A short introduction to the CAPD library

Maciej Capiński
July 28, 2010

This is a brief introduction to the CAPD (Computer Assisted Proofs in Dynamics) library. The library is written in C++ and provides an extensive selection of tools for rigorous-interval-enclosure based computations. Here we present only some of its features. Our aim is to keep things as simple as possible. The below presented tools are more than enough though to perform highly nontrivial proofs in dynamical systems.

For more advanced tools we encourage the user to visit the CAPD home page: http://capd.ii.uj.edu.pl

Contents

1 Linear algebra - linalg.cpp 2
 1.1 Matrixes and vectors ... 2
 1.2 Basic operations .. 2
 1.3 Commands for intervals and interval vectors 3
 1.4 Eigenvectors ... 3

2 Maps - map.cpp 4

3 Integration of ODEs, time shift map - tmap.cpp 5
 3.1 Non-rigorous computation 5
 3.2 Interval computation ... 6

4 Poincaré map - pmap.cpp 7
 4.1 Non-rigorous computation 7
 4.2 Interval computation ... 8

5 2D Plots and sequences of IVectors - plot-seq.cpp 9
1 Linear algebra - linalg.cpp

1.1 Matrixes and vectors

IVector x(3);
IVector y(2);
IMatrix A(2,3);

x(1) = interval(9,11)/interval(10);
x(2) = -x(1);
x(3) = x(1);

A(1,1) = interval(1); A(1,2) = interval(2); A(1,3) = interval(3);
A(2,1) = -interval(3); A(2,2) = -interval(2); A(2,3) = -interval(1);

y = A*x;

• x is an interval-vector of dimension 3, y is an interval-vector of dimension
 2 and A is a 2 \times 3 interval matrix. After specifying the values of A and x
 we compute y.

• Instead of using IVector, IMatrix we can use DVector, DMatrix, which
 results in having computations performed in doubles. Then we cannot use
 intervals of course and need to use standard numbers (for example x(1)
 = 1.1)

1.2 Basic operations

IMatrix B = transpose(A);
IMatrix C = (A+A)*B;
IMatrix invC = gaussInverseMatrix(C);

IVector v = gauss(C,y);

y = transpose(gaussInverseMatrix(A*B)+C)*y;

• Here we show how to compute a transposition of a matrix, how to multiply
 matrixes, and how to compute an inverse.

• v = gauss(C,y) solves the equation y = C*v for v. In principle we could
 compute v = gaussInverseMatrix(C)*y, but this is much slower than
 using v = gauss(C,y).

• We can perform a number of computations at the same time.

• All of the above operations work identically for standard matrixes and
 vectors using DMatrix and DVector.
1.3 Commands for intervals and interval vectors

For an interval \(a\) and interval-vectors \(x, y\) we have the following useful commands:

\[
\text{midVector}(x); \\
\text{subsetInterior}(x,y);
\]

\[
a.\text{mid}(); \\
a.\text{left}(); \\
a.\text{right}(); \\
a.\text{leftBound}(); \\
a.\text{rightBound}();
\]

- \text{midVector}(x) returns an interval-vector consisting of a single point which lies in the middle of \(x\).
- \text{subsetInterior}(x,y) verifies whether \(x\) is contained in the interior of \(y\). If the answer is "yes" then this function returns 1, if "no" then it returns 0.
- \(a.\text{mid}(), a.\text{left}(), a.\text{right}()\) return single point intervals which lie in the middle, to the left and to the right of the interval \(a\) respectively.
- \(a.\text{leftBound}()\) and \(a.\text{rightBound}()\) perform the same tasks as \(a.\text{left}()\) and \(a.\text{right}()\), but instead of returning an interval they return a number (of type \text{double}).

1.4 Eigenvectors

CAPD library computes eigenvalues and eigenvectors for matrixes. This feature is only implemented for non-rigorous computations using \text{DVector} and \text{DMatrix}!

\[
\text{DMatrix} \ D(2,2); \\
D(1,1) = 5; \quad D(1,2) = 1; \\
D(2,1) = 3; \quad D(2,2) = 6;
\]

\[
\text{DVector} \ rE(2), \ iE(2); \\
\text{DMatrix} \ rVec(2,2), \ iVec(2,2);
\]

\[
\text{computeEigenvaluesAndEigenvectors}(D,rE,iE,rVec,iVec);
\]

- Vectors \(rE\) and \(iE\) hold real and imaginary parts of eigenvalues respectively. This means that the \(k\)-th eigenvalue is equal to \(rE(k) + iE(k)i\).
- Matrixes \(rVec\) and \(iVec\) hold real and imaginary parts of eigenvectors respectively. The eigenvectors are stored in matrixes for convenience. For example, for our matrix \(D\) both eigenvalues are real, which gives us

\[
\text{gaussInverseMatrix}(rVec)*D*rVec;
\]

as the Jordan form of \(D\).
2 Maps - map.cpp

IMap f = "par:a,b;var:x,y;fun:1-a*x^2+y,b*x;";
f.setParameter("a", interval(14)/interval(10));
f.setParameter("b", interval(3)/interval(10));

IVector x(2);
IVector y(2);
IMatrix Df(2,2);

x(1) = interval(9,11)/interval(10);
x(2) = interval(-1,1)/interval(10);

y = f(x);
Df = f[x];

• Above we have an example of a map \(f(x,y) = (1 − ax^2, bx) \) with \(a = 1.4 \) and \(b = 0.3 \).
• \(f(x) \) computes an image of an interval-vector \(x \).
• \(f[x] \) computes the derivative of \(f \) at \(x \).

To conduct non-rigorous computations the code needs to be slightly changed:

− IMap needs to be replaced with DMap,
− IVector needs to be changed into DVector,
− IMatrix needs to be changed into DMatrix,
− all intervals need to be changed to numbers.
In this example we consider the flow $\Phi_t(x)$ generated by an ODE

$$x' = f(x),$$

and show how to compute the map

$$x \rightarrow \Phi_T(x)$$

for a given fixed $T \in \mathbb{R}$.

3.1 Non-rigorous computation

```cpp
double step = 0.3;
int order = 20;
DMap f = "var:x,y;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5));";
DTaylor solver(f,order,step);
DTimeMap Phi(solver);
double T = 3.14159265358979;

DVector x(2);
x(1) = 1.;
x(2) = 0.;
DVector y(2);
y = Phi(T,x);

DMatrix der(2,2);
y = Phi(T,x,der);
```

- The integration is performed using a Taylor method. We need to specify the order of this method and a default time step for the integration.
- A map is declared as in Section 2. We then specify that we use a Taylor method for the map of a given time step and order. Φ is the flow of the vector field f.
- T will be the time for our time map Φ_T, y will hold the result $\Phi_T(x)$, the matrix der will hold the derivative $D\Phi_T$.
- $y = \Phi_T(x)$ computes the time shift map.
- When we execute $y = \Phi_T(x,\text{der})$ then at the same time the derivative of the map is computed ($\text{der} = D\Phi_T(x)$ is computed behind scenes).
- If we are not interested in the derivative then we should use $\Phi_T(x)$ since it is faster than $\Phi_T(x,\text{der})$.

3.2 Interval computation

double step = 0.3;
int order = 20;
IMap f = "var:x,y;fun:x*(1-(x^2+y^2)^(-0.5))^-y,x+y*(1-(x^2+y^2)^(-0.5));";
ITaylor solver(f,order,step);
ITimeMap Phi(solver);
interval T = pi;

IVector x(2);
x(1) = interval(1);
x(2) = interval(0);
C0Rect2Set R(x);

y = Phi(T,R);

IMatrix der(2,2);
IEuclLNorm N;
C1Rect2Set S(x,N);

y = Phi(T,S,der);

• The code is very similar to the program from Section 3.1. The difference is that we use intervals instead of doubles.

• To compute $\Phi_T(x)$ the map Φ cannot work on interval-vectors, but needs to work on sets of type "C0Rect2Set". In these notes we do not dwell into the technicalities why this needs to be done this way. The underlying reason is that objects of type C0Rect2Set carry more information, but we leave the discussion at that. What is important is that we can create a set R of type C0Rect2Set that is equal to x by calling

 C0Rect2Set R(x);

and then turn it back to an IVector if we wish by calling

 x = R;

• To compute $\Phi_T(x)$ together with $D\Phi_T(x)$ we need to work on sets of type "C1Rect2Set". The way we use them is identical to the way that we handle C0Rect2Set. To create a C1Rect2Set an instance of a logarithmic Euclidean norm N is used; another technicality that we shall not dwell into.

• Note that we have written $T = \pi$. In CAPD the variable π is an interval which contains π.

6
4 Poincaré map - pmap.cpp

Here we consider an ODE $x' = f(x)$ with a Poincaré section $V = \{s = 0\}$ where s is some function $s : \mathbb{R}^n \to \mathbb{R}$. We shall show how to compute the Poincaré map

$$P : V \to V. \quad (1)$$

4.1 Non-rigorous computation

double step = 0.3;
int order = 20;
DMap f = "var:x,y,z;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5)),-z;";
DFunction s ="var:x,y,z;fun:x;";
DTaylor solver(f,order,step);
DPoincareMap P(solver,s);

DVector x(3);
x(1) = 0;
x(2) = 1;
x(3) = 0.5;
DVector y(3);
y = P(x);

DMatrix der(3,3);
y = P(x,der);

- We initiate our map f and the function s which will define the section.
- To initiate our Poincaré map P we need to specify the Taylor method for integration and the function s which defines the section.
- It is essential to highlight one feature. The image of the Poincaré map $y = P(x)$ is computed in the full phase space. Our section was defined as $\{x = 0\}$. It is therefore natural to view the map only in coordinates (y, z). In such case the image is $(y(2), y(3))$, since these are the (y, z) coordinate of vector y.
- We can compute the map together with its derivative by calling $P(x,der)$. We need to stress here again that the derivative is computed in full dimension of the system. In our example, since our section was defined as $\{x = 0\}$, the derivative restricted to the (y, z) coordinate on the section is

$$\begin{pmatrix}
\text{der}(2,2) & \text{der}(2,3) \\
\text{der}(3,2) & \text{der}(3,3)
\end{pmatrix}$$
4.2 Interval computation

double step = 0.3;
int order = 20;
IMap f = "var:x,y,z;fun:x*(1-(x^2+y^2)^(-0.5))-y,x+y*(1-(x^2+y^2)^(-0.5)),-z;";
IFunction s = "var:x,y,z;fun:x;"
ITaylor T(f,order,step);
IPoincareMap P(T,s);

IVector x(3);
x(1) = interval(0);
x(2) = interval(1);
x(3) = interval(0.5);
IVector y(3);
C0Rect2Set R(x);

y = P(R);

IMatrix der(3,3);
IEuclLNorm N;
C1Rect2Set S(x,N);

y = P(S,der);

• The code is a mirror of the program from Section 4.1, rewritten for intervals.

• Similar to the computation of the time map from Section 3.1, to compute the image of the Poincaré map we need to work on a C0Rect2Set type. To compute the image of the Poincaré map together with its derivative we need to work with C1Rect2Set type.

• Here also, as in Section 4.1, the image of the Poincaré map and its derivative is computed in the full phase space.

• In some cases one might wish to compute a second, third or higher order iterate of the Poincaré map. The following code gives y as the third iterate of the map

 P(R);
P(R);
y = P(R);

Each time that P(R) is called, the set R is transformed to its image by P.
5 2D Plots and sequences of IVectors - plot-seq.cpp

For those familiar with C++ it is sufficient to say that to create a sequence of IVectors we can simply use pointers. Those unfamiliar with C++ can have a look at the following three lines of code to see how such a sequence can be declared.

```cpp
int N = 64;
IVector *p;
p = new (2) IVector[N];

IMap r = "par:phi;var:x,y;fun:x*cos(phi)-y*sin(phi),x*sin(phi)+y*cos(phi);";
r.setParameter("phi",interval(0.1));

IVector x(2);
x(1) = interval(-1,1)/interval(1000);
x(2) = x(1)+interval(1);
p[0] = x;

for(int i=1;i<N;i++) p[i] = r(p[i-1]);
```

- The first three lines create a sequence of \(N\) IVectors of dimension 2 called \(p\). In a similar fashion we can declare a sequence of matrixes, for example

```cpp
IMatrix *Q;
Q = new (4,4) IMatrix[N];
```

- We declare a map \(r\), which is a rotation by an angle \(\phi\).

- We assign the first element \(p[0]\) from the sequence \(p\) to be the IVector \(x\). Next we let successive elements in \(p\) to be the successive iterates of \(x\) by the map \(r\).

Now we shall show how we can write our sequence into a file:

```cpp
ofstream outdata;
outdata.open("NameOfFile.dat");

double xl,xr,yl,yr;
for(int i=0;i<N;i++)
{
    xl = p[i](1).leftBound(); xr=p[i](1).rightBound();
yl = p[i](2).leftBound(); yr=p[i](2).rightBound();
    outdata << (xr-xl)/2. <<" ";
    outdata << (yr-yl)/2. <<" ";
    outdata << (xr-xl)/2. <<" ";
    outdata << (yr-yl)/2. << "endl;
}
outdata.close();
```
• We write our results into a file named `NameOfFile.dat` (any name can be given of course).

• We fill our file with lines of the format

\[x_m \ y_m \ r_x \ r_y \]

each line for a single IVector \(p[i] \) from our sequence. The numbers are interpreted as follows: \((x_m, y_m)\) is a point which lies in the middle of the IVector \(p[i] \). \(r_x\) and \(r_y\) are the radii of the intervals on the \(x\) and \(y\) coordinates respectively.

• By running Gnuplot in the directory containing the file `NameOfFile.dat` and typing:

```
  gnuplot> plot "NameOfFile.dat" with boxxyerrorbars
```

we obtain a graph of our sequence:

![Graph](image)

Typing simply

```
  gnuplot> plot "NameOfFile.dat"
```

gives a plot of mid-points for our sequence:

![Graph](image)