Milestoneing

Ron Elber and Anthony West
Department of Chemistry and Biochemistry and
Institute of Computational Sciences and Engineering (ICES)
University of Texas at Austin

$ NIH
Motivation

• Understanding Myosin II:
 – A protein that converts biochemical energy (ATP) to mechanical energy in the muscles
Myosin Stroke Cycle (Lymn-Taylor)

Movie of the reaction path for the recovery stroke in myosin
Simulation background

• Computer simulations use classical mechanics to simulate protein dynamics

\[M \frac{d^2 X}{dt^2} = -\nabla U(X) \]

\[X(t + \Delta t) = X(t) + V(t) \cdot \Delta t - \frac{\Delta t^2}{2} M^{-1} \cdot \nabla U(X(t)) \]

\[V(t + \Delta t) = V(t) - \frac{\Delta t}{2} M^{-1} \cdot \left[\nabla U(X(t)) + \nabla U(X(t + \Delta t)) \right] \]

\(\Delta t \) about 10^{-15}s (a femtosecond) to maintain stability of the algorithm.

We are interested in time scale of 10^{-3}s (a millisecond). On a PC it takes months to compute 100 ns (10^{-7}s).
The problem

• Twelve orders of magnitude difference between the basic time steps (10^{-15}s) and the biological time scale (10^{-3}s).

• How to bridge the time scale gap?
 – Coarsening space and time while keeping molecular details
The concept of Milestones

• Microscopic molecular motions tend to be diffusive at long time scales
• Following in detail individual trajectories is computationally expensive

• Can we compute the trajectories in pieces? The pieces will give us a coarse grained model.
 • Is it correct? Is it computationally efficient?
 The interfaces between which we compute the pieces of the trajectories are called Milestones
Is computing trajectory pieces more efficient than computing it as a whole?
Chopping trajectories is computationally efficient (I)

Parallelization Pieces of trajectories are trivial to parallelize.
Speed up proportional to the number of processors
Chopping trajectories is computationally efficient (II)

Diffusive processes The time t to diffuse a path of length L is proportional to L^2. If we divide the path to N segments the time becomes $(L/M)^2$. There are M Milestones and therefore the time required is $M^*(L/M)^2 = L^2/M$. Speed up factor of M number of Milestones.
Chopping trajectories is computationally efficient (III)

Activated process: If one of \(N_1 \) trajectories that starts in \(R \) reaches \(q_1 \), and one of \(N_2 \) trajectories that starts at \(q_1 \) reaches \(q_2 \) the total number of trajectories that we need to sample \(q_2 \) starting from \(R \) is \(N_1 \times N_2 \). Using Milestoning we only need \(N_1 + N_2 \)

Speed up exponential in the number of Milestones - M
Building a coarse grained model (which is equation-free):
What do we keep from the short chopped trajectories?

1. Initialize trajectories at the Milestones from a stationary time-independent distribution assumed known (e.g. canonical).
2. Compute trajectories between any pair of Milestones \((i,j)\) with a shared volume, estimate the first passage time distribution

\[K_{ij}(\tau) \]
The local first passage time distribution

\(K_{ij}(\tau) \) – The probability density that a trajectory that starts at Milestone \(i \) will terminate exactly after time \(\tau \) at Milestone \(j \)

\[
\int_0^\infty K_{ij}(\tau) \cdot d\tau = p_{ij} \quad \text{– The probability that a trajectory that was initiated at Milestone} \ i \text{ will terminate at Milestone} \ j
\]

\[
\sum_j p_{ij} = 1 \quad \text{– A normalization condition on} \ p_{ij} \text{ (all traj terminate)}
\]

This is all the microscopic information needed. No mechanical model is required.
Example for a typical $K_{ij}(\tau)$
What do we want to compute from the coarse model?

$P_i(t)$ microscopically it is the probability of being somewhere between Milestones $i-1$ and $i+1$ at time t such that the last milestone passed by the trajectory is Milestone i.

Provides a blurred (coarse) spatial description without reducing the number of degrees of freedom.
The QK picture

• Define $P_i(t)$: prob of being at i at time t

• Define $Q_i(t)$: prob of transition to i at t

• Define $K_{i,j}(\tau)$: conditional probability of a transition from i to j after incubation time τ.

• Then hopping dynamics are defined by:

\[
Q_i(t) = P(0)_i \delta(t - 0^+) + \sum_j \int_0^t Q_j(t')K_{j,i}(t-t') dt'
\]

\[
P_i(t) = \int_0^t Q_i(t') \left[1 - \int_0^{t-t'} \left[\sum_j K_{i,j}(\tau) \right] d\tau \right] dt'
\]
With the matrix $K_{ij}(\tau)$ determined, compute long time kinetics

$$Q_i(t) = P_i(0)\delta(t - 0^+) + \int_0^t [Q_j(t')K_{ji}(t - t')] dt'$$

$$P_i(t) = \int_0^t Q_i(t') \left[1 - \int_0^{t-t'} \left[\sum_j K_{ij}(\tau) \right] d\tau \right] dt'$$

- by direct integration
- by Laplace transform (Shalloway)
- by trajectory statistics (Vanden Eijnden)
Computing the average first passage time from Milestone 1 to N

$$\tau = \sum_{l=1,...,L} \left[\tau^{(1)}_{12} + ... + \tau^{(n)}_{ij} + ... + \tau^{(L)}_{kN} \right] \cdot \left(p_{12} \cdots p_{ij} \cdots p_{kN} \right)$$

$\tau^{(n)}_{ij}$ is a random variable sampled from $K_{ij}(\tau)$

$$p_{ij} = \int_{0}^{\infty} K_{ij}(\tau) d\tau$$ is the transition probability from i to j

$$\sum_{j} p_{ij} = 1$$

A few points:
- The limit $L \to \infty$ is considered
- The N state is absorbing
- $\tau_{Nk}=0$ $p_{NN}=1$

To average over τ...
Compute $<\tau>$

Define a random matrix $(T)_{ij} \equiv p_{ij} \tau_{ij}$

the matrix $(P)_{ij} \equiv p_{ij}$ of size $N \times N$

the vector $\hat{\tau}^{(L)} \equiv \left(\tau_{1}^{(L)}, \tau_{2}^{(L)}, ..., \tau_{N}^{(L)}\right)^{T}$ with elements $\tau_{i}^{(L)}$

that are the overall first passage times using L steps

to go from i to N

Then

$$\hat{\tau}^{(L)} = \sum_{l=1}^{L} P^{L-l}TP^{l-1}1 = \sum_{l=1}^{L} P^{L-l}T1$$

where $1 = (1,1,...,1)^{T}$ and $P1 = 1$
The last tricks to compute $\langle \tau \rangle$

For $L \to \infty$ the trajectory is absorbed at Milestone N.

Since the time at N does not count ($\tau_{NN} = 0$) $\Rightarrow \hat{\tau}^{L+1} = \hat{\tau}^{L}$

$$\hat{\tau}^{(L)} = \sum_{l=1}^{L} P^{L-l} T 1$$

$$\hat{\tau}^{(L+1)} = \sum_{l=1}^{L+1} P^{L+1-l} T 1 = P \sum_{l=1}^{L} P^{L-l} T 1 + T 1 = P \hat{\tau}^{(L)} + T 1$$

$$(I - P) \hat{\tau} = T 1$$ (remove eigenvector 1 from the set),

$T 1 = 0$ $(I - P) 1 = 0$, define, $\bar{T}, \bar{P}, \bar{T}$ of size $(N - 1) \times (N - 1)$).

T is a random matrix and the average first passage time

is obtained by averaging over elements of \bar{T}. $\langle (\bar{T})_{ij} \rangle = p_{ij} \langle \tau_{ij} \rangle$

Only the first moments of τ_{ij} are required to compute $\langle \hat{\tau} \rangle$.

$$\langle \hat{\tau} \rangle = (\bar{T} - \bar{P})^{-1} \langle \bar{T} \rangle 1$$
Is Milestoning correct (or what are the assumptions)?
Assumption

Let S_j be the hypersurface of Milestone j.
Let X_j be a coordinate vector $X_j \in \mathbb{R}^{3N}$ and $X_j \in S_j$.

$\rho(X_j)$ is the distribution at S_j initiating the short trajectories.

$\theta_{ij}(X_i)$ is the distribution obtained from first passage traj on S_j
if initiated at S_i according to $\rho(X_i)$

Assumption : $\theta_{ij}(X_i) = \rho(X_j)$

Implies:
- Loss of memory
- committers
Committers are special surfaces with equal probability of reaching for the first time the product and the not the reactants.

Committer surfaces can be calculated exactly (solving partial differential equations) in 2-3 dimensions for Brownian dynamics and approximated at higher dimensions and other types of equations of motion.
Or a tunnel picture

Relaxation in planes faster than transition between planes.
General but heuristic.
Toy model: 1D box simulation

- Microscopic dynamics are Brownian
- Simulations run at various temperatures and for 4, 8, and 16 milestones

\[\gamma \frac{dX}{dt} = -\nabla U + R \]

\[\langle R \rangle = 0 \quad \langle R(t)R(t') \rangle = C\delta(t-t') \]
1D reaction curves (5000 trajs/MLST)
2D simulation
Memory loss demonstration

\[\tau_\perp \sim 0.15 \]
\[\tau_\parallel \sim 6.34, \quad \left(\int_0^\infty \tau K_2(\tau) d\tau \right) \]
Alanine Dipeptide

JCP, 126, 145104 (2007)
Preparing initial conditions by sampling

$q \equiv \psi$

Absorbing boundary condition

Reflecting boundary conditions
Torsion velocity auto-correlation indicates when milestoneing assumption is being violated

\[\tau_r \sim 400 \text{ fs} \]
Average Incubation Times vs. Velocity Relaxation Time

\[\langle \tau \rangle \equiv \frac{1}{M} \sum_{i=1}^{M} \int_{0}^{\infty} \tau K_{s_{i}}(\tau) d\tau \]

<table>
<thead>
<tr>
<th>(M)</th>
<th>(\langle \tau \rangle) (fs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>31</td>
</tr>
<tr>
<td>74</td>
<td>58</td>
</tr>
<tr>
<td>73</td>
<td>58</td>
</tr>
<tr>
<td>37</td>
<td>129</td>
</tr>
<tr>
<td>19</td>
<td>373</td>
</tr>
<tr>
<td>11</td>
<td>1305</td>
</tr>
<tr>
<td>7</td>
<td>3581</td>
</tr>
<tr>
<td>5</td>
<td>10902</td>
</tr>
</tbody>
</table>

\(\tau_{r} > \langle \tau \rangle \)
Rate Results

![Graph showing rate results](image-url)
Reaction curves

Reaction probability of alanine dipeptide $\alpha \rightarrow \beta$ transition

$P_M(t)$

t (ps)

$M=3$ (64)
$M=5$ (68)
$M=11$ (53)
$M=19$ (62)
$M=37$ (104)
Summary

• Milestoning divides RC into fragments whose kinetics can be computed independently then “glued” together
• Provides factor of M improvement in computational efficiency on serial machines, plus exp bootstrapping
• Uses LFPTDs from microscopic dynamics: $K_s^\pm(\tau)$
• System distribution $P_s(t)$ given by simple integral equations that can be easily solved numerically
• Correct kinetics for solvated alanine dipeptide (x 9 speedup)
• Predicts microsecond Scapharca rate with ~10 ns total serial time
• Sub-millisecond rate for myosin recovery stroke with total run time (serial) - speedup : more than 10,000

\[200 \text{sample} \times 241 \text{mlst} \times 0.01 \text{ns} + 0.1 \text{ns} \times 241 = 501.6 \text{ns}\]
Milestoning papers

• Code (moil + zmoil) available from https://wiki.ices.utexas.edu/clsb/wiki