

[ D N ] and, since � > 0, this can b e made

arbitrarily small b y rescaling.

Hence, w e ha v e for functions � in �

1 ; 1;1

H

�

[ D T [�]] �  + "

where  � k A

� 1

2

kk D � k

1+ �

C

0

< 1 b y assumption. Adjusting that " is

small enough, w e obtain the desired result.

This �nishes the pro of of Lemma 4.6. �

W e emphasize that the conditions of smallness that w e ha v e imp osed

on k B k , k N k

C

2

, are indep enden t of r . The w a y to ensure that the high

order deriv ativ es get trapp ed is b y c ho osing the Æ

i

i � 2 and Æ

�

en tering

in the de�nition of the �

Æ

0

;::: ;Æ

k

; Æ

�

to b e large enough.

Note also that the argumen t relied hea vily on the fact that w e could

ha v e all the 

i

smaller than one with conditions that are indep enden t

of i . This is certainly true in the stable case, but will b e false in the

pseudo-stable case.

Remark 4.8. In case that w e can apply Ascoli-Arzel� a theorem applied

to the spaces � { e.g. when X

1

is a separable space, w e obtain a pro of

of the existence of solutions of (18) just b y applying the Sc hauder-

T yc hono v theorem b ecause the space � is compact and, clearly con v ex.

The op erator T is con tin uous b ecause it has a closed graph.

This giv es a v ery short pro of of the existence of the in v arian t mani-

folds since w e a v oid the estimates to obtain that T is a con traction. On

the other hand, w e do not obtain the uniqueness prop erties. Nev erthe-

less, w e observ e that, in the case that the manifold w e are establishing

is the stable manifold, there are geometric argumen ts [Sh u87 ], [LI83 ]

whic h establish that the stable manifold is unique.

Hence, a p ossible argumen t to pro v e the stable manifold for �nite

dimensional spaces is to apply the Sc hauder theorem once one estab-

lishes the propagated b ounds. Then, one can establish the uniqueness

b y geometric argumen ts as in the references ab o v e. �
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4.4.4. Contr action pr op erties of the op er ator T on � .

Lemma 4.9. In the c ondition of L emma 4.6 T is a c ontr action on

�

Æ

0

��� Æ

r

with the norm (22) .

Recall that

D T [�]( y ) = A

� 1

2

D �

�

A

1

y + B �( y ) + N

1

( y ; �( y ))

�

�

�

A

1

+ B �( y ) + D

1

N

1

( y ; �( y ))

�

+ A

� 1

2

�

D

1

N

2

( y ; �( y )) + D

2

N

2

( y ; �( y )) D �( y )

�

(31)

F rom (31) it will b e rather straigh tforw ard to estimate j j jT [�] � T [

~

�] j j j

b y adding and subtracting terms appropriately .

W e will also use that j y j � 1, k � k � 1, k D � k � 1, k D � k � 1.

Remark 4.10. As a heuristic guide for the subsequen t estimates is

that, ignoring all the ob jects that can b e made arbitrarily small, the

form ula (31) for the deriv ativ e amoun ts to just

(32) A

� 1

2

D �( A

1

( y )) A

1

:

As w e will see, since all the terms are small, the pro of of con traction

will b e obtained b y adding and substracting terms from the pro of of

con traction in (32) .

The con traction of (32) is pro v ed using the impro v ed con traction

estimates. W e ha v e:

k A

� 1

2

D �( A

1

y ) A

1

� A

� 1

2

D

~

�( A

1

y ) A

1

k

� k A

� 1

2

kk A

1

kj D �( A

1

y ) � D

~

�( A

1

y ) j

� k A

� 1

2

kk A

1

kj j j � �

~

� j j jj A

1

y j

� k A

� 1

2

kk A

1

k

2

j j j � �

~

� j j jj y j :

F rom the ab o v e estimates, it follo ws that the main part of T (as in

(32) is a con traction in j j j � j j j . �

No w w e turn to pro ving estimates for the full T and not just (32) .

Roughly sp eaking w e will try to pro ceed along the lines indicated in

the Remark 4.10, but w e will ha v e to pa y atten tion to estimating sys-

tematically all the other terms whic h will turn out to b e arbitrarily

small with the adjustmen ts in Section 4.1.

j D

1

N ( y ; �( y )) � D

1

N ( x;

~

� ( y )) j � k D

1

D

2

N k

C

0

( B

1

)

j �( y ) �

~

�( y ) j

� " j j j � �

~

� j j jj y j

2

:

(33)

A fortiori, similar b ounds are true for N

1

, N

2

in place of N .
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Moreo v er,

j D

2

N ( y ; �( y )) D �( y ) � D

2

N ( y ;

~

� ( y )) D

~

� ( y ) j

� j D

2

N ( y ; �( y )) jj D �( y ) � D

~

�( y ) j

+ j D

2

N ( y ;

~

�( y )) � D

2

N ( y ;

~

�( y )) jj D

~

� ( y ) j

� " j j j � �

~

� j j jj y j

where w e ha v e used again (33) to estimate the second factor.

Again, w e note that, the same estimates remain v alid for N

1

, N

2

in

place N .

W e denote b y

�[�]( y ) = A

1

y + B �( y ) + N

1

( y ; �( y ))

D �[�]( y ) = A

1

+ B D �( y ) + D

1

N

1

( y ; �( y )) + D

2

N ( y ; �( y ))

W e estimate

k D �[�] k

C

0

( B

1

)

� k A

1

k + " :

Hence

j �[�]( y ) j �

�

j A

1

j + "

�

k y k :

Moreo v er, w e ha v e

j D �[�]( y ) � D �[

~

�]( y ) j � " j j j � �

~

� j j jj y j

j �[�]( y ) � �[

~

� ]( y ) j � " j j j � �

~

� j j jj y j

The only terms left to estimate in D T [�] � D T [

~

�] can b e expressed

as

(34) A

� 1

2

( D � Æ �[�]( y ) D �[�]( y ) � D

~

� Æ �[

~

� ]( y ) D �[

~

� ]( y )) :

The norm of (34) is b ounded b y (w e recall that s = min (2 ; r ) en tered

in the de�nition of j j j � j j j )

k A

� 1

2

k

�

j D � Æ �[�]( y ) � D

~

� Æ �[

~

�]( y ) jj D �[�]( y ) j

+ j D

~

� Æ �[�]( y ) � D

~

� Æ �[

~

� ]( y ) jj D �[�]( y ) j

+ j D

~

� Æ �[

~

�]( y ) jj D �[�]( y ) � D �[

~

�]( y ) j

�

� k A

� 1

2

k

�

j j j � �

~

� j j j

�

k A

1

k + "

�

j y j

s � 1

�

k A

1

k + "

�

+ j �[�]( y ) � �[

~

�]( y ) j

�

k A

1

k + "

�

+ " j j j � �

~

� j j jj y j

s � 1

�

�

�

k A

� 1

2

k ( k A

1

k + " )

s

+ "

�

j j j � �

~

� j j jj y j

s � 1

:

Collecting the previous estimates, w e obtain that as indicated in

Remark 4.10, the op erator T has a Lipsc hitz constan t in j j j � j j j whic h

is k A

� 1

2

kk A

1

k

s

+ " . By the assumptions in Theorem 3.1, this is a

con traction on �

Æ

0

;::: ;Æ

k

; Æ

�

. Hence, w e obtain that there a �xed p oin t
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of T { therefore a solution of (18) { in the closure of � for the j j j � j j j .

Applying Lemma 2.5 in [LI73], w e conclude that this �xed p oin t is C

~r

.

Hence, w e ha v e established the conclusions of Theorem 3.1 for the

case k A

1

k < 1, r 2 N + [0 ; Lip ].

Remark 4.11. W e note that, since w e ha v e used a con traction argu-

men t, w e ha v e sho wn that there is exactly one �xed p oin t in �

Æ

0

;::: ;Æ

k

; Æ

�

,

where � denotes the closure in the top ology w e considered.

Note that if ` > k

(35) �

Æ

0

;::: ;Æ

k

;Æ

k +1

;::: Æ

`

; Æ

� � �

Æ

0

;::: ;Æ

k

; Æ

�

:

It is imp ortan t to realize that our c hoice of the Æ 's for di�eren t reg-

ularties is done b y induction in the regularit y . In this w a y , the Æ of

high index are added without c hanging the Æ of lo w order. In this w a y ,

when w e consider di�eren t regularities, the spaces that get mapp ed

in to themselv es are nested as in (35).

Notice also that the conditions to obtain con traction do not c hange

with r { w e only establish con traction in a lo w regularit y norm { and

the conditions to get the space mapp ed in to itself do not c hange either

with higher r for r � 2. This is b ecause the smallness assumptions

that w e tak e do not dep end on deriv ativ es higher than the second.

Notice that when w e tak e the assumption (11) , w e obtain con traction

only on C

2

spaces or spaces with higher regularit y . As w e will see in

Example 5.3, this conclusion is sharp . Ev en in cases that w e obtain a

unique C

2 � Æ

manifold, it is p ossible to obtain in�nitely man y manifolds

whic h are C

2 � 2 Æ

.

W e furthermore observ e that if w e obtain uniqueness in a ball, the

uniqueness propagates to the basin of attraction of the origin. Giv en

t w o in v arian t manifolds con tained in the basin of attraction, their in-

tersection with an y b ounded set will b e ev en tually mapp ed in to the

ball taking enough iterations. Their images will also b e in v arian t man-

ifolds, whic h, b y the previous uniqueness statemen t will ha v e to agree.

�

4.4.5. Pr o of of The or em 3.1 in the stable c ase when r = 1 ; ! . The case

C

1

is a v ery simple consequence of the observ ations made in Remark

4.11.

W e note that, w e can �nd a sequence f Æ

i

g

i 2 N

suc h that, for ev ery

k 2 N , �

Æ

0

;Æ

1

;::: ;Æ

k

is mapp ed in to itself to T and T is a con traction in

the distance j j j � j j j .

Because of the nesting (35), the �xed p oin ts in those spaces � ha v e

to coincide. The �xed p oin t, therefore is in

T

k

C

~

k

= C

1

.
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The analytic case is v ery simple. W e w ork in a complex Banac h

space and w e recall that di�eren tiable functions in a complex Banac h

space are analytic (see [Kat95 ] ).

If w e carry out the C

2

pro of as ab o v e, but in a complex ball, w e

obtain that the function is di�eren tiable in the unit ball and, therefore

analytic.

�

4.5. Pro of of Theorem 3.1 in the Pseudo-stable case. The pro of

follo ws v ery similar lines as the pro of in the stable case. Nev ertheless

w e ha v e to mak e di�eren t c hoices of spaces and of norms. Indeed, the

pro of of the pseudo-stable cases is in man y w a ys somewhat simpler

since the devices of w eigh ted norms that w e used to in the con tractiv e

case are not useful for the case of pseudo-stable manifolds, so that the

pro ofs will b e more straighforw ard and w e will not ha v e to distinguish

the cases of di�eren t regularities.

4.5.1. The op er ator T is wel l de�ne d. The main di�erence with the

stable case is that w e no not ha v e that j D � j < 1. Hence, w e cannot

ensure that � Æ � is de�ned in a ball if � is.

Hence, w e ha v e to consider spaces of functions � de�ned in the whole

X

1

this in turns, forces us to consider non-linearities N that are uni-

formly small on X

1

� B

1

( X

2

). This is precisely what w as accomplished

in Section 4.1.1.

W e will, therefore assume in the follo wing that N is de�ned and

small in X

1

� B

1

( X

2

). In this circumstances, the op erator T is w ell

de�ned.

4.5.2. Some sp ac es of functions. The spaces that w e will consider are

v ery similar to the spaces � that w e considered in Section 4.4.1.

W e consider r = k + � as usual and consider the spaces

~�

Æ

0

��� Æ

k

; Æ

�

=

�

� : X

1

! X

2

; � 2 C

r

; k D

i

� k

C

0

( X

1

)

� Æ

i

; i = 0 ; : : : ; r ;

H

�

( D

k

�) � Æ

�

�(0) = 0 ; D �(0) = 0 g

(36)

The spaces ~� di�er from the � spaces b ecause the functions in ~� are

de�ned in the whole space X

1

rather than just on the unit ball.

The main tec hnical di�erence with the spaces ~� is that w e consider

the ~� spaces endo w ed with the C

0

( X

1

) top ology .

In the pseudo-stable case, w e will not use w eigh ted norms, since in

this case, the extra factors k D � k

C

0

do not help since they are bigger

than 1.
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The analogues of Prop ositions 4.3 and 4.4 are the follo wing results

whic h are rather ob vious.

Prop osition 4.12. L et � : X

1

! X

1

b e a C

1

function such that �(0) =

0 , k D � k

C

0

( X

1

)

� 1 .

Then,

(37) k � Æ � k

C

0

( X

1

)

� k � k

C

0

( X

1

)

:

Prop osition 4.13. L et N

2

: X

1

� B

1

( X

2

) ! X

2

satisfy D N

2

(0 ; 0) = 0 .

Assume that N

2

2 C

1+ �

, 0 � � � Lip . L et � b e a C

1+ �

function,

�(0) = 0 , D �(0) = 0 .

Then, the function � ( y ) = N

2

( y ; �( y )) satis�es

k � k

C

0

( X

1

)

� k N

2

k

C

0

( X

1

� B

1

( X

2

))

:

4.5.3. The r ange of the op er ator T on the sp ac es ~� . This section is an

analogue in the pseudo-stable case of the results in Section 4.4.3. As

w e will see the metho ds are v ery similar ev en if the conclusions are

di�eren t due to the fact that, p ossibly k A

1

k � 1, hence high p o w ers of

of A

1

are not con tractions and k A

� 1

2

kk A

1

k

k

will not b e a con traction

for high k .

Lemma 4.14. In the c onditions of The or em 3.1, assume that

k A

� 1

2

kk A

1

k

r

< 1 :

Denote r = k + � as usual.

Then, after making the adjustments in Se ction 4.1 so that k B k ,

k N k

C

1

( X

1

� B

1

( X

2

))

is smal l enough, it is p ossible to �nd Æ

0

; : : : ; Æ

k

; Æ

�

,

Æ

0

= Æ

1

= 1 , Æ

i

� 0 , is such a way that

T ( ~�

Æ

0

;Æ

1

��� Æ

k

; Æ

�

) � ~�

Æ

0

;::: ;Æ

k

; Æ

�

:

Pr o of. The pro of is v ery similar to { but simpler than { the pro of of

Lemma 4.6.

W e just note that, b ecause of (20) w e ha v e a direct analogue of (28)

(w e just need to c hange the domains where w e carry out the estimates).

(38)

k D

i

T [�] k

C

0

( X

1

)

� k D �

i

k

C

0

( X

1

)

�

k A

1

k + 3 "

�

i

k A

� 1

2

k + P

i

( Æ

0

; : : : ; Æ

i � 1

)

where P

i

is a real p olynomial with p ositiv e co eÆcien ts.

W e also ha v e an analogue of (29) just c hanging the domains.

(39)

H

�;N

1

( D

i

T [�]) � H

�;N

1

( D �

i

)

�

k A

1

k + 3 "

�

i + �

k A

� 1

2

k + P

i

( Æ

1

; : : : ; Æ

i � 1

)

Hence, w e pro ceed b y induction assuming that w e ha v e set

Æ

0

= 1 ; Æ

1

= 1 :
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As in the con tractiv e case, w e just note that this can b e arranged if w e

arrange that k N k

C

1

; k B k are suÆcien tly small.

Assume inductiv ely that w e ha v e determined Æ

0

= 1 ; Æ

1

= 1 ; : : : ; Æ

i

,

Then, c ho ose Æ

i +1

in suc h a w a y that

(40) Æ

i +1

� 

i +1

Æ

i

+ P

i +1

( Æ

1

; : : : ; Æ

1

)

where 

i +1

= k A

� 1

2

kk � k

i +1

C

1

.

This c hoice of Æ

i +1

satisfying (40) is p ossible pro vide that 

i +1

< 1.

By the assumptions in Theorem 3.1, w e see that w e can adjust that



i +1

< 1 for i � k .

It is clear that if Æ

i +1

satis�es (40) and T ( �

Æ

0

;::: ;Æ

i

) � �

Æ

0

;::: ;Æ

i

, then

T ( �

Æ

0

;::: ;Æ

i

;Æ

i +1

) � �

Æ

0

;::: ;Æ

i

;Æ

i +1

. Hence w e can recursiv ely , �nd the Æ

i

.

Similarly , using (39) , w e can ensure that w e can �nd Æ

�

pro vided

that k A

� 1

2

kk � k

k + �

C

1

< 1.

�

Remark 4.15. The main con trast with the pro of of Lemma 4.6 is that

in Lemma 4.6, the 

i

w ere decreasing as i increased. In the pseudo-

stable case considered here, the 

i

are increasing with i and for large

enough i the condition 

i

< 1 is violated. This is what mak es the

induction �nding the Æ stop and, hence, mak es the pro of stop for high

regularit y . As w e will see in Example 5.4, this is not an artifact and

there are examples where one cannot get more regularit y than the

regularit y predicted b y this argumen t. �

4.5.4. Contr action pr op erties of the op er ator T on ~� . This section is

quite analogous to Section 4.4.4. The main result is Lemma 4.16 whose

pro of go es along v ery similar lines as the pro of of Lemma 4.9.

Lemma 4.16. In the c ondition of L emma 4.6 T is a c ontr action on

�

Æ

0

��� Æ

r

with the norm (22) .

Again w e remark that a useful heuristic idea is to note that, after

w e ha v e p erformed all the preliminary adjustmen ts in Section 4.1, the

main part of the op erator T is just

(41) R [�] � A

� 1

2

� Æ A

1

:

Hence, w e exp ect that the estimates for T are similar to the estimates

of the v ery simple op erator

kR [�] � R [

~

� ] k

C

0

( X

1

� B

1

( X

2

))

� k A

2

k

� 1

k � �

~

� k

C

0

( X

1

� B

1

( X

2

))

No w, w e pro ceed to estimate the terms in the full op erator T . The

most diÆcult terms will b e those whic h include � ev aluated at t w o

di�eren t p oin ts { whic h dep end on �. F or this terms w e will need to
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assume that � is at least Lipsc hitz. This is arranged b y c ho osing the

~� in suc h a w a y that the Lipsc hitz constan t is b ounded.

W e note that if � ;

~

� 2 ~� , w e ha v e

j N ( y ; �( y )) � N ( y ;

~

� ( y )) j � " k � �

~

� k

C

0

where, as b efore, w e denote b y " terms that can b e made as small as

desired b y c ho osing the adjustmen ts in Section 4.1. A fortiori, w e ha v e

similar b ounds for the N

1

; N

2

.

Similarly

j [ A

1

y + B �( y ) + N

1

( y ; �( y )) � N

2

( y ; �( y ))]

� [ A

1

y + B

~

�( y ) + N

1

( y ;

~

� ( y )) � N

2

( y ;

~

� ( y ))] j

� " k � �

~

� k

C

0

Finally ,

j �( A

1

y + B �( y ) + N

1

( y ; �( y )))) �

~

�( A

1

y + B

~

� ( y ) + N

1

( y ;

~

�( y )))) j

�

�

�

�( A

1

y + B �( y ) + N

1

( y ; �( y ))))

�

~

�( A

1

y + B �( y ) + N

1

( y ; �( y ))))

�

�

+

�

� ~

�( A

1

y + B �( y ) + N

1

( y ; �( y ))))

�

~

�( A

1

y + B

~

� ( y ) + N

1

( y ;

~

�( y ))))

�

�

� " k � �

~

� k

C

0

+ Lip(

~

�) " k � �

~

� k

C

0

:

Remark 4.17. In the pro of w e ha v e presen ted, w e only use the prop er-

ties (12) to obtain that the spaces ~� get mapp ed in to eac h other. Nev er-

theless, the con traction part of the argumen t only uses that k A

� 1

2

k < 1.

It is p ossible { but w e will not carry out the details here { to sho w

that the op erator T is a con traction on C

s

. This prop ert y is sometime

useful if one w an ts to v alidate the results of some n umerical computa-

tions or to pro v e smo oth dep endence on parameters. �

Remark 4.18. Notice that w e ha v e established uniqueness of the �xed

p oin t in the spaces ~� under the assumption that k N k

C

1

; k B k are small.

W e note that this can b e arranged b y scaling and cut-o� as indicated

in Section 4.1. Nev ertheless, it is imp ortan t to note that the cut-o�

ma y a�ect the in v arian t manifold arbitrarily close to the origin.

Note that if k A

1

k � 1, the in v ariance equation (18) can propagate

an small disturbance.

W e will illustrate this phenomenon in Example 5.3.

The uniqueness claimee here is obtained only in the spaces ~� whic h

incorp orate some conditions of gro wth at in�nit y of the functions �.

This conditions are v ery di�eren t from the conditions w e obtained for
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the stable manifolds whic h w ere just regularit y of the manifolds at the

origin. �

Remark 4.19. A v ery w ell kno wn consequence of the fact that the

uniqueness is obtained only after w e imp ose a cut-o� is that cen ter

manifolds ma y fail to b e C

1

. This comes ab out b ecause the �xed p oin ts

pro duced in a C

r

space b y carrying out some cut-o�s are di�eren t from

those of C

r + k

, whic h requires a di�eren t cut-o�. �

5. Some examples

In this section, w e collect some examples that sho w that the re-

sults claimed in Theorem 3.1 cannot b e impro v ed in certain directions.

Some of these examples are related to examples in [dlL W95], [dlL97 ],

[CFdlL03a ], [CFdlL03c ].

In the �rst example, w e sho w that the sp ectral gap conditions (11)

cannot b e impro v ed.

Example 5.1. Consider the map F : R

2

! R

2

given by:

(42) F ( x

1

; x

2

) =

�

1

2

x

1

;

1

4

x

2

+ x

2

1

�

:

Then, the map do es not have any C

2

invariant manifold tangent to

the sp ac e X

1

= f ( x; 0) j x 2 R g .

Note that the example satis�es (11) with inequalit y replaced b y

equalit y . All the other h yp othesis of the theorem are satis�ed.

Pr o of. An y C

2

in v arian t manifold can b e tangen t to X

1

at the origin

can b e written lo cally as the graph of an function � : X

1

! X

2

.

The function � should satisfy the equation (17), whic h in our case

reads

(43) �

�

1

2

x

1

�

=

1

4

�( x

1

) + x

2

1

T aking deriv ativ es of (43) t wice and ev aluating at the origin, w e

obtain:

�

1

2

�

2

D

2

�(0) =

1

4

D

2

�(0) + 2

Clearly , this sho ws that there is no function � satisfying (43) and

whic h has t w o deriv ativ es at the origin. A fortiori, there is no C

2

function. �
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Remark 5.2. W e note that the main reason wh y Example 5.1 w orks is

b ecause (1 = 2)

2

= 1 = 4. Hence, there is a resonance. Indeed, the pap ers

[dlL97 ], [ElB01 ], [CFdlL03a ] study systems that satisfy non-resonance

conditions rather than sp ectral gap conditions. �

Example 5.3. Consider the map F : R

2

! R

2

in example 5.1.

Given � > 0 , it admits in�nitely many C

2 � �

. invariant manifolds

which ar e tangent to the sp ac e X

1

= f ( x; 0) j x 2 R g .

Pr o of. Again, it suÆces to pro duce solutions for (43) .

W e will recursiv ely determine the functions on the in terv als I

i

=

[2

� i � 1

; 2

� i

] starting with an arbitrary c hoice �

0

on the in terv al I

0

whic h

has supp ort in the in terior of the in terv al.

W e will write �( x

1

) =

P

i

�

i

( x

1

) + x

2

1

where the �

i

ha v e supp ort in

the in terior of I

i

.

Notice that the equation of in v ariance is suc h that if w e ha v e the

function �

i

determined, w e can �nd �

i +1

. Indeed, w e obtain that (43)

is equiv alen t to

(44) �

i +1

( x

1

) =

1

4

�

i

(2 x

1

) + x

2

1

Hence, w e can de�ne b y recursion the �

i

. By standard estimates, w e

ha v e from (44)

k �

i +1

k

C

2 � �

( I

i +1

)

�

1

4

2

2 � �

k �

i

k

C

2 � �

( I

i

)

+ 2

2 � �

:

This sho ws that the series giving � con v erges uniformly in C

2 � �

. �

Example 5.4. We c onsider the function

(45) F ( x

1

; x

2

) =

�

1

2

x

1

;

1

3

x

2

+ 	( x

1

)

�

wher e 	 is a C

1

function with supp ort c ontaine d in (1 ; 2) which is not

identic al ly zer o.

Then, ther e is one and only one invariant manifold which is a gr aph

of a b ounde d function. F or r every � > 0 , this function is C

log 3 = log 2 � �

.

but not C

log 3 = log 2+ �

.

Pr o of. The equation for in v ariance is

(46) �(1 = 2 x

1

) =

1

3

�( x

1

) + 	( x

1

)

Again, w e write � =

P

i 2 Z

�

i

where �

i

has supp ort on (2

i

; 2

i +1

).

The equations for �

i

are

(47) �

i +1

( x

1

) = 3�

i

(2 x

1

)
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when i 6= 1 and

(48) �

1

( x

1

) = 3�

0

(2 x

1

) + 	( x

1

)

Applying (47) rep eatedly , w e ha v e

�

n

( x

1

) = 3

n

�

0

(2

n

x

1

) :

Hence, the only p ossibilit y to mak e � b ounded at 1 is to ha v e

�

1

� 0. This can b e arranged if w e c ho ose �

0

= � 	.

Then, w e are forced, applying (47) , to ha v e

�

� n

( x

1

) = 3

� n � 1

�

1

(2

n +1

x

1

)

= 3

� n � 1

�

1

(2

n +1

x

1

) :

(49)

Unless the 	 is iden tically zero, w e see that (49) is not C

log 3 = log 2+ �

.

�

Note that w e can run the argumen t in the pro of of the statemen ts in

Example 5.4 run in the opp osite direction. That is, w e can argue that

the only w a y to obtain a function satisfying (46) whic h is C

log 3 = log 2+ �

.

in a neigh b orho o d of the origin is to ha v e �

1

� 0 whic h in turns forces

exp onen tial gro wth at in�nit y .

Hence, Example 5.4 is an example in whic h the t w o uniqueness con-

ditions in Remark 4.11 and in Remark 4.18 are, so to sp eak orthogonal.

Unless 	 is zero, if one of them is satis�ed the other is going to fail.

W e also note that if w e cut o� the map (45) as indicated in Section

4.1, w e ma y obtain just the linear map. Of course, b ounded in v arian t

manifolds for the linear map are just the linear spaces. This sho ws that,

in the pseudo-stable case, the preparations in Section 4.1 do a�ect the

manifolds pro duced.

Note also that in Example 5.4, w e ha v e the phenomenon that once

the manifold is more regular than the critical regularit y log 3 = log 2 then

it is C

1

.

W e also note that in the case of the linear map, w e ha v e in�n-

itely man y in v arian t manifolds x

2

= A j x

1

j

log 3 = log 2

whic h are C

log 3 = log 2

.

Hence uniqueness do es not hold ev en in the critical regularit y .

6. Resul ts f or flo ws

W e do not form ulate precisely the results for o ws since the for-

m ulation for di�eren tiable v ector �elds is quite standard. See e.g

[CFdlL03a ].

In Section 6.1, w e will presen t a rigorous argumen t that sho ws that,

when w e ha v e some uniqueness result for the maps, the results Theorem

3.1 for maps imply results for v ector �elds.
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The main result is that, pro vided that the time-1 map of the o w

v eri�es the assumptions of Theorem 3.1, the, the manifold in v arian t

under the time-1 map pro duced b y Theorem 3.1 is in v arian t under the

o w.

Ev en if the argumen t in Section 6.1 giv es a rigorous pro of of results

for o ws b y reducing them to results for maps, w e think it is in teresting

to p oin t that it is p ossible to carry out a pro of for o ws. In Section

6.2 w e presen t an sk etc h { not a rigorous pro of { of a direct pro of of

the result for o ws. W e hop e that the reader will b e able to �ll details

easily .

6.1. Deducing results for o ws from Theorem 3.1 for maps.

Giv en a o w f S

t

g

t 2 R

generate b y a smo oth v ector �eld Y , w e note that

the assumptions of Theorem 3.1 can b e satis�ed for all the maps S

t

.

W e furthermore ha v e that D S

t

(0) = exp ( tD Y (0). Hence, if D Y (0) has

an in v arian t decomp osition so do es D S

t

(0). W e will denote D Y (0) = A

and denote the decomp osition as in (14) .

W e also note that the results in Section 4.1 can b e easily adapted for

o ws. Namely , b y scaling w e can ensure that jj D S

t

( � ) � exp ( tA ) jj

C

r

( X

1

)

is as small as desired for t 2 [0 ; 1].

In the pseudo-stable case, w e can pro ceed as in Section 4.1.1 to

cut-o� the v ector �eld to ensure that the v ector �eld is b ounded in

X

1

� B

2

( X

2

) and that therefore w e can de�ne S

t

in X

1

� B

1

( X

2

) in

suc h a w a y that it is close to linear.

If w e apply Theorem 3.1 to eac h of the maps S

t

w e obtain an in v arian t

manifold. The only thing that w e ha v e to w orry ab out is whether these

manifolds are the same for all the di�eren t v alues of t .

W e note that since S

t

Æ S

s

= S

s

Æ S

t

, if a manifold M is in v arian t

under S

t

, then so is S

s

M .

If w e ha v e some uniqueness statemen t for in v arian t manifolds, w e

can conclude that S

s

M = M . That is M is in v arian t for the whole

o w.

In the stable case, the uniqueness statemen t that w e can use is that

if M is tangen t at the origin to X

1

, then, clearly so is S

s

M . Since,

S

s

M is also as regular as M , then, the conclusions of Remark 4.11

allo w us to conclude the desired result.

In the pseudo-stable case, the observ ation is that since M is the

graph of a function � : X

1

! X � 2, whic h is uniformly b ounded and

S

s

di�ers from exp sA b y a map of small Lipsc hitz constan t, w e obtain,

therefore that S

s

M is also a graph.

Using the uniqueness statemen ts in Remark 4.18, w e obtain that

S

s

M = M .
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Of course, for eac h of the stable or the pseudo-stable cases w e ha v e

used di�eren t uniqueness statemen ts. This is p erfectly logical, of course.

Nev ertheless w e p oin t out that, as will b e sho wn in Example 5.4, the

manifolds selected b y the eac h of the di�eren t uniqueness argumen ts

ma y b e di�eren t.

Remark 6.1. An imp ortan t observ ation is that the ab o v e argumen t

do es not use at all the fact that the v ector �eld X is di�eren tiable. W e

only use the o w generated b y the v ector �eld is di�eren tiable.

Imp ortan t examples of this happ en in P artial Di�eren tial equations

where v ery often one has un b ounded { hence discon tin uous { op erators

generate v ery smo oth o ws. This is, of course v ery w ell kno wn for a

long time { see e.g [Sho97]. �

6.2. Sk etc h of a direct pro of. Ev en if the argumen t presen ted in

Section 6.1 giv es a rigorous pro of for o ws from the results for maps, it

is w orth men tioning that one can also giv e a direct pro of of the results

for o ws.

The metho d is a v arian t of the usual P erron's in tegral equation

metho d. F or the sak e of completeness, w e presen t an sk etc h of a direct

pro of. Ev en if this will not b e a complete pro of, w e hop e that this

presen tation ma y b e useful for the readers who are more familiar with

the pro ofs for o ws than with the pro ofs for di�eomorphisms.

W e write the di�eren tial equations generating the o w separating

the comp onen ts.

_x

1

= A

1

x

1

+ B x

2

+ N

1

( x

1

; x

2

);

_x

2

= A

2

x

2

+ N

2

( x

1

; x

2

);

(50)

As it is standard, w e will �rst deriv e an equation for a function whose

graph is in v arian t, w e will sho w that the equation has a solution.

F or the sak e of simplicit y , w e will assume that the v ector �eld is

di�eren tiable, ev en if it seems clear that some of the results w ould go

through with the only assumptions that the v ector �eld generates a

smo oth semigroup (satisfying appropriate gro wth conditions, whic h w e

detail later).

W e note that if w e ha v e x

2

= �( x

1

) w e ha v e

_x

1

= A

1

x

1

+ B �( x

1

) + N

1

( x

1

; �( x

1

));

_

�( x

1

) = A

2

�( x

1

) + N

2

( x

1

; �( x

1

));

(51)

W e note that, if w e �x �, the �rst equation b ecomes an ODE for

x

1

. If � is Lipsc hitz, w e see that the �rst equation of (51) will ha v e a

unique solution. W e denote the solution of this equation with initial

conditions x

1

b y �

�

t

( x

1

).
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W e ha v e that

j �

�

t

( x

1

) j � k e

A

1

t

k e

"t

t � 0

where " is a n um b er whic h is arbitrarily small if w e c ho ose the arrange-

men ts in Section 4.1 to b e small enough.

The idea of the pro of is the same as the standard pro of of the stable

manifold b y P erron's metho d (see e.g. [Hal80 ] Ch. VI I pp. 225 �. ).

W e use the v ariation of parameters form ula in the second equation

of (51) and obtain

(52) �(�

�

t

( x

1

)) = e

A

2

t

�( x

1

) +

Z

t

0

ds e

A

2

( t � s )

N

2

(�

�

s

( x

1

) ; �(�

�

s

( x

1

)))

Equiv alen tly ,

(53) e

� A

2

t

�(�

�

t

( x

1

)) = �( x

1

) +

Z

t

0

ds e

� sA

2

N

2

(�

�

s

( x

1

) ; �(�

�

s

( x

1

)))

In the stable case, w e note that, if w e consider functions � whic h are

C

2

and satisfy �(0) = 0, D �(0) = 0, w e ha v e

(54) j e

� A

2

t

�(�

�

t

( x

1

)) j � C k e

� A

2

t

k ( k e

A

1

t

k e

"t

)

2

The condition

(55) k e

� A

2

t

k ( k e

A

1

t

k e

"t

)

2

� C e

� t

for some � > 0, that the RHS of (55) go es to zero exp onen tially , is,

clearly an analogue of (11).

Under this assumption (55), w e obtain that the �rst term in (53)

go es to 0 as t ! 1 . Hence, w e obtain that a condition for in v ariance

of the graph of � is

(56) �( x

1

) = �

Z

1

0

ds e

� sA

2

N

2

(�

�

s

( x

1

) ; �(�

�

s

( x

1

)))

Note also that (55) and the quadratic v anishing of N

2

, � at the origin

also imply that the in tegral in the RHS of (56) con v erges uniformly .

Hence, w e will consider (56) as a �xed p oin t equation for the op erator

de�ned b y the RHS.

A useful heuristic guide is that this op erator is v ery similar to

Z

1

0

ds e

� sA

2

N

2

( e

A

1

s

( x

1

) ; �( e

A

1

s

x

1

)))

Again, if w e tak e spaces with w eigh ted norms, w e obtain that the op er-

ator obtained b y comp osing � on the righ t with a con tractiv e function

has a norm whic h is b ounded b y the square of the con traction.

T o sho w that the op erator T is a con traction when top ologized b y

the conical norm follo ws more or less the same line of argumen t than
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in the case of di�eomorphisms, namely adding and subtracting terms

till w e get to the heuristic principle.

The pro of of o ws is sligh tly more complicated than in the case of

di�eomorphisms since w e ha v e to obtain estimates for �

�

s

( x

1

) � e

A

1

s

x

1

.

Of course, these can b e obtained from the dep endence on the solu-

tions of ODE's on parameters, but they tak e longer to write than the

analogues for di�eomorphisms.

W e, of course, also ha v e to sho w that the op erator maps the � spaces

in to themselv es but the pro of is extremely similar once w e obtain for-

m ulas for the high deriv ativ es of the op erator T whic h separate the

higher deriv ativ es.

The pseudo-stable case is in man y w a ys easier. In this case, w e

cannot assume that �

�

s

is a con traction, so w e need to mak e sure that

the functions � ha v e domain in all of X

1

and, therefore that the N are

smo oth in all of X

1

� B

1

( X

2

). This is done in Section 4.1.

Since w e are assuming that e

sA

2

is a con traction for large s , there is

no problem sho wing that the RHS of (56) is a con traction in C

0

norm.

Also, using the same form ulas for the high deriv ativ es, it is p ossible to

sho w that the � spaces get mapp ed in to themselv es.
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