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INVARIANT MANIFOLDS ASSOCIATED TO
INVARIANT SUBSPACES WITHOUT INVARIANT
COMPLEMENTS: A GRAPH TRANSFORM
APPROACH

R. DE LA LLAVE

ABSTRACT. We use the graph transform method to prove exis-
tence of invariant manifolds near fixed points of maps tangent to
invariant subspaces of the linearization.

In contrast to the best known of such theorems, we do not as-
sume that the corresponding space for the linear map is a spectral
subspace. Indeed, we allow that the spaces invariant under the
linearization do not have an invariant complement.

We also do not need that the spectrum of the operator restricted
to the spaces satisfies the usual dominance conditions.

We prove some uniqueness theorems and show how this can be
used to prove results for flows.

More general theorems have been proved in [CFdIL03a] by an-
other method.
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1. INTRODUCTION

If X is a Banach space and F': X — X F(0) =0 is a local diffeo-
morphism there are many theorems in the literature establishing the
existence of manifolds invariant under F' which are tangent to invariant
spaces of the linearization of F' at 0.

These classical theorems usually assume that there is a decomposi-
tion

(1) X=FE ®E,

which is invariant under DF(0) (often the spaces E;, are spectral
subspaces for DF'(0)). That is:

(2) DF(O)E1 = El; DF(O)E2 = EQ,
and such that they satisfy the domination condition:
(3) IDF(0)| || - [IDF~H0) sl < 1.

The conclusions of the classical invariant manifold theorems (See [Rue89]
for a comparison of different invariant manifold theorems) are that one
can find a manifold W invariant under F', tangent to E; at the origin,
so that one can think of W as a non-linear analogue of E}.

The goal of this paper is to weaken somewhat the conditions (2)
and (3) in the stable and pseudo-stable manifold theorems. The main
result, Theorem 3.1 only needs as hypothesis weaker versions of (2)
and (3). The Theorem 3.1 contains results for stable and pseudo-stable
manifolds.

More explicitly, we will assume that the space F; is invariant under
the map, but we will not assume that the decomposition (1) is invariant
under DF(0). (in particular, we will not assume that the decomposi-
tion corresponds to spectral subspaces). Also, we will not assume that
domination (3) happens. For most of the results on stable manifolds
presented here, it will suffice to assume that

(4) 1A I1A)* < 1.

(where A; 5 are the restriction of A to the spaces Ej » respectively, see
(9) for a more precise definition).

Invariant spaces for a linear without an invariant complement occur
naturally as the spaces associated to the eigenvalues of a nontrivial
Jordan block. For a Jordan block , even if the space generated by
the eigenvalue — or the generalized eigenvalues of smallest index — is
invariant, there is no invariant complementary space. See Example 3.7.

Some situations where invariant subspaces without invariant comple-
ments appear in a natural way are: skew product systems, bifurcations
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of systems with nilpotent part and — an application that has motivated
us significantly — the flows of resonant systems.

As a motivation to weakening the assumption (3), we note again
that the situation of a non-trivial Jordan block happens in resonant
systems. We may want to associate invariant manifolds to the spaces
generated by the eigenvalues. We also note that the convergence to the
origin in a linear contraction is dominated by the eigenvalues closest to
the unit circle, not the eigenvalues closest to the origin (In the case of
a non-trivial Jordan block, the convergence to the equilibrium is also
tangent the space corresponding to the eigenvalue).

Hence, in the study of asymptotic convergence of non-linear systems,
it is interesting to give meaning to manifolds associated to the eigenval-
ues closest to the unit circle — the so called slow manifolds. In [d1L97]
and [CFdIL03c] one can find a more comprehensive discussion of slow
manifolds and their role in applications.

The goal of this paper is to present proofs of results on existence of
invariant manifolds of the above results that are based in the graph
transform method. The results we present will cover the usual strong
stable manifold theorem and the pseudo-stable ones. The proofs pre-
sented here are based in rather well known variants of the graph trans-
form approach.

We will present the results in the generality of Banach spaces, since
assuming finite dimensional spaces does not simplify the proofs. One
motivation for our working in Banach spaces is that, in this way, the
results lift immediately to invariant foliation theorems using a well
known device [HP70]. (As it turns out, in some of the results proved
here, when doing the lifting in [HP70], one does not obtain foliations
as was observed in [JPdIL95].

The paper [CFdIL03a] contains results on existence of invariant man-
ifolds associated to very general invariant spaces, which, in particu-
lar are not required to have a complement. The paper [CFdILO03b]
studies the dependence on parameters of these manifolds. The paper
[CFdILO03¢] is concerned with simple proofs, applications and examples.

The results presented here (except for the results on pseudo-stable
manifolds and the technical use of fractional regularities) are less gen-
eral than those in [CFdIL03a] and the method of [CFdIL03a] has sev-
eral advantages — see the discussion in those papers —. Nevertheless,
we hope that the present note could be useful for people more famil-
iar with the graph transform method than with with parameterization
method of [CFdIL03a].

One tool that we will use is “conical norms” or weighted norms which
also plays a role in [CFdIL03a]. As we will see this is the key technical
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tool that allows to weaken (3). See Remark 4.5 for a discussion of
alternatives and the reasons why one can improve (3) with them.

We postpone the statement of the main results till Section 3 so that
we can introduce some notation. The proofs of the statements will
follow in subsequent sections.

2. NOTATION

We consider the Banach spaces C*™* k € N, a € [0, Lip] endowed
with the usual uniform norms as well as the spaces C'™° with its usual
Frechet topology and C* endowed with a Banach topology based on
taking sups of a complex extension. When the size of the extension is
important, we will denote it as a subindex, for example inC}’.

That is, we denote, when k£ € N,

1@l x) = max (sup D).
i=0,..k pey

When r =k +a, k€ N, a € (0, Lip]
[9llerany = mas, ([Blor ), Ha(DFD))

where H, is the seminorm

(5) Ho(®) = sup [®(x) = (y)| - |z —y|™"
z,zeU,x#£%

We note that, when a = 0, for functions normalized to ®(0) = 0 we
have

[@[|co < Ho(®) < 2|2 co

We adopt the convention that Lip > § for any 5 € [0,1), neverthe-
less, k + Lip < k+ 1. In the arithmetic expressions such as (5),(7), the
symbol Lip takes the value 1.

Of course, the reader may choose to ignore the borderline cases where
Lip enters. Indeed, we note that the results and their proofs are signif-
icantly easier for r > 2. Hence, in a first reading it could be worth to
concentrate in the case r > 2,7 ¢ N.

Given a regularity index s as above, we will denote

(6) 52{ s; s¢N

s—1+Lip; seN

(In the notation above, we note that when s = oo, w, then § = oo, w
respectively.

Two useful and elementary inequalities are (since they are so well
known, we omit a precise formulation including assumptions on do-
mains and the existence of products)
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7 Ho(0 - @) < Ho(0)]| @0 + |0l co (@)
() Ho (T 0 ®) < Ho () (Lip(d))°.

We recall that a cutoff function is a function ¥ such that it is identi-
cally equal to 1 in the ball of radius 1 and zero outside a ball of radius
2.

In finite dimensional spaces, the existence of such a cut-off function
is obvious. Similarly, Hilbert spaces — or Banach spaces whose norms
which are smooth functions out of the origin — do have cut-off functions.
Nevertheless, there are infinite dimensional Banach spaces for which no
such smooth cut-off exists. For example, the usual C° space of a closed
interval does not have smooth cut-off functions (see [DGZ93]).

3. STATEMENT OF RESULTS

The main result of this paper is the following Theorem 3.1. We note
that Theorem 3.1 incorporates results about stable and pseudostable
cases. The hypothesis and conclusions on regularity etc. are somewhat
different in both cases since the manifolds in the stable cases are —
roughly — as regular as the map, but in the pseudo-stable cases the
regularity is also limited by ratios of norms.

Theorem 3.1. Let X be a Banach space. Let F : X — X be C",
r € N+ [0,Lip] U {oco,w}, r > 1 be such that F(0) = 0. Denote
DF(0) = A.

Assume that

A) There exists a decomposition X = X1® X, into closed subspaces
such that the space X is invariant under A. That is,

(8) A(Xy) C Xy .

Note that we do not assume that Xo s invariant under A.
Denote by 11y, 11y the projections over X;, X5. Denote also

(9) Al = HIAHI, A2 - HQAHQ.

Assume furthermore that we are in one of the following two cases:

Stable case
B.1.1

JAul < 1.
B.1.2 Let s = min(2,r),
Assume that we have the following weak dominance condition

(10) 1A A" <1
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In particular, if r > 2 we just assume
(11) AT - 1A < 1.

Pseudo-stable case
B.2.1

14 < 1.

B.2.1 The space X; admits smooth cut-off functions.
B.2.2 For some real number 1 < s, we have

(12) AT A <1
Then, there exists U a neighborhood of 0 and a map ® : U C X1 — X
such that

i) ® is Lipschitz in U and differentiable at the origin.
ii) ®(0) =0, D®(0) = 0.
iii) The graph of ® is locally invariant under F'. (In the stable case,
the graph of ® s imvariant.
iv.1) In the stable case we have:

deCr

where 7 is defined in (6).
iv.2) In the pseudo-stable case we have:

e C®
(where § is defined in (6)) for any s < r for which (12) holds.

Remark 3.2. Instead of conditions on the norms of the operators in
(10) and (12), we could have used bounds on the spectral radius by
redefining the norms using adapted norms. By choosing an adapted
norm, we can arrange at the same time that the norm of the operator,
its diagonal blocks and the inverses, are as close as desired to the
spectral radii of these operators.

We refer to the appendix of [CFdIL03a] for a discussion of adapted
norms in upper triangular operators. Of course, in finite dimensional
spaces, the construction of these adapted norms are elementary.

In many ways, the formulation in terms of spectral properties is
more intrinsic since the assumptions are independent of the norm used.
Nevertheless, in this paper we will just use the norm formulation of the
hypothesis.

Since we will not use a spectral formulation of the hypothesis, the
statements work just as well for real Banach spaces and for complex
Banach spaces. O]
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Remark 3.3. The method of proof will also provide with some unique-
ness statements. We will describe them in Remark 4.11 and Remark
4.18. We anticipate, however that the conditions that give uniqueness
are very different in the stable case and in the pseudo-stable case. In
the stable case, we obtain uniqueness under the assumption of regular-
ity of the invariant manifold in a neighborhood of the origin. In the
pseudo-stable case, we obtain uniqueness by imposing conditions on
the behavior at infinity.

This leads to some apparently paradoxical situations. For example,
there are some cases where one space invariant for DF'(0) satisfies the
hypothesis of the stable part of Theorem 3.1 for the map F' and the
hypothesis of the pseudo-stable part for the map F~!. Nevertheless,
it could happen — indeed it happens generically — that the manifolds
obtained applying the two results are different.

Furthermore, we note that for the pseudostable results in Theorem
3.1, we only obtain the uniqueness results when we perform some pre-
liminary preparations — described in Section 4.1 for the map which
include arbitrary choices. Even if we obtain a unique manifold for each
choice of the preparation, it could happen — see Example 5.4 — that the
manifold produced depends on the preparation. Hence, the invariant
manifolds claimed in the pseudo-stable case of Theorem 3.1 are very
far from unique.

O

Remark 3.4. We will obtain some results for flows just by applying
the results for maps to the time ¢ map of the flow. Given the unique-
ness results alluded to above, it is not hard to show that one obtains
manifolds that are indeed invariant for the flow. We have developed
these rather standard arguments in Section 6.1. Note also that it is
quite possible to write a direct proof of the results for flows using an
strategy very similar to that used here. We will indicate how this is
possible in Section 6.2. O

Remark 3.5. Note that in the pseudo-stable case, we do not make any
assumptions on what is || A;|| other than (12). This allows to consider
maps where

(13) Al = 1.

Of course, due to (10), we need that the possible expansion of A;
is dominated by the contraction of A;" (notice that in (12) we are
requiring that s > 1).
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Even if it is not strictly logically necessary, in the study of pseudo-
stable manifolds one can assume without loss of generality (13) since
the case where (13) fails can be study more efficiently by the methods
discussed in the stable case.

Pseudo-stable manifolds have been established by the graph trans-
form in [HPS77] and by other methods in [Irw80], [dILW95]. Indeed
the treatment in this paper is quite similar to that of [HPS77], the
only novelty is the removal of the assumption of invariance of the com-
plement, but the proof we present here in the pseudo-stable case is
essentially the same as in [HPS77]. O

Remark 3.6. The use of 7 and 5 in the conclusions does not belong.
This is quite common in invariant manifold theory. Nevertheless, to
improve the regularity conclusions on the manifold from r — 1 + Lip
to r seems to require a separate argument. Such arguments are very
standard in the literature. In particular, one often uses the tangent
functor trick.

One possibility for such an argument is to derive a functional equa-
tion satisfied by the first derivative — it is a linear equation on the
derivative. Then show that the solutions of this equation are C"~!.
We refer to [CFdIL03a] for arguments in a similar situation. Other
arguments which also give sharp regularity occur in [EIB01]. We will
not pursue this improvement here. 0

A simple example where Theorem 3.1 applies and the classical the-
orems do not — of course the results in [CFdIL03a] do apply — is the
following.

Example 3.7. Consider X = R® and a C? map F, leaving the origin
fixed and such that the linearization at the origin is:

12 1
1/2 1
A= 1/2
2/5
1/3

Note that 1/2 > 2/5>1/3 > (1/2)%
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Therefore, Theorem 3.1 applies to either of the following splittings
(as well as others based on the same ideas)

X! ={(z,0,0,0,0)|x e R} X5 ={(0,y,2,t,u)ly, 2zt uecR}
XV = {(2,9,0,0,0)|z,y € R} X =1{(0,0,2,t,u)|z,t,u € R}
X7 ={(,0,0,¢,0)|z,t € R} X35=1{(0,v,2,0,u)|ly,u e R}

X% ={(r,0,0,0,u)|z,u € R} XI={(0,y,210)y,z2tcR}.

It suffices to take a space invariant under the block of 1/2 and adjoin
it or not the eigenspace corresponding to 1/3 or the eigenspace corre-
sponding to 2/5. Of course, more possibilities appear if the eigenvalues
2/5, 1/3 would have had a non-trivial Jordan block.

Systems such as those considered in Example 3.7 appear naturally
as the time one maps of systems with resonances. The time one map
of a resonant system will often have a nontrivial Jordan block. Un-
derstanding well the geometric properties at resonances seems to be
an step toward providing explanations of many empirically known, but
not yet rigorously analyzed phenomena.

Upper triangular couplings are called in the literature master-slave
systems. When the master and the slave are identical systems — which
often happens in electronics — the linearization has Jordan blocks.

Remark 3.8. We note that the results of [dIL97], [E1B01], [CFdIL034]
apply also to situations in which rather than a gap condition we have
non-resonance conditions. In particular, we could have applied the re-
sults of those papers to Example 3.7 with 1/3 replaced by 1/7. Never-

theless, the results of this paper do not go through with such a change.
O

Remark 3.9. Note that the equations (10) and (12) have the same
form.

Roughly speaking the regularity obtained for the manifold is the
minimum of the regularity of the map and the set of numbers s that
satisfy the condition in (10) or (12).

In the stable case, we have that the larger that we take s, the eas-
ier is to satisfy (10). Hence the limitations for the regularity of the
conclusions come only for the regularity of the map.

In the pseudo-stable case, (12) is false for large enough s. Hence,
the limitation for regularity given by (12) is a genuine limitation which
may be stronger than the limitation due to the regularity of the map.

Another consideration is that, in order that the proof goes through,
we need to assume certain limitations on s. In the stable case, the
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proof we present goes through with s = 2. This is weaker than the
usual domination condition s = 1. The reason why we can take s = 2
is related to the fact that the nonlinear part of the map vanishes to
order s. If we had D*N(0) = 0 for ¢ < k, it would suffice to take s > k.
This observation is further exploited in [dIL97] which, under extra non-
resonance conditions shows that one can make transformations which
make NV to be in a normal form so that it vanished to higher order. We
will not discuss these improvements in detail.

In the pseudo-stable case, the order of vanishing of N does not help
and we just need to use the classical condition s > 1. 0

4. PROOF OF THEOREM 3.1

In this section we will present the proof of Theorem 3.1. We will
present first the proof for the stable case and then, the proof for the
pseudo-stable case. Both proofs are based in the same functional equa-
tion and have some common preparatory work, nevertheless, the final
analysis will be rather different.

4.1. Preliminaries. In this section, we carry out some preliminary
preparations of the problem that can be performed without loss of
generality. They simplify subsequent analysis.

We write

DF(0)=A
F(x) = Az + N(x).

Clearly, N(0) =0, DN(0) = 0.
With respect to the decomposition X = X; & X,, we can write

(14) A:(‘%l i).

We will assume without loss of generality that
l2]lx = max (| x,, Tzl x, )
Furthermore, by changing [|-|| x, to ||-]|%, = Al|-||x, with A sufficiently
large, we can assume that
(15) [Bllx,sx, <€

where ¢ is arbitrarily small. Later in the proof we will impose a finite
number of conditions that ¢ has to satisty.
As a consequence of (15) we have:

1Al < max ([l A, [| A2]l) + ¢
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As standard in invariant manifold theory, we observe that if we in-
troduce a scaling Fy(x) = AF(A™'z), we have that DF)(0) = DF(0),
hence none of the previous properties of the linear map are altered. At
the same time can arrange by taking A big enough that

(16) INllora) << -

Hence, we will assume, without loss of generality that we have (15)
and (16).

4.1.1. Preparations for the pseudo-stable case. In the pseudo-stable
case, we need a further reduction that allows us to assume that N
is C" small in X; x B;(X32) where B(X>) is the unit ball centered at
the origin in X,. Given a cutoff function ¥ on X, it suffices to consider
the mapping
F(r) = Az + U(Tl,z)N ()

Since we have arranged by scalings that N is C” small in the ball of
radius 2, the Leibniz formula for the derivatives of products and the
formula for the products of Holder functions show that F' is small in
the ball of radius 2.

Note that the map F agrees with the map F in a neighborhood of
the origin. Hence a manifold which is invariant for F, will be locally
invariant for F.

As we will see later, the uniqueness results established for the pseudo-
stable case, will be uniqueness results for the manifolds invariant under
F and which satisfy some conditions on the behavior at co. Since the
construction of F' out of F' involves the choice of the cutoff function
U, it is quite possible that different choices of ¥ will lead to different
invariant manifolds for different F' and, hence, different locally invariant
manifolds for F'.

4.2. A functional equation for the invariance. We follow a rather
standard variation of the graph transform method.
If v = (y, ®(y)) is a point in the graph of ® we have

F(z) = (Aiy + BO(y) + Ni(y, ®(y)), A2®(y) + Na(y, B(y)))

where Ny, N, are shorthands for IT; NV, IIs N respectively.
The condition that F'(z) is also in the graph of ® reads — ignoring for
the moment questions of domains on where the composition is defined—

(17) @ (Aiy+ Bo(y) + Ni(y, (y))) = A2®(y) + Na(y, 2(y)).

The equation (17) is, furthermore formally equivalent — again ignor-
ing questions of domains of definitions of the functions — to

(18)  ®(y) = A;'[®(Ary + BO(y) + Ni(y, ®(y)) ) — Na(y, @())]-
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Remark 4.1. The issue of equivalence between (17) and (18) are cer-
tainly not trivial. As we will see when we discuss uniqueness, different
equations which are formally equivalent, may have different solutions.
As argued in [dILW95], [JPdIL95] this is one of the reasons why different
notions of slow invariant manifolds lead to different objects. See also
Example 5.4 where we exemplify that the same formal equation may
have very different solutions depending on the precise requirements on
domains. O

We will study (18) as a fixed point problem.
We denote by T the operator which to a function ® associates the
R.H.S. of (18). That is

(19) TI®|(y) = A7 [2(Ary + BO(y) + Ni(y, 2(y))) — Na(y, 2(y))]

This operator is not exactly the operator associated to the graph
transform, but it is closely related to it — the fixed points we will
produce for 7 will be also fixed points of the graph transform operator
— and slightly simpler. This is the operator that is considered in many
classical proofs, e.g. that of [LI83].

The proof we present consists in showing that the operator T is well
defined on a space of functions, that it has a fixed point and that the
fixed point is such that it allows us to reverse the formal derivation,
(that is, we will show that the solution of (18) we produce is also a
solution of (17) since we will show that the domains and range match
so that we can reverse the derivation of (17)).

The proofs of these results will be different in the stable case and
in the pseudo-stable case. Both of them follow the classical proofs of
invariant manifold theorems following the method of the graph trans-
form. We identify some space of functions which is mapped into itself
by 7 and on which 7 is a contraction. We will present first the proof in
the stable case and later the proof for the pseudo-stable case. The cases
of C*° and C¥ regularity for the stable case will be done separately in
Section 4.4.5.

4.3. Formulas for derivatives. A result that we will use both in the
stable and in the pseudo-stable cases is the following purely formal
Lemma 4.2.

Lemma 4.2. Assume that for an open set of y we can define T|[®] as
in (19).
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If ® is C', i < r, then T[®] is C* and, moreover, we have
D'T[®] =A;'D'®(A; + B® + Ny(-, ®))-
- [(Ay + BD® + DyN, (-, ®) + DyN(-, ®) D®)]™"
(20) + Ay 'D®(A; + B® + Ny(-, ) DaNi (-, @) D'®
+ A7 Dy Ny(-, @) D'®
+ Ry(D®,..., DO

where R; is a polynomial in the derivatives of ® whose coefficients are
polynomial expressions involving the deriwatives of F' — up to order i —
evaluated at P

Proof. The formula (20) can be obtained from Faa Di Bruno formula,
but is significantly easier.

The main point of (20) is that we can identify the only term in
DUT'[®] which contains as a factor D'®.

The formula (20) is easily established by induction starting form the
obvious case i = 1. Assuming that (20) is true, we compute DT[]
by taking one more derivative on both sides.

We note that taking the derivative of R; we do not obtain derivatives
of ® of order higher than ¢. To establish that R is a polynomial we
compute the derivative of the terms by using the product rule. When
we take a derivative of a factor D/®, we obtain D’*1® and when we
take the derivative of D/F o ® we obtain D’ F o ®D®. Both factors
are of the desired form.

To establish the claims about the terms with higher derivatives, it
suffices to observe that the only way that we get derivatives of order
t+1 when we take derivatives of the expression is that, when we apply
the product rule, take the derivatives on the factor D'®. If we take
derivatives on the other factors, we obtain terms which are polynomials
in derivatives of order lower that ¢ + 1 so that can consider them as

part of R;. O
4.4. Proof of Theorem 3.1 in the stable case. We now start the
proof of Theorem 3.1 when r < oo. The cases r = oo,w will be

postponed till Section 4.4.5

4.4.1. Some spaces of functions. In this section, we introduce some
spaces and norms that we will use later.

The main novelty with respect to most of the standard proofs of
invariant manifold theorems in the literature is that we take advan-
tage of the fact that the functions we are seeking vanish at the origin
to second order (slightly less in the less regular cases). Hence we can
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use weighted norms (22) or norm based on derivatives which lead to
stronger contraction properties for the operator considered (see Propo-
sition 4.3). This improved contraction property is what allows us to
weaken the dominance condition.

We consider 7 = k + a k € N, a € [0, Lip] and define the spaces

Xoo,opi0e = 1P 1 B C X1 — Xo,0 € C7,
1D'®|| o) < 61,0 =0, k,
(21) Ho(D*®) < 67,
®(0) = 0, DP(0) = 0,

sup  [D®(y)|ly| = < oo}
yeB1—{0

where s is the same as that entering in (10), namely, s = min(2,r).
Hence, when r > 2, the exponent of |y| in the last condition for the
derivative in (21) is —1. In case r = 1+ «, the exponent —s +1 is just
—a.

When a = 0, the parameter in the definition of x does not play any
role since d; and 6° would control the C° norm of D*®. Hence, we will
just suppress ¢° Hence, when dealing with integer regularity, we will
use the notation xy,. . s,-

We will assume that 6o < 1 so as to make sure that N(y, ®(y)) is
always well defined.

We will endow xs,,....5,;00 With the topology induced by

(22) |2l = sup [DR(y)I/|yf
yeB1—{0
where, we recall s = 2 whenever r > 2, s = a when r = 1 + «,

a € (0,Lip] and s = 0 when r = 1.

It is not hard to check that (22) is a norm in the space of functions
which satisfy the normalization ®(0) = 0.

Note that the topology induced by (22) is finer than the topology
induced by the C° norm.

An important result [LI73] Lemma 2-5 is that when r = &k + «, the
closure of y under C° — a fortiori under the weaker topology we consider
—is contained in the set of functions which are C™ and, which, moreover
satisfy

®(0) =0, Dd(0) =0,
|D'®||co(p,) < 6, 0<i<Ek,
Hy p,(D'1®) < 6%
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We also note that when r > 2 and the space X; is separable, a
variant of the Ascoli-Arzeld argument concludes that the space y is
precompact with the topology given.

The following two propositions study the behavior of || - || under
operations that appear frequently in the graph transform approach.

The first property of the norm (22) that we will use is that it behaves
very well under composition with contractions.

Proposition 4.3. Let ' : B, — By be a C' function such that

I'(0) =0, | DI||cogs,y < 1.
Assume that || @] < oo.
Then,
(23) @ Tl < @l DT{[eos,)

The main point of the Proposition is that we obtain the exponent s
in the bound in (23). In the most typical case r > 2, then the exponent
s = 2. Since ||DI'||co¢p,) is smaller than 1, this is quite worthwhile.
Indeed, this is the reason why we can improve (3) to (11) when r > 2
or to (10) for low regularities.

Proof. Clearly, the function ®oT" is C' and it satisfies D(®oT')(0) = 0.
We estimate for y # 0
|(D2) o D()[IP(»)|* | DL (y)|
lyl= T (y) >

D2 o T(y)|/lyl'~" <

yeB1—{0} yeB1—{0}

sup (|DT'(y)l)
yeB1—{0}

< sup <|D<1>y|/|y|5‘1>[ sup <|r<y>|/|y|>]

from which it clearly follows that ||® o I'|| is finite and that it satisfies
the estimates in (23). O

Proposition 4.4. Let Ny : X; & Xo — X» satisfy DN(0,0) = 0.
Assume that Ny € O, 0 < a < Lip. Let ® be a C'* function,
®(0) = 0, DB(0) = 0.

Then, the function n(y) = Na(y, P(y)) satisfies

Inll < [INfler+a + [[N]lcr @]

where, as before

In(y) sup 0}|D77(y)|/|y|“-

Il =
y€B1—{
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Proof. We have

IDN(y, 2(y))|/1y|* <|(D1N)(y, ®(»))I/1y|*
+ [(D2N) (y, )1 D (y)/|y]*
<[|Nflerra + (INflen 1]

O

Remark 4.5. We note that the introduction of the conical norm | ||
is mainly useful for the cases r € 1 + [0, Lip|. In the cases r > 2, we
could just use the topology induced by ||D2®||CO(B1).

Since we are considering spaces of C? functions which satisfy the
normalizations ®(0) =0, D®(0) = 0, we see that [|[D*®||co is indeed a
norm.

For our purposes, the main property that we need is that the norm
considered behaves well under composition with a contraction and that
we have improved contraction properties analogous to (23).

For ||D*®||co(p,) we have

ID*(@ 0 T)||cogsy) <ID*@[lco(s)|IDT s,
+ID®|lcogs)|ID°T | oy
<[ID*®||co(s,) (IDT 1l cogs,) + ID°Tllcos))

which can be used in a similar way as (23) provided that we can make
DT small.

Hence, we could use ||[D?®||co in the subsequent arguments rather
than the conical norm. The conical norm ||®|| turns out to be some-
what simpler to estimate and, since |®| < [|D?®||co the uniqueness
statements in the conical norm are slightly more general (the spaces in
which the conical norm is defined include functions that are not C?).

In case that we consider functions ® which vanish to order k£ — which
is possible if N vanishes to order k, perhaps after some preliminary
transformations which are possible under finitely many non-resonance
conditions —, it is possible to use the norms || D*®||co, The paper [d1L97]
includes a general discussion of these norms and shows. In [CFdIL03al,
these cases are studied with wighted norms with higher powers. Other
norms which also lead to improved contraction properties occur in

[EIBO1]. 0

4.4.2. The operator T s well defined in the x spaces. We will first
check that the RHS of (18) indeed defines an operator on Y.
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We first note that using the conventions arranged in Section 4.1 we
have, for y| <1, ® € xq,,.. 0,500

[ Ay + BO(y) + Ni(y, 2(y))] < [[Au]] + €0 + [ Ml
< [l Aufl + 2¢

If we impose the condition that € is small enough, we can ensure
that the RHS of (24) is smaller than 1.

Once we have that the function 7[®] is well defined in the indicated
domain, the chain rule tells us that 7[®] is C".

Hence, the RHS of (18) can be defined for all the ® € x5, .50

(24)

4.4.3. The range of operator T on the spaces x. In this section, we
show that 7 [x] is contained in another set also of the form x but with
different parameters. In particular, we will show that it is possible to
arrange with the prenormalizations introduced in Section 4.1 that one
can find domains y that get mapped into themselves.

Lemma 4.6. In the conditions of Theorem 3.1 after making the ad-
justments in Section 4.1 so that ||Bl|, ||Nl||cs(s,) are small enough,
s = min(r, 2).

Then, it is possible to find g, --- , 0k, 0%, satisfying 09 = 61 = 1,
0; > 0 as well as:

T (Xop=1,8=1-05300) C Xp=1,61=1,--,5;00 -

Proof. First, it is clear by the chain rule that if ® € C”, then T[®] € C".
The fact that 7[®](0) = 0 and DT[®](0) = 0 are just an easy
calculation.
We denote

(25) [[®](y) = Ay + B®(y) + Ny (x, P(y)).

Therefore:
DT'[®|(y) = Ay + BD®(y) + D1 Ny (z, D(y))

(26) + D2Na(y, @(y)) DO (y).

We estimate
(27) Lip(T'[®]) < |IDT[®]||cosy) < | Aull +& -

The fact that || 7[®]| is finite is a very easy consequence of Proposi-
tions 4.3 and 4.4. (The operator T just differs from the case considered
in Proposition 4.3 by multiplication in the left by a linear operator.)

The heart of the matter is to obtain estimates for the derivatives of
T[®] and for | 7[®]| in terms of those of ®.

From (20), using the triangle inequality, the Banach algebra prop-
erties of multiplication, the formula (27) and that for functions ® €
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X6o,..,05;0¢, We have bounds on the derivatives, we obtain that, when
® € ® € xs,,....5.;00, We have:

DT (@]llogsny <IDD s (14 + 32) 147
+ P;(0g, - - -, 0i—1)

where P; is a real polynomial with positive coefficients.

The coefficients of P are obtained by estimating the derivatives of
N. Even if we will not use it in this paper — except for ¢ = 1,2 — we
note that the polynomial F; can be assumed to be arbitrarily small by
assuming that | N||¢i is sufficiently small.

Similarly, using (7) we estimate the Holder seminorm in the unit ball
as:

(28)

Ho 5, (D'T[®))
<Ho s, (D) (| Av ]| +32) | A + P61, -, 6i1).
The rest of the proof of Lemma 4.6 will be different according to
whether r > 2, r € 1+ (0, Lip] or r = 1.

For r > 2, which is the main case, we note that, because of the
assumption (11), we can arrange as in Section 4.1, that

[AZ DT o,y =7 < 1
DT [cosy < 1.
We choose 6y = §; = 1,05 = 1. Because of (28) we get
I D*T[®][|co < 702 + Pa(1,1)

Recalling that we can make the coefficients or P as small as desired
by arranging that ||N||c2, ||B|| are sufficiently small, we can arrange
that

(30) | D*T[®]]|co < 1.
Using that we have the normalizations 7[®] = 0, DT[®] = 0, we
can use the mean value theorem to obtain from (30)
DB <1, [|®]lc, < 1/2.

This establishes the desired result for r = 2.

In case that r = k 4+ a > 2, we proceed to choose the ¢;, % so that
the desired conclusions hold. It is important to emphasize that the
smallness conditions that we will be imposing on ||N||c2, ||B]| will be
independent of k. This will be the basis of the study of the C'* case.

We observe that, we have for £ > ¢ > 2

142 DT o s,y = v < 1.

(29)
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Using (28) we have
IDT(@leo < % + Pi(L, b, . bi-1)

Hence, we can choose recursively &; so that || D'T[®]]|co < 4.
Similarly, taking into account (29) we obtain

Ho[DFT[®)] < Vo™ + Pea(l, 2. ., 0k)

where v, = ||A2_1||||DF||’gg(°‘Bl) < 1. Hence, it is possible to choose
also the 0¢.
This finishes the proof of Lemma 4.6 in the case r > 2.

Remark 4.7. We call attention that in this case, we have only used the
assumption (11). This is somewhat weaker than the usual dominance
condition (3).

As it often happens, when considering the composition with contrac-
tions, derivatives of higher order have better estimates than derivatives
of lower order.

In our case, we deduced estimates for the lower derivatives from those
for the higher derivatives because we have the normalization that &
has a second order tangency at zero, so that we could estimate the first
derivative and the function by the second derivative.

This is, of course related to the fact that, by the definition of de-
rivative, the nonlinear part has a tangency of order 2 with the linear
part.

The same type of argument can be carried out using derivatives or
order higher than 2 if we can ensure that N has a tangency of high
enough order. Indeed in [dIL97] it is shown that if A satisfies certain
non-resonance conditions, it is possible to make changes of variables
that reduce N so that high order tangencies are preserved. In such a
case, it is possible to use similar arguments with higher derivatives and
obtain conditions weaker than (11) because the exponent of ||A;]|| is
bigger than 2.

Arguments with a similar flavor but applied to somewhat different
operators happen in [CFdIL03a].

We also refer to Example 5.1 to show that some of these conditions
are necessary. O

Now, we consider the range of the operator 7 in the low regularity
cases for which the use of the second derivative is not possible.

For the case r = 1, we observe that the estimate (28) we have
IDT[®]||co < 7101 + € where 1 = ||A5"||[|A1]|. In this case, the as-
sumptions in Theorem 3.1 imply that v < 1. Hence, we can choose
the 0; = 1 so that [|[DT|[®]|[ce < 6;. Once we have that, we can
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choose dp > d;. Using the mean value theorem and the normalization
T[®](0) = 0, we obtain that

T(X&o,...,&]c;&a) C X60;~~~;6k§6a'

In the case r = 14+, 0 < a < Lip, we choose g =1, 6 =1, 6 = 1.
By the chain rule, we have DT [®] = (D®) o 'DI'. Hence, using (7),

H.[DT1®]] < || 45" | (Ha[D®] Lip(T)* || DT f|co + | D®||oo HoDT).

Note that H,|[DI'| < H,[DN] and, since a > 0, this can be made
arbitrarily small by rescaling.
Hence, we have for functions ® in x1,1;1

Ho[DT[®] < v +e

where v = ||A7'||[|DL||56* < 1 by assumption. Adjusting that e is
small enough, we obtain the desired result.
This finishes the proof of Lemma 4.6. U

We emphasize that the conditions of smallness that we have imposed
on ||B||, || V||c2, are independent of 7. The way to ensure that the high
order derivatives get trapped is by choosing the ¢; 1 > 2 and ¢* entering
in the definition of the xs,,....s5,;6« to be large enough.

Note also that the argument relied heavily on the fact that we could
have all the v; smaller than one with conditions that are independent
of 7. This is certainly true in the stable case, but will be false in the
pseudo-stable case.

Remark 4.8. In case that we can apply Ascoli-Arzeld theorem applied
to the spaces x — e.g. when X is a separable space, we obtain a proof
of the existence of solutions of (18) just by applying the Schauder-
Tychonov theorem because the space y is compact and, clearly convex.
The operator 7 is continuous because it has a closed graph.

This gives a very short proof of the existence of the invariant mani-
folds since we avoid the estimates to obtain that 7 is a contraction. On
the other hand, we do not obtain the uniqueness properties. Neverthe-
less, we observe that, in the case that the manifold we are establishing
is the stable manifold, there are geometric arguments [Shu87], [LI83]
which establish that the stable manifold is unique.

Hence, a possible argument to prove the stable manifold for finite
dimensional spaces is to apply the Schauder theorem once one estab-
lishes the propagated bounds. Then, one can establish the uniqueness
by geometric arguments as in the references above. U
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4.4.4. Contraction properties of the operator T on x.

Lemma 4.9. In the condition of Lemma 4.6 T s a contraction on
Xso--0, With the norm (22).
Recall that
DT[®](y) = A7'D®(Ay + Bo(y) + Ni(y, ®(y)))
(31) - (A1 4+ B®(y) + DN (y, 2 (y)))
+A5" [DiNa(y, D(y) + D2Na(y, @(y)) D2(y)]
From (31) it will be rather straightforward to estimate ||7]®]—7[®]]|

by adding and subtracting terms appropriately.
We will also use that |y| < 1, ||®|| < 1, ||D®]| < 1, ||D®]| < 1.

Remark 4.10. As a heuristic guide for the subsequent estimates is
that, ignoring all the objects that can be made arbitrarily small, the
formula (31) for the derivative amounts to just

(32) A7 DO(Ay(y))Ar

As we will see, since all the terms are small, the proof of contraction
will be obtained by adding and substracting terms from the proof of
contraction in (32).

The contraction of (32) is proved using the improved contraction
estimates. We have:

145" D@ (Ary) Ar — Ay D (Ary) A
< [ AZH 1 ANDP(Ary) — DB(Ary)|
< 42 A — @Ay
< A3 A Plle — @f[yl-
From the above estimates, it follows that the main part of 7 (as in

(32) is a contraction in || - || O

Now we turn to proving estimates for the full 7 and not just (32).
Roughly speaking we will try to proceed along the lines indicated in
the Remark 4.10, but we will have to pay attention to estimating sys-
tematically all the other terms which will turn out to be arbitrarily
small with the adjustments in Section 4.1.

IDIN(y, ®(y)) — DiN(z, ®(y))] < | D1DoN oy 2(y) — S (y)]
<e]®— 2fflyl*

A fortiori, similar bounds are true for Ny, N5 in place of N.

(33)
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Moreover,
| DN (y,®(y)) D2(y) — D2N(y, &(y)) Dd(y)]
< |D2N(y, ®(y))|| D2 (y) — DI(y)|
+|D2N(y, ®(y)) — DaN(y, B(y)) || DD(y)]
<el|®— 3yl

where we have used again (33) to estimate the second factor.

Again, we note that, the same estimates remain valid for Ny, N, in
place N.

We denote by

[[®](y) = Ary + B®(y) + Ni(y, ®(y))
DT[®](y) = Ay + BD®(y) + D1 N1 (y, ®(y)) + DN (y, P(y))

We estimate
| DT[®]||cosy) < || An]| +¢

Hence
IT@))] < (|4l + ) lyll -
Moreover, we have

[DL[@](y) — DI [](y)] < ]| @ — @l]y]

T[@](y) - L[@](y)] < cl|l@ — 2fl|y|

The only terms left to estimate in DT [®] — DT[®] can be expressed
as

(34) A7 (D® o T[®](y) DT [®](y) — DP o T[®](y) DL [®](y)).

The norm of (34) is bounded by (we recall that s = min(2, r) entered
in the definition of || - ||)

14511 [|D® o T[®](y) — D o T[@](y)|| DT[] (y))]
+ |D® o I[®](y) — D® o T[®](y)|| D [®] (y)|
+ [D® o T[@](y)|| DT [@](y) — DI[@](y)]]
< [1AZHITN® — DU (A + ) [yl (1Al +e)
+ [T[@](y) = P )14l + ) + el @ — Dllly|*~"]
< (142 A1 +2)* +e) |2 = Dyl

Collecting the previous estimates, we obtain that as indicated in
Remark 4.10, the operator 7 has a Lipschitz constant in || - || which
is ||A5'||||A1]]* + e. By the assumptions in Theorem 3.1, this is a
contraction on Xy, 5.5e. Hence, we obtain that there a fixed point
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of T — therefore a solution of (18) — in the closure of x for the || - ||.
Applying Lemma 2.5 in [LI73], we conclude that this fixed point is C”.

Hence, we have established the conclusions of Theorem 3.1 for the
case ||A1]] <1, 7 € N+ [0, Lip].

Remark 4.11. We note that, since we have used a contraction argu-
ment, we have shown that there is exactly one fixed point in X5, .00,
where ~ denotes the closure in the topology we considered.

Note that if £ > k

(35) X0030ens050s0k 413002308 & X0 rry8530% -

It is important to realize that our choice of the ¢’s for different reg-
ularties is done by induction in the regularity. In this way, the § of
high index are added without changing the ¢ of low order. In this way,
when we consider different regularities, the spaces that get mapped
into themselves are nested as in (35).

Notice also that the conditions to obtain contraction do not change
with » — we only establish contraction in a low regularity norm — and
the conditions to get the space mapped into itself do not change either
with higher r for » > 2. This is because the smallness assumptions
that we take do not depend on derivatives higher than the second.

Notice that when we take the assumption (11), we obtain contraction
only on C? spaces or spaces with higher regularity. As we will see in
Example 5.3, this conclusion is sharp . Even in cases that we obtain a
unique C?~° manifold, it is possible to obtain infinitely many manifolds
which are 022,

We furthermore observe that if we obtain uniqueness in a ball, the
uniqueness propagates to the basin of attraction of the origin. Given
two invariant manifolds contained in the basin of attraction, their in-
tersection with any bounded set will be eventually mapped into the
ball taking enough iterations. Their images will also be invariant man-
ifolds, which, by the previous uniqueness statement will have to agree.

O

4.4.5. Proof of Theorem 3.1 in the stable case when r = oo, w. The case
C® is a very simple consequence of the observations made in Remark
4.11.

We note that, we can find a sequence {0;}ien such that, for every
k€N, Xs,00,..5, 1s mapped into itself to 7 and 7 is a contraction in
the distance || - ||

Because of the nesting (35), the fixed points in those spaces x have

to coincide. The fixed point, therefore is in [, Ok = O,
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The analytic case is very simple. We work in a complex Banach
space and we recall that differentiable functions in a complex Banach
space are analytic (see [Kat95] ).

If we carry out the C? proof as above, but in a complex ball, we
obtain that the function is differentiable in the unit ball and, therefore

analytic.
O

4.5. Proof of Theorem 3.1 in the Pseudo-stable case. The proof
follows very similar lines as the proof in the stable case. Nevertheless
we have to make different choices of spaces and of norms. Indeed, the
proof of the pseudo-stable cases is in many ways somewhat simpler
since the devices of weighted norms that we used to in the contractive
case are not useful for the case of pseudo-stable manifolds, so that the
proofs will be more straighforward and we will not have to distinguish
the cases of different regularities.

4.5.1. The operator T 1is well defined. The main difference with the
stable case is that we no not have that |DI'| < 1. Hence, we cannot
ensure that ® o I' is defined in a ball if ® is.

Hence, we have to consider spaces of functions ® defined in the whole
X; this in turns, forces us to consider non-linearities N that are uni-
formly small on X; x B1(X32). This is precisely what was accomplished
in Section 4.1.1.

We will, therefore assume in the following that N is defined and
small in X; x Bi(X5). In this circumstances, the operator 7 is well
defined.

4.5.2. Some spaces of functions. The spaces that we will consider are
very similar to the spaces x that we considered in Section 4.4.1.
We consider r = k + « as usual and consider the spaces

(36)
>~<‘50"'5k55a = {(I) : X1 — Xg, S CT,“Di@“CO(Xl) < 51,2 = 0, o,y
H,(D*®) < ¢
®(0) = 0,DP(0) = 0}
The spaces Y differ from the x spaces because the functions in Y are
defined in the whole space X; rather than just on the unit ball.
The main technical difference with the spaces x is that we consider
the Y spaces endowed with the C°(X}) topology.
In the pseudo-stable case, we will not use weighted norms, since in

this case, the extra factors || DI'||co do not help since they are bigger
than 1.
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The analogues of Propositions 4.3 and 4.4 are the following results
which are rather obvious.

Proposition 4.12. LetT' : X; — X be a C* function such that T'(0) =
0, |DT||co(x,) < 1.
Then,

(37) [ o Tl cogxsy < [[®fleocx):

Proposition 4.13. Let N, : X1 X B1(Xs) — Xy satisfy DN,(0,0) = 0.
Assume that Ny € O, 0 < o < Lip. Let ® be a C'* function,
®(0) = 0, DB(0) = 0.

Then, the function n(y) = Na(y, P(y)) satisfies

Inllcocxyy < N1 V2llcox, x By (x2))-

4.5.3. The range of the operator T on the spaces x. This section is an
analogue in the pseudo-stable case of the results in Section 4.4.3. As
we will see the methods are very similar even if the conclusions are
different due to the fact that, possibly ||A1|| > 1, hence high powers of
of A; are not contractions and ||A3']|||AL||¥ will not be a contraction
for high k.

Lemma 4.14. In the conditions of Theorem 3.1, assume that
JAZHI[lA" < 1.

Denote r = k + « as usual.

Then, after making the adjustments in Section 4.1 so that ||B||,
| Nlct(xix B (x2)) 8 small enough, it is possible to find do, ..., 0; 0%,
0g =01 =1, 0; >0, is such a way that

T (Xo0.01--8050%) C Xooyoonsdp:09

Proof. The proof is very similar to — but simpler than — the proof of
Lemma 4.6.

We just note that, because of (20) we have a direct analogue of (28)
(we just need to change the domains where we carry out the estimates).
(38)

ID'TI®]llcogxyy < 1D leopx,) ([[AL + 3¢) 1|4 | + Pi(do, - - -, 6i-1)

where P; is a real polynomial with positive coefficients.
We also have an analogue of (29) just changing the domains.
(39) '
Hon, (D'T(®)) < Hony (D) (| AL +32) T AZ | + P01, -, 6i1)

Hence, we proceed by induction assuming that we have set
60 = ]., 61 = 1.
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As in the contractive case, we just note that this can be arranged if we
arrange that ||N||ca1, || B|| are sufficiently small.

Assume inductively that we have determined 0y = 1,01 = 1,...,9;,
Then, choose ¢;;1 in such a way that
(40) Sit1 < Yit16; + Piy1(01,...,01)

where i1 = [|A; [[IIT]I

This choice of 0,41 satisfying (40) is possible provide that ;41 < 1.
By the assumptions in Theorem 3.1, we see that we can adjust that
Yig1 < 1 for 1 < k.

It is clear that if 6;;; satisfies (40) and T (Xs...5:) T Xoo,..0;» then
T (Xoo,....56.0001) C Xoo,....00,0i01 - Hence we can recursively, find the ;.

Similarly, using (39), we can ensure that we can find ¢ provided
that |45 [IT)15 < 1.

0

Remark 4.15. The main contrast with the proof of Lemma 4.6 is that
in Lemma 4.6, the 7; were decreasing as ¢ increased. In the pseudo-
stable case considered here, the ~; are increasing with ¢ and for large
enough ¢ the condition 7; < 1 is violated. This is what makes the
induction finding the ¢ stop and, hence, makes the proof stop for high
regularity. As we will see in Example 5.4, this is not an artifact and
there are examples where one cannot get more regularity than the
regularity predicted by this argument. 0

4.5.4. Contraction properties of the operator T on x. This section is
quite analogous to Section 4.4.4. The main result is Lemma 4.16 whose
proof goes along very similar lines as the proof of Lemma 4.9.

Lemma 4.16. In the condition of Lemma 4.6 T 1is a contraction on
Xso--5, With the norm (22).

Again we remark that a useful heuristic idea is to note that, after
we have performed all the preliminary adjustments in Section 4.1, the
main part of the operator 7T is just

(41) R[] = A3 Do A,.

Hence, we expect that the estimates for 7 are similar to the estimates
of the very simple operator

IR[®] = R[PIlcocxx s oxay < N2l 7HI® = @llcox, x (x))

Now, we proceed to estimate the terms in the full operator 7. The
most difficult terms will be those which include ® evaluated at two
different points — which depend on ®. For this terms we will need to
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assume that @ is at least Lipschitz. This is arranged by choosing the
X in such a way that the Lipschitz constant is bounded.
We note that if &, ® € y, we have

IN(y, @(y)) — N(y, 2()] < el|® — D|co

where, as before, we denote by € terms that can be made as small as
desired by choosing the adjustments in Section 4.1. A fortiori, we have
similar bounds for the Ny, Ns.

Similarly
[Ary + Be(y) + Mi(y, 2(y)) — Na(y, 2(y))]
— [A1y + BO(y) + Ni(y, B(y)) — Naly, ®(»))]|
< el|® — B[ co
Finally,

(A + BB(y) + Ny (y, B(y)))) — B(Ary + Bd(y) + Ni(y, B(y))))]
<|®(A41y + BO(y) + Ni(y, ®(y))))
— B(Ayy + BO(y) + Ni(y, ()]
+ ‘(i)(Aly + B®(y) + Ni(y, ®(y))))
— ®(Ayy + Bo(y) + Ny (y, @(y))))‘
< e]|@ — 3|0 + Lip(®)e]|® — Bl co.

Remark 4.17. In the proof we have presented, we only use the proper-
ties (12) to obtain that the spaces ¥ get mapped into each other. Never-
theless, the contraction part of the argument only uses that |45 "|| < 1.

It is possible — but we will not carry out the details here — to show
that the operator T is a contraction on C°. This property is sometime
useful if one wants to validate the results of some numerical computa-
tions or to prove smooth dependence on parameters. 0

Remark 4.18. Notice that we have established uniqueness of the fixed
point in the spaces Y under the assumption that ||N||c:1, ||B|| are small.

We note that this can be arranged by scaling and cut-off as indicated
in Section 4.1. Nevertheless, it is important to note that the cut-off
may affect the invariant manifold arbitrarily close to the origin.

Note that if ||A;|] > 1, the invariance equation (18) can propagate
an small disturbance.

We will illustrate this phenomenon in Example 5.3.

The uniqueness claimee here is obtained only in the spaces x which
incorporate some conditions of growth at infinity of the functions ®.
This conditions are very different from the conditions we obtained for
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the stable manifolds which were just regularity of the manifolds at the
origin. U

Remark 4.19. A very well known consequence of the fact that the
uniqueness is obtained only after we impose a cut-off is that center
manifolds may fail to be C'*°. This comes about because the fixed points
produced in a C" space by carrying out some cut-offs are different from
those of C"** which requires a different cut-off. O

5. SOME EXAMPLES

In this section, we collect some examples that show that the re-
sults claimed in Theorem 3.1 cannot be improved in certain directions.
Some of these examples are related to examples in [dILW95], [dIL97],
[CFdIL03al, [CFdIL03c]|.

In the first example, we show that the spectral gap conditions (11)
cannot be improved.

Example 5.1. Consider the map F : R2 — R? given by:

1 1

(42) F(x1,29) = <§x1, ng + x%) )

Then, the map does not have any C? invariant manifold tangent to
the space X; = {(x,0)|z € R}.

Note that the example satisfies (11) with inequality replaced by
equality. All the other hypothesis of the theorem are satisfied.

Proof. Any C? invariant manifold can be tangent to X; at the origin
can be written locally as the graph of an function ® : X; — Xo.

The function ® should satisfy the equation (17), which in our case
reads

(43) P (%.Tl) = %q)(a;l) + a7

Taking derivatives of (43) twice and evaluating at the origin, we
obtain:
1)’ 2 Lo
— ) D°®(0) = —-D*®(0) + 2
2 4
Clearly, this shows that there is no function ® satisfying (43) and
which has two derivatives at the origin. A fortiori, there is no C?
function. 0
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Remark 5.2. We note that the main reason why Example 5.1 works is
because (1/2)? = 1/4. Hence, there is a resonance. Indeed, the papers
[dIL97], [EIBO1], [CFdILO03a] study systems that satisfy non-resonance
conditions rather than spectral gap conditions. 0

Example 5.3. Consider the map F : R? — R? in example 5.1.
Given o > 0, it admits infinitely many C*=°. invariant manifolds
which are tangent to the space X, = {(x,0)|x € R}.

Proof. Again, it suffices to produce solutions for (43).

We will recursively determine the functions on the intervals I; =
[27¢71 27 starting with an arbitrary choice @, on the interval I, which
has support in the interior of the interval.

We will write ®(z1) = Y, ®;(x1) + 27 where the ®; have support in
the interior of I;.

Notice that the equation of invariance is such that if we have the
function ®; determined, we can find ®;,;. Indeed, we obtain that (43)
is equivalent to

1
Hence, we can define by recursion the ®;. By standard estimates, we
have from (44)
1
[ ®is1llcz-o(rp,) < 122—"||<1>i||02_a(1i) +2277,
This shows that the series giving ® converges uniformly in C?=7. [

Example 5.4. We consider the function
1 1
(45) F(l‘l,l‘g) = (51‘1, gl’g + \Il(.%‘l))

where U is a C* function with support contained in (1,2) which is not
tdentically zero.

Then, there is one and only one invariant manifold which is a graph
of a bounded function. For revery o > 0, this function is C'083/1082=0
but not Clog3/ log2+a‘

Proof. The equation for invariance is
1
(46) O(1/2 1) = §<I>(x1) + U(zy)

Again, we write ® =Y., ®; where ®; has support on (2*,2"1).
The equations for ®; are

(47) D q(x1) = 3P;(224)
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when ¢ # 1 and
(48) Q) (1) = 3P(221) + ¥(z4)
Applying (47) repeatedly, we have
D, (1) = 3"Dp(2"21).

Hence, the only possibility to make ® bounded at oo is to have
®, = 0. This can be arranged if we choose &, = —W.
Then, we are forced, applying (47), to have

<I>_n(x1) = 3—n—1q)1(2n+1x1)
— 3—71,—1(1)1(271,-1-13:,1)‘

Unless the ¥ is identically zero, we see that (49) is not o83/ log 2+,
U

(49)

Note that we can run the argument in the proof of the statements in
Example 5.4 run in the opposite direction. That is, we can argue that
the only way to obtain a function satisfying (46) which is 1083/ 1082+
in a neighborhood of the origin is to have ®; = 0 which in turns forces
exponential growth at infinity.

Hence, Example 5.4 is an example in which the two uniqueness con-
ditions in Remark 4.11 and in Remark 4.18 are, so to speak orthogonal.
Unless W is zero, if one of them is satisfied the other is going to fail.

We also note that if we cut off the map (45) as indicated in Section
4.1, we may obtain just the linear map. Of course, bounded invariant
manifolds for the linear map are just the linear spaces. This shows that,
in the pseudo-stable case, the preparations in Section 4.1 do affect the
manifolds produced.

Note also that in Example 5.4, we have the phenomenon that once
the manifold is more regular than the critical regularity log 3/log 2 then
it is C'°.

We also note that in the case of the linear map, we have infin-
itely many invariant manifolds zo = A|z; ['°8%1°62 which are C'°g3/1082,
Hence uniqueness does not hold even in the critical regularity.

6. RESULTS FOR FLOWS

We do not formulate precisely the results for flows since the for-
mulation for differentiable vector fields is quite standard. See e.g
[CFdILO03a).

In Section 6.1, we will present a rigorous argument that shows that,
when we have some uniqueness result for the maps, the results Theorem
3.1 for maps imply results for vector fields.
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The main result is that, provided that the time-1 map of the flow
verifies the assumptions of Theorem 3.1, the, the manifold invariant
under the time-1 map produced by Theorem 3.1 is invariant under the
flow.

Even if the argument in Section 6.1 gives a rigorous proof of results
for flows by reducing them to results for maps, we think it is interesting
to point that it is possible to carry out a proof for flows. In Section
6.2 we present an sketch — not a rigorous proof — of a direct proof of
the result for flows. We hope that the reader will be able to fill details
easily.

6.1. Deducing results for flows from Theorem 3.1 for maps.
Given a flow {S;}cr generate by a smooth vector field Y, we note that
the assumptions of Theorem 3.1 can be satisfied for all the maps S;.
We furthermore have that DS;(0) = exp(¢tDY (0). Hence, if DY (0) has
an invariant decomposition so does DS;(0). We will denote DY (0) = A
and denote the decomposition as in (14).

We also note that the results in Section 4.1 can be easily adapted for
flows. Namely, by scaling we can ensure that || DSy(-) — exp(tA)||cr(x,)
is as small as desired for ¢ € [0, 1].

In the pseudo-stable case, we can proceed as in Section 4.1.1 to
cut-off the vector field to ensure that the vector field is bounded in
X1 x By(X») and that therefore we can define Sy in X; x B;(X2) in
such a way that it is close to linear.

If we apply Theorem 3.1 to each of the maps S; we obtain an invariant
manifold. The only thing that we have to worry about is whether these
manifolds are the same for all the different values of .

We note that since S; 0o Sy = S5 0 .5;, if a manifold M is invariant
under Sy, then so is S, M.

If we have some uniqueness statement for invariant manifolds, we
can conclude that S,M = M. That is M is invariant for the whole
flow.

In the stable case, the uniqueness statement that we can use is that
if M is tangent at the origin to Xy, then, clearly so is S,M. Since,
SsM is also as regular as M, then, the conclusions of Remark 4.11
allow us to conclude the desired result.

In the pseudo-stable case, the observation is that since M is the
graph of a function ® : X; — X — 2, which is uniformly bounded and
S, differs from exp sA by a map of small Lipschitz constant, we obtain,
therefore that S;M is also a graph.

Using the uniqueness statements in Remark 4.18, we obtain that

SsM = M.
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Of course, for each of the stable or the pseudo-stable cases we have
used different uniqueness statements. This is perfectly logical, of course.
Nevertheless we point out that, as will be shown in Example 5.4, the
manifolds selected by the each of the different uniqueness arguments
may be different.

Remark 6.1. An important observation is that the above argument
does not use at all the fact that the vector field X is differentiable. We
only use the flow generated by the vector field is differentiable.
Important examples of this happen in Partial Differential equations
where very often one has unbounded — hence discontinuous — operators
generate very smooth flows. This is, of course very well known for a
long time — see e.g [Sho97]. O

6.2. Sketch of a direct proof. Even if the argument presented in
Section 6.1 gives a rigorous proof for flows from the results for maps, it
is worth mentioning that one can also give a direct proof of the results
for flows.

The method is a variant of the usual Perron’s integral equation
method. For the sake of completeness, we present an sketch of a direct
proof. Even if this will not be a complete proof, we hope that this
presentation may be useful for the readers who are more familiar with
the proofs for flows than with the proofs for diffeomorphisms.

We write the differential equations generating the flow separating
the components.

&y = Aywy + Brg + Ni(1, 22);

50
( ) T :A2x2—|—Ng($1,x2);

As it is standard, we will first derive an equation for a function whose
graph is invariant, we will show that the equation has a solution.

For the sake of simplicity, we will assume that the vector field is
differentiable, even if it seems clear that some of the results would go
through with the only assumptions that the vector field generates a
smooth semigroup (satisfying appropriate growth conditions, which we
detail later).

We note that if we have zo = ®(z1) we have

1 = Ajxy + BP(z1) + Ni(zq, P(21));
<I>(x1) = Ay ®(z1) + No(z1, P(21));

We note that, if we fix &, the first equation becomes an ODE for
x1. If ® is Lipschitz, we see that the first equation of (51) will have a
unique solution. We denote the solution of this equation with initial
conditions x; by I'f (z1).

(51)
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We have that
ITY (z1)] < le™le” t>0

where € is a number which is arbitrarily small if we choose the arrange-
ments in Section 4.1 to be small enough.
The idea of the proof is the same as the standard proof of the stable
manifold by Perron’s method (see e.g. [Hal80] Ch. VII pp. 225 ff. ).
We use the variation of parameters formula in the second equation
of (51) and obtain

(52) (Y (21)) = e P(x1) +/0 ds e IN(IY (1), (5 (1))
Equivalently,
(53) e R(TF(21)) = P(x1) +/0 ds = Ny(I'7 (1), D(T (21)))

In the stable case, we note that, if we consider functions ® which are
C? and satisfy ®(0) =0, D®(0) = 0, we have

(54) e 4P D(0Y (1)) < Clle™ || (le™*|le)?
The condition
(55) e ||(le™*|le)? < Cem

for some 1 > 0, that the RHS of (55) goes to zero exponentially, is,
clearly an analogue of (11).

Under this assumption (55), we obtain that the first term in (53)
goes to 0 as t — oo. Hence, we obtain that a condition for invariance
of the graph of ® is

(56) (1) = - /000 ds e 2N (T (1), B(TS (1))

Note also that (55) and the quadratic vanishing of N, ® at the origin
also imply that the integral in the RHS of (56) converges uniformly.

Hence, we will consider (56) as a fixed point equation for the operator
defined by the RHS.

A useful heuristic guide is that this operator is very similar to

/ ds e_SAzNg(eAls(xl), @(eAlsxl)))
0

Again, if we take spaces with weighted norms, we obtain that the oper-
ator obtained by composing ® on the right with a contractive function
has a norm which is bounded by the square of the contraction.

To show that the operator 7 is a contraction when topologized by
the conical norm follows more or less the same line of argument than
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in the case of diffeomorphisms, namely adding and subtracting terms
till we get to the heuristic principle.

The proof of flows is slightly more complicated than in the case of
diffeomorphisms since we have to obtain estimates for ['?(z;) — 5.
Of course, these can be obtained from the dependence on the solu-
tions of ODE’s on parameters, but they take longer to write than the
analogues for diffeomorphisms.

We, of course, also have to show that the operator maps the y spaces
into themselves but the proof is extremely similar once we obtain for-
mulas for the high derivatives of the operator 7 which separate the
higher derivatives.

The pseudo-stable case is in many ways easier. In this case, we
cannot assume that I'? is a contraction, so we need to make sure that
the functions ® have domain in all of X; and, therefore that the NV are
smooth in all of X; x B;(X,). This is done in Section 4.1.

Since we are assuming that e*4? is a contraction for large s, there is
no problem showing that the RHS of (56) is a contraction in C° norm.
Also, using the same formulas for the high derivatives, it is possible to
show that the x spaces get mapped into themselves.
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