The Fast Multipole Method

Lexing Ying
University of Texas at Austin

July, 2008
Problem statement

Given
- \(\{f_i\} \) a set of charges at \(\{p_i\} \),
- \(G(x, y) \) a smooth kernel,
we want to compute

\[
u_i = \sum_{j=0}^{N-1} G(p_i, p_j)f_j.
\]

Naive algorithm takes \(O(N^2) \). Our goal is to make it \(O(N) \).

Solution: The fast multipole method by Greengard and Rokhlin.
Geometric part

Two sets A and B are well-separated if the distance between A and B are greater than their diameters.

Consider interaction from B to A. ($\{x_i\}$ and $\{y_j\}$ are subsets of $\{p_i\}$.)

We use the following approximation. For each x_i, its potential u_i

$$u_i \approx u(c_A) = \sum_j G(c_A, y_j)f_j \approx G(c_A, c_B)\sum_j f_j.$$

Do not worry about the accuracy of this approximation for the time being. This is good when A and B are really well-separated.
Three step procedure:

Two representations:

- **Far field representation** \(f_B = \sum_j f_j \).
- **Local field representation** \(u_A = G(c_A, c_B) f_B \).

Interaction is approximately low rank. Here it is a rank-1 approximation.
However, each p_i is both a source and a target. \(\{p_i\} \) are mixed up.

Solution: octree.

- Each leaf box contains a small number \(O(1) \) of points,
- The number of levels of the tree is \(O(\log N) \).
- For each \(B \), near field = adjacent boxes.
- Far field \(F^B \) = all well-separated boxes.
- Interaction list = boxes in \(B \)'s far field but not \(B \)'s parent's far field (i.e., boxes that can be addressed by \(B \) but not by \(B \)'s parent).
Top level, fix a box B, we have $O(1)$ well-separated boxes (e.g. A).

The interaction between B and A is computed using the previous 3-step procedure.

What about the nearby boxes? Go to the next level.
B' (a child of B) has $O(1)$ boxes in its interaction list (e.g. A') that have not been taken care of.

The interaction between B' and A' is computed using the previous 3-step procedure.

For the nearby boxes, go to the next level.
B'' (a child of B') has $O(1)$ boxes in its interaction list (e.g. A'') that need to be taken care of.

Now B'' is also a leaf. The interaction between B'' and its neighbors is evaluated directly.
The full algorithm is:

1. At each level, for each box B, compute $f_B = \sum_{p_j \in B} f_j$.
2. At each level, for each pair A and B in each other’s interaction list, add $G(c_A, c_B) f_B$ to u_A (F2L translation).
3. At each level, for each box A, add u_A to u_j for each $p_j \in A$.
4. At the leaf level, nearby computation.

Complexity analysis:

1. Each point belongs to a box in each of $O(\log N)$ levels. The complexity is $O(N \log N)$.
2. $O(N)$ boxes in total. Each box has $O(1)$ boxes in the interaction list. $O(1)$ operation per F2L translation. The complexity is $O(N)$.
3. Each point belongs to a box in each of $O(\log N)$ levels. The complexity is $O(N \log N)$.
4. $O(N)$ leaf boxes in total. Each one has $O(1)$ points in its neighbors. Direct computation is $O(N)$.

Total complexity is $O(N \log N)$.
Can we do better? Yes. Let us look at a box B and its children B_1, \cdots, B_4.

$$f_B = \sum_{p_j \in B} f_j = \sum_{p_j \in B_1} f_j + \sum_{p_j \in B_2} f_j + \sum_{p_j \in B_3} f_j + \sum_{p_j \in B_4} f_j = f_{B_1} + f_{B_2} + f_{B_3} + f_{B_4}.$$

So f_B can be computed from f_{B_i} of its children

- $O(1)$ complexity,
- far field rep of $B_i \Rightarrow$ far field rep of B, called F2F translation
- bottom-up traversal of the octree.

Similarly, instead of putting u_A to each of its points, simply do

$$u_{A_i} \leftarrow u_{A_i} + u_A \quad i = 1, 2, 3, 4.$$

What is added to u_{A_i} will eventually be added to the individual points.

- $O(1)$ complexity,
- local field rep $A \Rightarrow$ local field rep of A_i, called L2L translation
- top-down traversal of the octree.
The full algorithm is:

1. Bottom up. For each level, each box B,
 - if leaf, compute f_B from its points,
 - if non-leaf, compute f_B from its children (F2F).
2. On each level, for each pair A and B in each other’s interaction list, add $G(c_A, c_B)f_B$ to u_A (F2L).
3. Top down. For each level, each box A,
 - if leaf, add u_A to u_j for each point p_j in A,
 - if non-leaf, add u_A to its children (L2L).
4. At the leaf level, local computation.

Let us compute the complexity:

1. $O(N)$ boxes. $O(1)$ per F2F. Totally $O(N)$.
2. Same $O(N)$.
3. $O(N)$ boxes. $O(1)$ per L2L. Totally $O(N)$.
4. Same $O(N)$.

Total complexity is $O(N)$.
Analytic Part

Come back to the question that total mass (charge)

\[f_B = \sum_{p_j \in B} f_j \]

is not a good approximation.

We can do better. This is the analytic part of the FMM: given a prescribed accuracy \(\varepsilon \), all representations and translations shall have accuracy \(O(\varepsilon) \).

2D case. One considers \(x \) and \(y \) to be complex numbers. Up to a constant,

\[G(x, y) = \ln |x - y| = \text{Re}(\ln(x - y)). \]

We will regard \(G(x, y) = \ln(x - y) \) and throw away the complex part at the end.
Far field representation

\[G(x, y) = \ln(x - y) = \ln(x) + \ln(1 - y/x) = \ln(x) + \sum_{k=1}^{\infty} (-1/k)(y/x)^k. \]

\[u(x) = \sum_j G(x, y_j)f_j = \ln(x)(\sum_j f_j) + \sum_{k=1}^{p} 1/x^k(-1/k \sum_j y_j^k f_j) + O(\varepsilon) \]

where \(p = O(\log(1/\varepsilon)) \) because \(|y_j/x| < \sqrt{2}/3\).

Hence the far field representation is

\[a_0 = \sum_j f_j, \quad a_k = -1/k \sum_j y_j^k f_j \quad (1 \leq k \leq p). \]

This is called the multipole expansion.
Local field representation

\[G(x, y) = \ln(x - y) = \ln(-y) + \ln(1 - x/y) = \ln(y) + \sum_{k=1}^{\infty} (-1/k)(x/y)^k. \]

\[u(x) = \sum_{j} G(x, y_j)f_j = \sum_{j} \ln(-y_j)f_j + \sum_{k=1}^{p} x^k (-1/k \sum_{j} 1/y_j^k f_j) + O(\varepsilon) \]

where \(p = O(\log(1/\varepsilon)) \) because \(|x/y_j| < \sqrt{2}/3 \).

Hence the local field representation is

\[a_0 = \sum_{j} \ln(-y_j)f_j, \quad a_k = -1/k \sum_{j} y_j^k f_j \quad (1 \leq k \leq p). \]
If the multipole expansion of child B' is \{a_k\}, i.e.,

$$u(z) = a_0 \ln(z - z_0) + \sum_{k=1}^{p} a_k / (z - z_0)^k + O(\varepsilon)$$

then the multipole expansion of the parent B is \{b_l\} with

$$b_0 = a_0, \quad b_l = -a_0 \frac{z_0^l}{l} + \sum_{k=1}^{l} a_k \binom{l-1}{k-1} z_0^{l-k} \quad (1 \leq l \leq p).$$

$$u(z) = b_0 \ln(z) + \sum_{l=1}^{p} b_l / z^l + O(\varepsilon).$$

The complexity of F2F is $O(p^2)$.
F2L (far rep of B to local rep of A)

If the multipole representation at B is $\{a_k\}$, i.e.,

$$u(z) = a_0 \ln(z - z_0) + \sum_{k=1}^{p} a_k/(z - z_0)^k + O(\varepsilon)$$

then the local representation at A is $\{b_l\}$ with

$$b_0 = a_0 \ln(-z_0) + \sum_{k=1}^{p} a_k/(-z_0)^k \quad b_l = -a_0/lz_0^l + 1/z_0^l \sum_{k=1}^{p} a_k(-z_0)^{-k} \left(\binom{l+k-1}{k-1}\right).$$

$$u(z) = \sum_{l=0}^{p} b_l z^l + O(\varepsilon)$$

The complexity of F2L is $O(p^2)$.
L2L (local rep of A to local rep of A')

If the local representation at A is $\{a_k\}$, i.e.,

$$u(z) = \sum_{k=0}^{p} a_k (z-z_0)^k + O(\varepsilon)$$

then the local representation at A' is $\{b_l\}$ with

$$b_l = \sum_{k=l}^{p} a_k \binom{k}{l} (-z_0)^{k-l}.$$

$$u(z) = \sum_{l=0}^{p} b_l (z)^l + O(\varepsilon).$$

The complexity of L2L is $O(p^2)$.
For a fixed ε,

- both representations are of size $O(p) = O(\log(1/\varepsilon))$,
- all translations are of complexity $O(p^2) = O(\log^2(1/\varepsilon))$,
- the FMM algorithm with these representations and translations still has complexity $O(N)$.