ODE Tutorial RTG summer program 7/21/08

Start w/ example

\[y' = 3y \quad (1) \]
\[y(0) = c \quad (2) \]

Solution?

\[y(t) = ce^{3t} \]

family of integral curves (picture*)

In general

\[y' = f(t, y) \]
\[y(t_0) = y_0 \]

\[f : [a, b] \times E \rightarrow \mathbb{R}, t, y \in [a, b], y_0 \in E, E \subseteq \mathbb{R}^n \text{ open?} \]

Looking for \(y : [t_0, T] \rightarrow E \).

Equivalent to (by fundamental calc)

\[y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds \]
ordinary \iff derivative/dependence on variable
first order \iff first derivative

3 important questions

(1) local existence: Does our equation (or system) have a solution $y(t)$ defined near t_0?

(2) existence in the large (e.g. global existence) on what t-ranges do we have a solution? (this may depend on y_0)

(3) uniqueness of solutions.

Examples

\begin{align*}
y' &= y^2 \quad y(0) = c \ (> 0) \\
y(t) &= \frac{c}{1 - ct} \quad \text{solution?} \quad \checkmark \\
\end{align*}

only exists for $-\infty < t < \frac{1}{c}$. Domain of sol. can depend on i.e.
2) \[y' = \sqrt{y} \quad y(0) = 0 \]

\[y(t) = \begin{cases} 0 & \text{if } t < c \\ \frac{(t-a)^2}{4} & \text{if } t \geq c \end{cases} \]

And for any \(c > 0 \)

Check it: nonuniqueness, graph.

Picard's Thm

Let \(f: [t_0, t_0 + a] \times \mathbb{R} \rightarrow \mathbb{R} \) cont. \(E = \{ y' \mid y'(t_0) = f(t_0, y_0) \} \) and uniformly Lipschitz cont wrt \(y \). Let \(M \) be a bound for \(|f(t, y)| \) on \(\mathbb{R} \), \(a = \min(a, \frac{b}{M}) \).

Then

\[y' = f(t, y) \quad y(t_0) = y_0 \]

has a unique sol \(y = y(t) \) on \([t_0, t_0 + a] \).

Def We say \(f \) is Lipschitz if \(\exists K \) s.t.

\[|f(x) - f(y)| \leq K|x-y| \quad \text{for all } x, y \in \text{dom } f. \]
(Sketch of proof)

\[y_0(t) := y_0 \]
\[y_1(t) := y_0 + \int_{t_0}^{t} f(s, y_0) \, ds \]
\[y_n(t) := y_0 + \int_{t_0}^{t} f(s, y_n(s)) \, ds. \]

Assume \(\lim_{n \to \infty} y_n(t) \) exists. \(y(t) := \lim_{n \to \infty} y_n(t) \)

\[\lim_{n \to \infty} y_n(t) = y_0 + \lim_{n \to \infty} \int_{t_0}^{t} f(s, y_n(s)) \, ds. \]

\[y(t) = y_0 + \int_{t_0}^{t} f(s, y(s)) \, ds. \] bounded.

How do we know \(\lim_{n \to \infty} y_n(t) \) exists? Analysis requires Lipschitz assumption.

Note what do we mean by

\[\lim_{n \to \infty} y_n(t) = y(t) \]

Fix \(t^* \), \(y_n(t^*) = y(t^*) \) "pointwise convergence"

In some function space norm.
\[\|y\|_{L^\infty} = \sup_{t \in [a, b]} |y(t)| \]
\[\|y\|_{L^1} = \int_a^b |y(t)| \, dt \]
\[\|y\|_{L^2} = \left(\int_a^b |y(t)|^2 \, dt \right)^{1/2} \]

\[\lim_{n \to \infty} y_n(t) = y(t) \text{ in } \| \cdot \| \text{ "strong convergence"} \]

\[\lim_{n \to \infty} \|y_n - y\|_* = 0 \text{ in real \#s sense.} \]

Examples

\[y_n(t) = t^n \text{ on } [0, 1] \]

Pointwise limit \[f(t) = \begin{cases} 0 & \text{if } t < 1 \\ 1 & \text{if } t = 1 \end{cases} \]

Strong limit \[\| \cdot \|_1 \text{ is } g(t) = 0 \]

\[\|y_n - g\|_{L^1} = \int_0^1 |y_n(t) - g(t)| \, dt \]
\[= \int_0^1 t^n - 0 \, dt \]
\[= \left(\frac{1}{n+1} t^{n+1} - 0 \right) \bigg|_0^1 = \frac{1}{n+1} - 0 \to 0 \]
Strong limit \(\| \cdot \|_\infty \) DNE

\[\| y_n - f \|_\infty = \sup_{t \in [0,1]} |y_n(t) - f(t)| = \]
\[= \sup_{t \in [0,1]} |t^n| = 1 \]

OR

\[\| y_n - g \|_\infty = \sup_{t \in [0,1]} |t^n - 1| = 1. \]

Little o and different norms work differently \(\Rightarrow \) Big O.

In Picard we are talking strong limit in \(L_\infty \) norm.

Uniqueness? Suppose \(z(t) \) exists s.t.

\[z(t) = y_0 + \int_{t_0}^{t} f(s, z(s)) \, ds. \]

we show \(y_n(t) \to z(t) \) uniformly
Systems of Equations

\[\begin{align*}
 y'_1 &= F_1(t, y_1, \ldots, y_n), \quad y_1(0) = y_1^0 \\
 y'_n &= F_n(t, y_1, \ldots, y_n), \quad y_n(0) = y_n^0
\end{align*} \]

If \(F_1, \ldots, F_n \) and partials \(\frac{\partial F_i}{\partial y_j} \) cont. in a region \(R \) of \(\mathbb{R}^N \) and \((t_0, y_1^0, \ldots, y_n^0) \in R\),

then there is an interval \((t_0-h, t_0+h)\) in which there exists a unique sol. to the system (\(*\)).

Note on superposition

\[\begin{align*}
 y' &= f(t, y) \quad \text{where } f \text{ linear in } y \\
 z' &= g(t, z)
\end{align*} \]

\[\begin{align*}
 (\alpha y + \beta z)' &= \alpha y' + \beta z' = \alpha f(t, y) + \beta g(t, z) \\
 &= f(t, \alpha y + \beta z)
\end{align*} \]

Linear combos of sols. to linear eqns. are also sols. to the eqn.

Example

\[y' - p(t) y = 0 \]

Sols. of form \[y(t) = C \exp \left\{ \int_0^t p(s) \, ds \right\} \]
Gronwall's (if there is time)

Suppose we know that for some c (t) function \(\beta(t) \)

\[u'(t) \leq \beta(t)u(t) \quad t > 0 \]

then

\[u(t) \leq u(0) \exp \int_0^t \beta(s) \, ds \quad \text{for all } t > 0. \]

\[\frac{\text{d}}{\text{d}t} \left(\frac{u(t)}{v(t)} \right) = \frac{u' v - v' u}{v^2} \leq \frac{\beta u v - \beta v u}{v^2} = 0 \]

\[\frac{u(t)}{v(t)} \leq \frac{u(0)}{v(0)} = u(0) \]

\[u(t) \leq u(0) v(t) = u(0) \exp \int_0^t \beta(s) \, ds \]

Add a bit on Euler scheme + graph done!

(+ pictures)
1st and 2nd order linear ODEs constant coefficients

\[ay'' + by' + cy = f(x) \]

characteristic eqn. (solve homogeneous eqn 1st)

\[ar^2 + br + c = 0 \]

\[r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Solutions \(y_1(t) = e^{r_1t} \), \(y_2(t) = e^{r_2t} \)

\[ay''(t) + by'(t) + cy = 0 \]

\[= ar^2 e^{r_1t} + br e^{r_1t} + ce^{r_1t} = (ar^2 + br_1 + c)e^{r_1t} = 0 \]

complex roots

Double roots

complex roots \(\leftrightarrow \) oscillations!

\[y_1 = e^{(\lambda - \mu)t} \quad y_2 = e^{(\lambda + \mu)t} \]

\[e^{(\lambda - \mu)t} + e^{(\lambda + \mu)t} = e^{\lambda t}(\cos\mu t + i \sin\mu t) + e^{\lambda t}(\cos\mu t - i \sin\mu t) = 2e^{\lambda t} \cos\mu t \]

\[e^{(\lambda + \mu)t} - e^{(\lambda - \mu)t} = 2i e^{\lambda t} \sin\mu t \quad \text{similarly} \]
Summary of 2nd order linear ODE

\[y'' + p(t)y' + q(t)y = g(t) \] \text{ inhomogeneous}
\[y'' + p(t)y' + q(t)y = 0 \] \text{ homogeneous}

- homogeneous, \(p, q \) constants \(\Rightarrow \) we can solve it.
- solutions to 2nd order ODE 2 \text{ linearly independent} \text{ fundamental solutions}
sols to homogeneous eqn + particular sol to inhomogeneous problem describes the sol space.

homogeneous problem,
\[\text{if we have one fundamental sol, we can find another (linearly independent) one. Called Reduction of Order} \]

\[\rightarrow \text{ Obtaining particular solutions to inhomogeneous problem.} \]
\[\text{Method of Undetermined Coefficients} \]
\[\text{clever guessing for constant coefficient case.} \]

- \text{Variation of Parameters}
\[\text{must know find sols., to find a particular solution.} \]
First order linear ODE

\[y' + p(t) y = g(t) \]

Choose integrating factor \(\mu(t) \) s.t.

\[\mu(t) p(t) y = \mu'(t) y \quad \text{WHY?} \]

\[\mu(t) y' + \mu(t) p(t) y = \mu(t) g(t) \]

\[\mu(t) y' + \mu'(t) y = \mu(t) g(t) \]

\[(\mu(t) y)' = \mu(t) g(t) \]

\[\mu(t) y = \int^{t}_{0} \mu(s) g(s) \, ds + c \]

\[y = \frac{1}{\mu(t)} \int^{t}_{0} \mu(s) g(s) \, ds + c \]

What's \(\mu(t) \)

\[\mu(t) p(t) = \mu'(t) \]

\[\frac{\mu'(t)}{\mu(t)} = p(t) \]

\[\ln(\mu(t)) = \int^{t}_{0} p(s) \, ds \]

\[\mu(t) = \exp \left\{ \int^{t}_{0} p(s) \, ds \right\} \]