Introduction to Wavelet Based Numerical Homogenization

Olof Runborg

Numerical Analysis,
School of Computer Science and Communication, KTH

RTG Summer School on Multiscale Modeling and Analysis
University of Texas at Austin
2008-07-21 – 2008-08-08
Suppose

\[L_{j+1} u = f, \quad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \quad u, f \in V_{j+1}, \]

is a discretization (e.g. FD, FEM) of a differential equation on scale-level \(j + 1 \) where \(L_{j+1} \) contains small scales.

Want to find an effective discrete operator \(\bar{L}_{j'} \), with \(j' \ll j \) that computes the coarse part of \(u \).

C.f. classical homogenization.
Wavelet based numerical homogenization
[Beylkin, Brewster, Engquist, Dorobantu, Levy, Gilbert, O.R., ...]

Suppose

\[L_{j+1} u = f, \quad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \quad u, f \in V_{j+1}, \]

is a discretization (e.g. FD, FEM) of a differential equation on scale-level \(j + 1 \) where \(L_{j+1} \) contains small scales.

Want to find an effective discrete operator \(\bar{L}_{j'} \), with \(j' \ll j \) that computes the coarse part of \(u \).

C.f. classical homogenization.

Example (Elliptic eq, Haar)

\[
\partial_x r(x/\varepsilon) \partial_x u_\varepsilon = f, \quad \Rightarrow \quad L_{j+1} = \frac{1}{h^2} \Delta + R^\varepsilon \Delta_-.
\]

where \(R^\varepsilon \) is diagonal matrix sampling \(r(x/\varepsilon) \), and \(2^j \sim 1/\varepsilon \). Here one could use

\[
\bar{L}_{j'} = \frac{1}{h^2} \Delta + \bar{R} \Delta_.
\]
Wavelet transforms

Simple to extract the coarse and fine part of $u = \{u_k\}$:

$$\mathcal{W} u = \begin{pmatrix} U_f \\ U_c \end{pmatrix}, \quad u \in V_{j+1}, \quad U_f \in W_j, \quad U_c \in V_j.$$

For compactly supported wavelets, \mathcal{W} is sparse. It is also orthonormal, $\mathcal{W}^T \mathcal{W} = I$.

In Haar basis on $[0, 1]$,

$$\mathcal{W} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & \cdots \\ 0 & 0 & 1 & -1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & \cdots & 0 & 1 & -1 \\ 1 & 1 & 0 & \cdots & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\ 0 & 0 & \cdots & 0 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{2^{j+1} \times 2^{j+1}}.$$
Wavelet based numerical homogenization

Wavelet decomposition of operator

Start from equation

\[L_{j+1} u = f, \quad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \quad u, f \in V_{j+1}. \]

Decompose equation in coarse and fine part (use \(\mathcal{W}^T \mathcal{W} = I \))

\[\mathcal{W} L_{j+1} \mathcal{W}^T \mathcal{W} u = \mathcal{W} f \quad \Rightarrow \]

\[
\begin{pmatrix}
A_j & B_j \\
C_j & L_j
\end{pmatrix}
\begin{pmatrix}
U^f \\
U^c
\end{pmatrix}
= \begin{pmatrix}
F^f \\
F^c
\end{pmatrix}.
\]
Wavelet based numerical homogenization
Wavelet decomposition of operator

Start from equation

\[L_{j+1} u = f, \quad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \quad u, f \in V_{j+1}. \]

Decompose equation in coarse and fine part (use \(\mathcal{W}^T \mathcal{W} = I \))

\[\mathcal{W} L_{j+1} \mathcal{W}^T \mathcal{W} u = \mathcal{W} f \quad \Rightarrow \]

\[\begin{pmatrix} A_j & B_j \\ C_j & L_j \end{pmatrix} \begin{pmatrix} U^f \\ U^c \end{pmatrix} = \begin{pmatrix} F^f \\ F^c \end{pmatrix}. \]

Eliminate \(U^f \),

\[(L_j - C_j A_j^{-1} B_j) U^c = F^c - C_j A_j^{-1} F^f. \]
Start from equation

$$L_{j+1} u = f, \quad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \quad u, f \in V_{j+1}. $$

Decompose equation in coarse and fine part (use $\mathcal{W}^T \mathcal{W} = I$)

$$\mathcal{W}L_{j+1}\mathcal{W}^T \mathcal{W} u = \mathcal{W} f \quad \Rightarrow$$

$$
\begin{pmatrix}
A_j & B_j \\
C_j & L_j
\end{pmatrix}
\begin{pmatrix}
U^f \\
U^c
\end{pmatrix}
=
\begin{pmatrix}
F^f \\
F^c
\end{pmatrix}.
$$

Eliminate U^f,

$$(L_j - C_j A_j^{-1} B_j) U^c = F^c - C_j A_j^{-1} F^f. $$

Supposing f smooth so $F^f = 0$ and $F^c = f$.

$$(L_j - C_j A_j^{-1} B_j) U^c = f.$$
We call the matrix

\[\bar{L}_j = L_j - C_j A_j^{-1} B_j, \quad \bar{L}_j \in \mathcal{L}(V_j, V_j), \]

the (numerically) homogenized operator. Since
- Half the size of original \(L_{j+1} \).
- Given \(\bar{L}_j, f \) we can solve for coarse part of solution, \(U^c \).
- Takes influence of fine scales into account.

Compare with classical homogenization:

\[L = \nabla R(x / \varepsilon) \nabla \ \Rightarrow \ \bar{L} = \nabla \int R(x) dx \nabla - \nabla \int R(x) \frac{\partial \chi}{\partial x} dx \nabla \]

where \(\chi \) solves the (elliptic) cell problem.
Reduction can be repeated,

\[L_j \rightarrow L_{j-1} \rightarrow L_{j-2} \rightarrow \ldots, \quad L_j \in \mathcal{L}(V_j, V_j), \]

to discard suitably many small scales / to get a suitably coarse grid. Also, condition number improves

\[\kappa(L_j) < \kappa(L_{j+1}). \]
Problem: L sparse (banded) $\not\rightarrow \bar{L}$ sparse (banded). (Must invert A_j.)

However: Approximation properties of wavelets imply elements of A_j^{-1} decay rapidly away from diagonal.

Therefore: \bar{L} diagonally dominant in many important cases and can be well approximated by a banded matrix. (Cf. a (local) differential operator.)
Different Approximation Strategies

1. “Crude” truncation to ν diagonals,

2. Band projection to ν diagonals, defined by

 $$Mx = \text{band}(M, \nu)x, \quad \forall x \in \text{span}\{v_1, v_2, \ldots, v_\nu\}.$$

 $$v_j = \{1^{j-1}, 2^{j-1}, \ldots, N^{j-1}\}^T, \quad j = 1, \ldots, \nu.$$

 C.f. “probing”, [Chan, Mathew], [Axelsson, Pohlman, Wittum].

3. The above methods used on the matrix H instead, where e.g.

 $$L_{j+1} = \frac{1}{h^2} \Delta \big|_+ R \Delta \big|_- \quad \Rightarrow \quad \bar{L}_j = \frac{1}{(2h)^2} \Delta \big|_+ H \Delta \big|_-.$$

 H can be seen as the effective material coefficient.

4. The above methods used on the matrix A_j^{-1} instead, where

 $$\bar{L}_j = L_j - C_j A_j^{-1} B_j.$$

 [Levy, Chertock]
Elliptic 1D case

Consider the elliptic one-dimensional problem

$$\partial_x a^\varepsilon(x) \partial_x u = 1, \quad u(0) = u'(1) = 0,$$

with standard second order discretization.

Try two cases:

$$a^\varepsilon(x) = "\text{noise}"$$

$$a^\varepsilon(x) = "\text{narrow slit}"$$
Elliptic 1D case – noise
Different approximation strategies

- Exact
 - $\nu = 13$
 - $\nu = 15$
 - $\nu = 17$

- $\text{trunc}(L, \nu)$

- Exact
 - $\nu = 3$
 - $\nu = 5$
 - $\nu = 7$

- $\text{trunc}(H, \nu)$

- $\text{band}(L, \nu)$

- Exact
 - $\nu = 3$
 - $\nu = 5$
 - $\nu = 7$

- $\text{band}(H, \nu)$

Olof Runborg (KTH)
Wavelet Based Homogenization
Austin, August 2008
Elliptic 1D case – narrow slit
Different approximation strategies

- $\text{trunc}(L, \nu)$
 - Exact
 - $\nu=13$
 - $\nu=15$
 - $\nu=17$

- $\text{trunc}(H, \nu)$
 - Exact
 - $\nu=3$
 - $\nu=5$
 - $\nu=7$

- $\text{band}(L, \nu)$
 - Exact
 - $\nu=7$
 - $\nu=9$
 - $\nu=11$

- $\text{band}(H, \nu)$
 - Exact
 - $\nu=1$
 - $\nu=3$
 - $\nu=5$
Elliptic 1D case – narrow slit
Matrix element size
Simulate a wave hitting a wall with a small opening modeled by Helmholtz

\[\nabla a(x, y) \nabla u + \omega^2 u = 0, \]
Examples

Helmholtz 2D case
Examples

Helmholtz 2D case

Untruncated operator

v=5

v=7

v=9
Helmholtz 2D case
Matrix element size

\[nz = 19026 \]