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1 Introduction, Fields and Quantization

For the purposes of these lectures, quantum field theory is the study of the following situation.

• We have a smooth n-dimensional space-time manifoldX, usually with a Riemannian metric.

• We have a space Φ(X) of “fields” on X.

A crucial property of “fields” is that they are locally defined.

Example 1.1. 1. Φ(X) = all smooth maps ϕ : X −→ R.

2. Φ(X) = all smooth maps ϕ : X −→ M where M is another manifold, usually with a
Riemannian structure.

3. Φ(X) = collection of Riemannian metrics on X.

4. Φ(X) = principal G-bundles on X, where G is a Lie group.

5. Φ(X) = principal G-bundles on X (where G is a Lie group) equipped with a connection.

6. Φ(X) = complex vector bundles on X equipped with a hermitian inner product, a unitary
connection, and a smooth section.
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Notice that in (4), (5), and (6) above, the fields naturally form a category, and the notation
Φ(X) means, at least roughly, the set of isomorphism classes of objects.

We want to make “local observations” of fields ϕ ∈ Φ(X). Thus for x ∈ X we consider maps
Fx : Φ(X) −→ C such that Fx(ϕ) depends only on ϕ restricted to an infinitesimal neighborhood
of x.

Example 1.2. 1. In (1) above, Fx(ϕ) = ϕ(x).

2. In (2) above, Fx(ϕ) = f(ϕ(x)) for some f : M −→ C.

3. In (3) above, Fx(ϕ) = scalar curvature of ϕ at x.

4. In (4) above, there are no local observables, although there are global ones, e.g. F (ϕ) = 0
if ϕ is trivial and 1 if ϕ is non-trivial.

We want to put a probability measure on Φ(X), so that we can evaluate “expectation
values” 〈Fx〉 and “correlations” 〈F (1)

x1 · · ·F (k)
xk 〉.

The measure contains all the physics of the situation. It expresses the fact that the values
of ϕ at different points of X are correlated only by the interaction of points which are infinitely
close to each other.

To be more precise, consider Φ(X) = Map(X,M) and let dµ(x) be a probability measure on
X. Then

(1.2.1) Dϕ =
∏
x∈X

dµ(ϕ(x))

is a measure on Φ(X) with no correlations at all between different points. The same would apply
to

(1.2.2) e−S(ϕ)Dϕ =
∏
x∈X

e−L(ϕ(x))dxdµ(ϕ(x))

if S : Φ(X) −→ R is of the form S(ϕ) =
∫

X
L(ϕ(x))dx for some L : M −→ R.

The measures we want are of the form e−S(ϕ)Dϕ with the crucial difference that S : Φ(X) −→
R, which is called the action, is of the form

(1.2.3) S(ϕ) =
∫

X

L(ϕ(x), Dϕ(x))dx.

Here L : J 1(M) −→ R is a function on the space of 1-jets of maps X −→M . The dependence
of L on the derivative Dϕ(x) determines how neighbouring points of X interact with each other.

It is very hard to construct measures of the type we want. The only easy case is when
dim(X) = 1. Then we have Wiener Measure.

Wiener Measure (or Brownian Motion or Random Walk)

Let X = [a, b] ⊂ R.
Let Φ(X) = Map(X,M), where M is a compact Riemannian manifold.
Let S : Φ(X) −→ R be defined by S(ϕ) = 1

2

∫ b

a
||ϕ̇(t)||2dt.

Then the measure can be described as follows.
Let H = L2(M), a Hilbert space.
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Let Ω ∈ H denote the constant function 1.
Let Ut : H −→ H , for t > 0, be the contraction semigroup expressing the diffusion of heat

on X, i.e. Ut = e−t∆, where ∆ is the Laplacian.
Let mf : H −→ H be the multiplication by f : M −→ C. Notice that Ut is self-adjoint, and

UsUt = Us+t. Also UtΩ = Ω.

Theorem 1.3. If a ≤ t1 < t2 < · · · tk ≤ b, and f1, . . . , fk : M −→ C, then

(1.3.1) 〈fk(ϕ(tk)) · · · f2(ϕ(t2)f1(ϕ(t1))〉Wiener = 〈Ω, Ub−tk
mfk

· · ·Ut2−t1mf1Ut1−aΩ〉H

The form of this result is basic for us. We want to understand how X1 interacts with X2

when X = X1 ∪X2. Suppose [a, b] = [a, c] ∪ [c, b], and assume that ti ∈ [a, c] for i ≤ r, ti ∈ [c, b]
for i > r. The right hand side of the formula above can be written

(1.3.2) 〈Ψ2,Ψ1〉H ,

when Ψ1 = Uc−tr
mfr

Utr−tr−1mfr−1 · · ·Ut1−aΩ ∈ H and Ψ2 can be written similarly.
In terms of measures on X = X1 ∪X2 with X1 ∩X2 = Y , this tells us that

(1.3.3) e−S(ϕ)Dϕ 6= e−S(ϕ1)Dϕ1 · e−S(ϕ2)Dϕ2

(where ϕi = ϕ|Xi
), which would say that the points of X1 did not interact with the points of X2.

On the other hand, it tells us that we can define measures e−S(ϕi)Dϕi with values in H such
that

(1.3.4) e−S(ϕ)Dϕ = 〈e−S(ϕ1)Dϕ1, e
−S(ϕ2)Dϕ2〉.

The size of the vector space H precisely expresses the extent of the interaction between X1

and X2, and it is canonically associated to the interface Y = X1 ∩X2. (More accurately, to the
infinitesimal neighborhood of Y in X).

The construction of the Wiener measure from

1. the Hilbert Space H

2. the semigroup Ut : H −→ H and the vector Ω ∈ H , and

3. the ring of operators {mf}

can easily be axiomatized. For many purposes most, and sometimes all, of the information is
already encoded in (1) and (2), and the ring of operators and the space Φ(X) of fields can be
completely forgotten. This point of view leads us to the axiom system described in Lecture 1 of
the accompanying notes.1.

One of the few situations where one can construct a measure like Wiener measure quite
explicitly, but where dim(X) = 2, is the case of Yang-Mills theory in §1.4 and §1.5 of the notes.

1See the ’Stanford Lectures’, which can be found at www.cgtp.duke.edu/ITP99/segal.
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Geometric Quantization

The measure on Φ(X) is concentrated very sharply around the critical set of S : Φ(X) −→ R.
Call this critical set Φ0(X) - the space of “classical solutions.” Let us be more precise.

Let ψ be an infinitesimal variation of ϕ, i.e. a tangent vector to Φ(X) at ϕ. The usual
procedure of the calculus of variations gives us a formula of the form

(1.3.5) dS(ϕ;ψ) =
∫

X

A(ϕ(x))ψ(x)dx+
∫

∂X

B(ϕ(x))ψ(x)dx

for the derivative of S. (Here A and B depend also on Dϕ(x).)
The two terms on the right hand side of Equation 1.3.5 are 1-forms on Φ(X). Let us call

them α and β. The zero-set of α is called the space Φ0(X) of classical solutions. Because
of the local nature of S,A,B it makes sense to speak of the space Φ0(Y ) of germs of classical
solutions along any codimension 1 submanifold Y of X, and β defines a 1-form on Φ0(Y ).

In fact the closed 2-form dβ defines a symplectic structure on the manifold Φ0(Y ), and the
Hilbert space HY associated to Y is determined by “geometric quantization” from Φ0(Y ).

If Y = ∂X then Φ0(X) ⊂ Φ0(Y ), and β|Φ0(X) = dS|Φ0(X). Thus dβ = 0 on Φ0(X). In good
cases Φ0(X) is a Lagrangian submanifold of Φ0(Y ), and when ∂X = Y0

∐
Y1 it is the graph of a

symplectic transformation Φ0(Y0) −→ Φ0(Y1).

2 The Formalism of Gaussian Measures

The Finite Dimensional Case

If A is a real n× n positive-definite matrix then

(2.0.6)
∫

Rn

e−
1
2 〈x,Ax〉dx = (det

A

2π
)−

1
2

More abstractly, if V is an n-dimensional real vector space, with no given measure, and A : V −→
V ∗ is positive-definite symmetric, we should think of the two sides of Equation 2.0.6 as elements
of | ∧n V |, for A : V −→ V ∗ induces det(A) : ∧nV −→ ∧nV ∗ so that

(2.0.7) det(A) ∈ (∧nV ∗)⊗2

and

(2.0.8) (detA)−
1
2 ∈ | ∧n V |.

Better, we should allow complex symmetric A with Im(A) positive definite. Then

(2.0.9)
∫

V

e
i
2 〈x,Ax〉dx = (det

A

2πi
)−

1
2 ,

where now both sides belong to | ∧n V |C.
The function e

i
2 〈x,Ax〉 on V defines a ray LA in the Hilbert space H = L2(V ) of 1

2 -densities on
V . The ray consists of all elements e

i
2 〈x,Ax〉dµ(x)

1
2 , where dµ is a translation invariant measure

on V . Thus LA is canonically isomorphic to | ∧n V |−
1
2

C .



5 2 The Formalism of Gaussian Measures

To generalize this to infinite dimensional V the first step is to see that H = L2(V ) can
be characterized as a group representation. For each ξ ∈ V we have a translation operator
Tξ : H −→ H and for each α ∈ V ∗ we have a multiplication operator Mα : H −→ H (thus
(Tξϕ)(x) = ϕ(x− ξ), and (Mαϕ)(x) = eiα(x)ϕ(x).)

These operators nearly commute:

(2.0.10) TξMα = e−iα(ξ)MαTξ

so the Tξ and Mα, together with scalar multiplication by elements of T = {u ∈ C||u| = 1},
generate a 2n+ 1-dimensional Lie group Heis, which fits in an exact sequence

(2.0.11) 1 −→ T −→ Heis −→ V ⊕ V ∗ −→ 1.

The group Heis depends only on the vector space V ⊕V ∗ = T ∗V with its symplectic form σ given
by

(2.0.12) σ((v1, α1), (v2, α2)) = α2(v1)− α1(v2).

Theorem 2.1. The Hilbert space L2(V ) is an irreducible unitary representation of Heis, and is
characterized as the unique irreducible representation on which T ⊂ Heis acts by scalar multipli-
cation.

Corollary 2.2. Up to scalar multiplication, L2(V ) depends only on the symplectic vector space
V ⊕ V ∗.

The Gaussian ray LA ⊂ L2(V ) can also be characterized in terms of the group Heis. But first
we need to know more about the space of complex Gaussian measures on V , which is traditionally
called the “Siegel generalized upper 1

2 -plane.”

Theorem 2.3. The following three manifolds are canonically isomorphic:

1. symmetric linear maps A : VC −→ V ∗
C with Im(A) positive-definite,

2. positive maximal isotropic subspaces W ⊂ (V ⊕ V ∗)C,

3. symplectic linear maps J : V ⊕ V ∗ −→ V ⊕ V ∗ such that J2 = −1.

Proof. Here “isotropic” refers to the form σ, and W is positive if iσ(w,w) > 0 for all non-zero
w ∈ W . The theorem is trivial: the correspondence (1) → (2) is A 7→ graph(A), and (3) → (2)
is J 7→ +i-eigenspace of J .

The Gaussian ray LA = LW ⊂ L2(V ) is the unique ray fixed by the abelian subgroup defined
by W in the complexified group HeisC. But it is a little clearer to work with the Lie algebra of
Heis which is generated by

iDξ for ξ ∈ V – Dξ is differentiation along ξ
mα for α ∈ V ∗– mα is multiplication by α

(2.3.1)

subject to the relation

(2.3.2) [iDξ,mα] = iα(ξ).
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The formula

(2.3.3) (i
∂

∂xk
)e

i
2

P
Apqxpxq = −

∑
Akqxqe

i
2 Apqxpxq

shows that e
i
2 〈x,Ax〉 is annihilated by the elements of W = graph(A) ⊂ (V ⊕ V )∗C.

The algebra (over C) generated by the symbols Dξ and mα satisfying equation 2.3.2 is called
the Weyl algebra A(V ⊕ V ∗). It is a precise analog of the Clifford algebra C(V ⊕ V ∗)
associated to the symmetric form on V ⊕ V ∗.

Once we have picked a Gaussian measure A, or better a splitting (V ⊕ V ∗)C ∼= W ⊕W , we
get a new description of L2(V ). For the symmetric algebras S(W ) and S(W ) are commutative
subalgebras of the Weyl algebra A(V ⊕ V ∗), and S(W ) annihilates the ray LA.

Theorem 2.4. There is a dense isometric embedding

(2.4.1) S(W ) −→ L2(V )

given by

(2.4.2) w1 · · ·wk 7→ w1 · · ·wke
i
2 〈x,Ax〉,

where on the right, the wi are regarded as elements of the Weyl algebra.

The image of the embedding in Theorem 2.4 is clearly the space of all functions of the form

(2.4.3) p(x)e
i
2 〈x,Ax〉(dx)

1
2

where p is a polynomial on V . Thus L2(V ) is the natural Hilbert space completion of S(W ).
Note: It would be more functorial to write S(W )⊗ (∧nW )

1
2 −→ L2(V ).

The infinite dimensional case

For an infinite dimensional topological vector space V there is no unique choice of a Hilbert
space H = L2(V ). If we choose a Gaussian quadratic form A : VC −→ V ∗

C there is a unique
Hilbert space HA which contains all formal expressions of the type 2.4.3. It is the unique
irreducible representation of Heis(V ⊕ V ∗) which contains a ray annihilated by the operators of
the Weyl algebra corresponding to the subspace W = graph(A), and it is the natural Hilbert
space completion of the symmetric algebra S(W ).

The main fact about the construction is

Theorem 2.5 (Shale). If A1 and A2 are two Gaussian forms then the Hilbert spaces HA1 and
HA2 are isomorphic as representations of the Weyl algebra A(V ⊕ V ∗) iff the projection

(2.5.1) WA1 −→WA2

coming from (V ⊕ V ∗)C = WA1 ⊕WA2 is a Hilbert-Schmidt operator.

The following definition will be basic. A polarization of a topological vector space E is a
class of splittings E = E+ ⊕E− which are close in the sense of Shale’s theorem. For a polarized
topological vector space E we define the restricted Grassmannian Gr(E) as the space of all
subspaces E+ which occur in allowable decompositions E = E+ ⊕ E−.

Shale’s theorem associates a Hilbert space H = L2(V ) ∼= S(W ) to each positive isotropic
decomposition (V ⊕ V ∗) = W ⊕W . It also has the important
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Corollary 2.6. If W1 is a positive maximal isotropic subspace of (V ⊕ V ∗)C belonging to its
restricted Grassmannian, then there is a unique ray LW1 ⊂ H which is annihilated by W1 ⊂
A(V ⊕ V ∗).

3 Free Bosonic Field Theory

We can now construct an example of an n-dimensional quantum field theory. Unfortunately it
describes non-interacting particles, although in a curved background.

Let X be a compact oriented Riemannian n-manifold, perhaps with boundary. The space of
fields is Φ(X) = Ω0(X) = smooth maps X −→ R. The action S : Φ(X) −→ R is given by

(3.0.1) S(ϕ) =
1
2

∫
X

(dϕ · ?dϕ+m2ϕ · ?ϕ)

where m is the mass. The classical solutions are

(3.0.2) Φ0(X) = {ϕ|(d∗d+m2)ϕ = 0}.

The germs of classical solutions along ∂X, i.e. the space Φ0(∂X) of “Cauchy data” along ∂X,
are

(3.0.3) Φ0(∂X) = Ω0(∂X)⊕ Ωn−1(∂X).

Note that Ω0(∂X) and Ωn−1(∂X) are dual spaces.
The space HY associated to a closed oriented Riemannian (n − 1) manifold Y will be

L2(Ω0(Y )). To define this space we must choose a subspace W ⊂ (Ω0(Y ) ⊕ Ωn−1(Y ))C. If
∂X = Y , we take W = Φ0(X), where

(3.0.4) Φ0(X) ↪→ (Ω0(Y )⊕ Ωn−1(Y ))C

by

(3.0.5) ϕ 7→ (ϕ|Y , i(?dϕ)|Y )

(Notice that (?dϕ)|Y is the normal derivative of ϕ along Y .)
Remark 3.1. Ultimately, the i in the preceding formula comes from the fact that X is a Rieman-
nian rather than a Lorentzian manifold.

Theorem 3.2. 1. W is a positive maximal isotropic subspace of (Ω0(Y )⊕ Ωn−1(Y ))C.

2. The polarization defined by W ⊕W is independent of the choice of X. More precisely, it
depends only on the germ of X along Y .

This completes the construction of the field theory, at least projectively. For we now have
defined spaces HY , and a ray LX ⊂ HY when Y = ∂X. If X : Y0  Y1 is a cobordism, then
clearly

(3.2.1) H∂X = H ∗
Y0
⊕HY1 ,

so X defines an operator UX : HY0 −→ HY1 up to a scalar multiple.
Of course it is very important to fix the scalar multiple which I have left completely vague.

That is done by use of the ζ function determinants, which are described in §2.8 of the accompa-
nying notes. But I shall not discuss this further here.
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4 Free Fermionic Field Theory

On a real vector space V physicists regard elements of ∧(V ∗) as “anti-commuting functions.”
By the side of L2(V ) we can construct a Hilbert space H =

∧
(L2)(V

∗). It is by definition a
representation of the Clifford algebra C(V ⊕ V ∗), where V ⊕ V ∗ has now its natural symmetric
quadratic form. Thus H has differentiation operators

(4.0.2) Dξ : H −→ H for ξ ∈ V

and multiplication operators

(4.0.3) mα : H −→ H for α ∈ V ∗

but now

(4.0.4) Dξmα +mαDξ = α(ξ).

To define H we choose a positive maximal isotropic subspace W ⊂ (V ⊕ V ∗)C, and take

(4.0.5) H =
∧

(W )

A theorem exactly analogous to Shale’s theorem (see Theorem 2.5) holds in this situation.
The most frequent application is to the case where W = E− ⊕ (E−)∗ ⊂ E ⊕ E∗, where

E = VC. In this case we can express things much more simply, for H is then simply the Fock
space F(E) associated to a polarized complex vector space E. This is described in §2.9 of the
accompanying notes.

We can now describe the massless free fermionic field theory of dimension n, where n is even.
It is defined for manifolds with a Spinc-structure.

If Y is a closed (n− 1)-manifold, we define HY = F(E), where E is the space of spinor fields
Γ(Y ) which is polarized by the Dirac operator DY . If ∂X = Y we define H −

Y to be the boundary
values of the solutions of the Dirac operator DXϕ = 0, where ϕ ∈ Γeven(X). Everything now
works as in the bosonic case.

Remark 4.1. This theory describes particles which do not interact with each other, but which are
created and annihilated by the metric background, i.e. the gravitational field. The number
of particles created by a cobordism X : Y0  Y1 is the index of the Dirac operator DX , as is
explained in Chap. 2 of the notes.

I have implicitly used two different polarizations of E = Γ(Y ), one defined by DY , and one by
DX , where ∂X = Y . These are equivalent providing the germ of X along Y agrees with Y × R
to order n

2 − 1. Physically, this means that the propagation of fermions in a gravitational field
depends only on the usual gravitational Cauchy data (i.e. metric and the first fundamental form
of Y ) only if n ≤ 4.

5 Conformal Field Theory

There are at least three reasons for being interested in 2-dimensional conformal field theory:

1. as non-trivial but fairly well-understood examples of quantum field theories;

2. as the continuum limits of statistical mechanical models describing changes of phase;
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3. because (roughly speaking) a space with a reasonable claim to be called Ω0(LM) is the
space HS1 of a CFT if and only if the Riemannian manifold M satisfies Einstein’s equations
— in other words, a CFT is a “generalized” solution of Einstein’s equations.

The theory concerns compact oriented smooth surfaces with smooth boundary surfaces,
equipped with a conformal structure. Call these “Riemann surfaces.” We are interested in the
cobordisms Σ : S1  S1 where Σ is a Riemann surface. Such cobordisms form a category, for we
can sew Riemann surfaces together by diffeomorphisms of their boundary conditions–but this is
a non-trivial theorem.

We shall associate a vector space HS to each closed oriented 1-manifold S, so that HS1
‘

S2 =
HS1 ⊗HS2 . This is equivalent to giving a single vector space HS1 with an action of Diff+(S1),
the group of orientation-preserving diffeomorphisms.

Then we associate an operator UΣ : HS0 −→ HS1 to each cobordism Σ : S0  S1. We want
UΣ to depend smoothly on the conformal structure of Σ. in particular, let

(5.0.1) A = {Riemann surface Σ diffeomorphic to S1 × [0, 1]}/ ∼

where ∼ means equivalence by diffeomorphisms f such that f |∂Σ = Id.
A is a semigroup which acts on HS1 . In fact we must allow it to act projectively. The

existence of this action implies that the natural geometrical action of Diff+(S1) on HS1 extends
to a projective action of Diff+(S1) × Diff+(S1) on HS1 , the geometric diffeomorphism group
being contained in the larger group as the diagonal subgroup.

First Explanation

We should like to say that the action of A “continues analytically” to an action of the semigroup
A phys of Lorentzian conformal cylinders. But to give a Lorentzian cylinder is roughly equivalent
to giving the pair of diffeomorphisms fL, fR : S1 −→ S1 obtained by following the left and right
moving light lines from one end of the cylinder to the other.

Better Explanation

The Lie group Diff+(S1) does not possess a complexification. But, morally, A is the semigroup
obtained by exponentiating the cone of “inward pointing” elements in its complexified Lie algebra.

The relation of Diff+(S1) to A is precisely that of the group PSL2(R) to the semigroup

(5.0.2) PSL<
2 (C) = {g ∈ PSL2(C)|g(D) ⊂

◦
D}2

Thus A and Diff+(S1)×Diff+(S1) are two “real forms” of the same complex group, and we have

Theorem 5.1. A projective representation of A by contraction operators on a Hilbert space
H which is self-adjoint in the sense that UΣ = U∗

Σ can be continued analytically to a unitary
projective representation of Diff+(S1)×Diff+(S1).

To give a conformal field theory is therefore to give a representation H of A with some
additional structure. Essentially, this structure is a multiplication law

(5.1.1) UΣ : H ×H −→ H

2The notation
◦
D signifies the interior of D.
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induced by the “pair of pants” Σ. (To give UΣ for one Σ is enough, if we already have the action
of A .)

The product 5.1.1 is known as the “operator product expansion.” Its properties can be for-
malized in various ways, and reduced to pure algebra, e.g. in the theory of vertex operator
algebras.

Two dimensional CFT is well understood because the representations of Diff+(S1) are well
understood. Two ways of constructing them are known.

5.2 (Construction 1). Let Ωa,b be the space of a-forms on S1 with coefficients in the flat bundle
with holonomy b ∈ C∗, i.e. Ωa,b consists of expressions ϕ(θ)(dθ)a, where ϕ(θ + 2π) = bϕ(θ).
Then Ωa,b is a polarized vector space, with polarization determined by the operator i d

dθ . The
polarization is preserved by diffeomorphisms of S1: it does not depend on the choice of the pa-
rameter θ. Accordingly, Diff+(S1) acts on the Fock space F(Ωa,b). Feigin and Fuchs proved that
all (positive-energy) representations of Diff+(S1) are subquotients of representations of F(Ωa,b).

5.3 (Construction 2). If G is a compact Lie group then the representation theory of the loop
group LG is well understood. In particular, every positive energy representation extends to a
representation of LGC. It is an important theorem that any such representation H admits an
intertwining action of Diff+(S1), i.e. for each f ∈ Diff+(S1) there is an operator Uf : H −→ H
such that

(5.3.1) UfMγU
−1
f = Mγ◦f−1

where Mγ is the action of γ ∈ LG. In fact there is an operator UΣ : H −→ H for each Σ ∈ A
such that

(5.3.2) UΣMγ0 = Mγ1UΣ

whenever γ0, γ1 ∈ LGC are the boundary values of a holomorphic map γ : σ −→ GC. Once again,
all representations of Diff+(S1) arise in this way.

6 Braided Tensor Categories

In §1.1 of the accompanying notes I have explained how a 2-dimensional topological field theory is
exactly equivalent to a commutative Frobenius algebra. The best-known examples of Frobenius
algebras are

• the representation ring of a group and

• the cohomology ring of a (compact) manifold.

In this section and the next I shall explain how for a loop group one can “lift” the TFT to one
which takes values which are additive categories, and how for certain manifolds one can lift the
TFT to one whose values are cochain complexes.

Let G be a compact Lie group, and C the category of positive-energy unitary representations
of the loop group LG at a fixed level k. (The representations are projective, and, for a simply
connected G, the level is the topological type of the circle bundle LG̃ −→ LG which really acts
on the representation space: thus k ∈ H2(LG,Z) ∼= H3(G,Z).

C is a C-linear additive category, which is semi-simple, with only finitely many irreducible
objects. It exactly resembles the category of complex representations of a finite group.
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I shall write C⊗p for the category of representations of LG × · · · × LG. These are sums of
irreducible representations of the form E1 ⊗ · · · ⊗Ep. More functorially, I write CS , when S is a
closed 1-manifold, for the category of representations of Map(S,G).

Theorem 6.1. A smooth cobordism Σ : S0  S1 induces an additive functor

(6.1.1) UΣ : CS1 −→ CS2

The functor UΣ is characterized by the following universal property:

for each object E in CS0 , and each complex structure σ on Σ, there is a linear map

(6.1.2) Tσ : E −→ UΣ(E)

such that Tσ ◦ γ0 = γ1 ◦ Tσ whenever γ0, γ1 are the restrictions to S0, S1 of a σ-
holomorphic map γ : Σ −→ GC. (This makes sense because any representation of LG
is automatically a representation of LGC.)

When Σ is a cylinder S1 × [0, 1] we have UΣ = Identity, and the maps Tσ : E −→ E are the
action on E of the semi-group A described in §5, which extends the action of Diff+(S1) on E.

The functor C × C −→ C induced by a chosen “pair of pants” is called fusion. I shall write
it (E1, E2) 7→ E1 ∗ E2.

A diffeomorphism f : Σ −→ Σ′ induces a natural transformation

(6.1.3) uf : UΣ(E) −→ EΣ′(E)

for any E. Thus Diff(Σ rel ∂Σ) acts on UΣ(E). It must act through the mapping class
group ΓΣ,∂Σ = π0Diff(Σ, ∂Σ), for the identity component of Diff(Σ, ∂Σ) has no non-trivial finite
dimensional representations. In particular, the colored braid group on n strings always acts
on E1 ∗ E2 · · · ∗ En.

With the example of the representations of a loop group in mind, it seems reasonable to
propose that a “braided tensor category” should be defined as a 2-dimensional TFT with values
in C-linear categories.

For any such structure many more remarkable things are true. If Σ,Σ′ : S0  S1, then not
only does a diffeomorphism f : Σ −→ Σ′ induce a map as in 6.1.3, but a cobordism

(6.1.4) M : Σ Σ′(rel S0, S1)

induces

(6.1.5) uM : UΣ(E) −→ U ′
Σ(E).

But now we have a three-dimensional TFT. For C∅ is the category of finite dimensional vector
spaces, so we can associate to a closed surface Σ the vector space Eσ = UΣ(C), on which the
mapping class group ΓE acts. A cobordism M : Σ Σ′ induces uM : EΣ −→ EΣ′ .

In the loop group example the 3-dimensional theory is Chern-Simons theory at level k.
That is, the number uM ∈ C associated to a closed 3-manifold M is

(6.1.6) uM =
∫

AM /GM

e2πikCS(A)DA

where AM is the space of G-connections on M and GM is the corresponding gauge group, and

(6.1.7) CS(A) =
∫

M

〈A, dA〉+
1
2
〈A, [A,A]〉.
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Final Remarks

6.2. The three tier structure

1−manifold 7→ category
2−manifold 7→ vector space
3−manifold 7→ number

(6.2.1)

is exactly of the type arising in the index theory of the Dirac operator, as described in Lecture
2 of the corresponding notes.

6.3. If we replace the categories CS by their Grothendieck groups K(CS)–e.g. K(CS) = repre-
sentation ring Rk(LG) of LG at level k–then we have a 2-dimensional TFT in the usual sense,
but over Z rather than C. The Frobenius algebra K(CS1) is called the Verlinde algebra.

7 String Algebras

The cohomology ring H∗(M,C) of a compact oriented manifold is a Frobenius algebra: the
duality is Poincaré duality. In some situations this algebra can be “lifted” to a TFT with values
in cochain complexes. A theory of this kind I shall call a string algebra. But first a general
remark...

Classical homotopy theory tells us that the category of topological spaces and homotopy
classes of maps can be approximated by an additive category S p with a tensor product, namely
the category of “spectra.” Essentially, S p is the category of spaces and stable homotopy classes
of maps. Ideally, I would describe a 2-dimensional TFT, with values in S p, but for simplicity I
shall here replace S p by the cruder category of cochain complexes of real vector spaces. All the
same, it is probably clearest to think of the objects as spaces...

Accordingly, we consider a cochain complex C• = C•
S1 of topological vector spaces on which

Diff+(S1) acts, perhaps trivially. (See the note below for the meaning of a Diff+(S1)-action.)
There is an associated functor

{closed oriented 1-manifolds} −→ {cochain complexes}
S 7→ C•

S

(7.0.1)

such that C•
S1

‘
S2

= C•
S1
⊗ C•

S2
.

To each smooth cobordism Σ : S0  S1 we associate a cochain map UΣ : C•
S0

−→ C•
S1

.
We want this to depend smoothly on Σ. One possible way to formulate this is: if M etΣ is the
contractible space of Riemannian metrics on Σ, there is a given element

(7.0.2) ÛΣ ∈ Ω•(M etΣ;Hom(C•
S0
, C•

S1
))

which is closed for the total differential of this double (or triple..) complex, and is basic (see
below) for the action of Diff(Σ), which acts on C•

S0
and C•

S1
by restriction. If we restrict ÛΣ to

a point of M etΣ we get back the previous UΣ : C•
S0
−→ C•

S1
.

Compatibility with the sewing-together of cobordisms S0
Σ
 S1

Σ′

 S2 means that

Ω•(M etΣ ×M etΣ′ ;Hom(C•
S0
, C•

S1
)⊗Hom(C•

S1
, C•

S2
)) −→ Ω•(M etΣ

‘
Σ′ ;Hom(C•

S0
, C•

S2
))

ÛΣ ⊗ ÛΣ′ 7→ UΣ∪Σ′

(7.0.3)
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where the map is obtained by combining the restriction

(7.0.4) M etΣ∪Σ′ −→ M etΣ ×M etΣ′

with composition of maps of complexes.
A string algebra, as thus defined, comprises a great deal of information. For example

1. The cohomology H•(C•
S1) is a Frobenius algebra.

2. For each smooth closed surface Σ we get a cohomology class ÛΣ ∈ H•(MΣ) of the moduli
space M etΣ/Diff(Σ).

3. The ring⊕g≥0H•(Mg,2) acts onH•(C•
S1), where Mg,2 is the moduli space M etΣ/Diff(Σ rel ∂Σ)

of a surface of genus g with two boundary circles.

Note To say that a Lie group G acts on a cochain complex C• means that G acts on each
vector space Ck in the obvious sense, and that, in addition, there is given, for each ξ in the Lie
algebra g of G, a linear map

(7.0.5) iξ : Ck −→ Ck−1

such that iξ ◦ d+ d ◦ iξ = Lξ where Lξ : Ck −→ Ck is the action of g obtained by differentiating
the G-action.

An element α ∈ C• is basic if it is invariant under G and also annihilated by iξ for all ξ ∈ g.
If C• is the de Rham complex of a manifold X on which G acts freely, then the subcomplex
C•

basic is the de Rham complex of X/G.

8 Floer Cohomology

Examples of string algebras arise in two places: conformal field theory, and the Floer cohomology
of loop spaces.

Floer cohomology was invented to prove the Arnold conjecture. Arnold observed that if (M,ω)
is a compact symplectic manifold, then a function H : M −→ R determines a Hamiltonian flow
on M whose fixed points are the critical points of H. Conventional Morse theory tells us that the
number of critical points of H must be at least as great as

∑
i dimH

i(M). Arnold conjectured
that for a flow ft : M −→ M generated by a time-dependent Hamiltonian Ht : M −→ R
(0 ≤ t ≤ 1) the number of fixed-points of ft obeys the same estimate.

The fixed points of ft : M −→M are the critical points of

(8.0.6) S : LM −→ R/{periods of ω}

where S(γ) =
∫

γ
pdq −Mtdt. Note that

∫
γ
pdq is defined only modulo periods of ω, for it really

means
∫
Σ
ω, where ∂Σ = γ. I shall assume the periods are integral, so that S : LM −→ R/Z).

Floer observed that the critical points of S generically form a finite set, but that the Hessian
at each critical point has infinitely many positive and infinitely many negative eigenvalues. Nev-
ertheless, he showed that counting gradient lines of S from our critical point to another defines
a cochain complex CF •(LM) whose cohomology is H•(M), and, in particular, is independent of
the Hamiltonian {Ht}. (To define a gradient flow of S, we must choose a Riemannian metric on
M in addition to its symplectic form ω, so that M becomes “almost Kähler.”)
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It would be very interesting to understand properly the additional structure on an infinite
dimensional manifold X, such as LM , must have if one is to define Floer cohomology HF •(X).
Obviously, we only need to know the function S : X −→ R/Z to within fairly generous pertur-
bations. There seem to be two essential ingredients in the construction.

(i) At a critical point γ of S the Hessian D2S(γ) splits the tangent space TγX into “stable”
and “unstable” parts: TγX = T+

γ ⊕ T−γ . In fact the Hessian defines such a splitting, not quite
canonical, at every point of X, i.e. it defines a polarization of each tangent space TγX in the
sense defined after 2.5. Such a structure is called a polarization of X. It reduces the structural
group of TX from a contractible general linear group to a group GLres, whose classifying space
BGLres is homotopy equivalent to U(∞) = ∪m≥1U(m). Thus the polarization gives a homotopy
class of maps X −→ U(∞).

(ii) Besides the polarization, the function S provides an increasing family of compact sub-
spaces {Xt}t≥0 of X: we define Xt as the points which lie on flow-lines of total energy ≤ t. In
the case of LM this means all “equators” of pseudo-holomorphic maps ϕ : S2 −→ M such that
E(ϕ) = 1

2

∫
S2〈dϕ, ?dϕ〉 ≤ t.

Notice that in thinking conceptually about the Floer cohomology of LM it is best to have in
mind either the “unperturbed” case (with Ht = 0), when the critical points are just the point
loops M ⊂ LM , and the flow lines from m0 ∈ M to m∞ ∈ M are the pseudo-holomorphic
maps ϕ : S2 −→ M such that ϕ(0) = m0 and ϕ(∞) = m∞, or else the case of a small generic
time-independent perturbation H, when the critical set K ⊂ M ⊂ LH is the finite set of point
loops at critical points of H, and the meaning of “pseudo-holomorphic” is slightly deformed.

For the present, the main point is to understand why a cobordism Σ : S0  S1, where S0 and
S1 are circles, gives us a cochain map UΣ : CF •(LM) −→ CF •(LM). For this, choose a complex
structure on Σ, and let us work with a time-independent perturbation as just described. Then the
matrix element of UΣ between critical points m0 and m1 is the number of pseudo-holomorphic
maps ϕ : Σ −→ M such that ϕ(Si) = mi. To be more precise, the moduli space of such ϕ has
many components, each with a degree ∈ H2(M ; Z) which determines its expected dimension. We
count the points in the components of dimension 0. Evidently we could define the matrix element
as an element of the group-ring R of H2(M ; Z); so we have, if we want, a co-chain complex of
R-modules.

It is fairly easy to see that UΣ is a cochain map whose cochain-homotopy class is independent
of the chosen complex structure on Σ.

9 Conformal Field Theory and String Algebras

String algebras of two basic types arise in conformal field theory. The firsts comes from any
CFT S 7→ HS involving the “correct” central extension of the semigroup A of section 5. (In
the usual terminology we need c = “central charge” = 13.) We think of HS1 as a space of
square-summable functions on LM for some Riemannian manifold M . We should like to study
the A -invariant part of HS1 , but that gives 0 because of the central extension. As the next
best thing, we look at the Lie algebra cohomology H•(aS1 ;HS1), where aS1 is the Lie algebra of
A , i.e. aS1 = V ect(S1) ⊗ C, but regarded as a real Lie algebra. This comes from the cochain
complex

(9.0.7)
•∧

(a∗S1)⊗HS1 .
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This still gives nothing unless we consider the middle-dimensional or semi-infinite cohomol-
ogy, i.e. we replace 9.0.7 by

(9.0.8) F(aS1)⊗HS1 ,

where F(aS1) is the Fock space defined using the polarization described in §5. To ensure that
9.0.8 really has a differential d satisfying d2 = 0 we need the condition c = 13. It is then easy to
see that S 7→ F(aS1)⊗HS1 is a string algebra. These are the classical algebras of bosonic string
theory. They are usually called “string backgrounds.” We should think of them as semi-infinite
differential forms along the orbits of Diff(S1) on LM . The elements of F(aS1) are usually called
“ghost fields,” and d is the “BRS operator.”

A more interesting kind of string algebra for us arises from N = 2 supersymmetry. First let
me define N = 1 supersymmetry.

Let S 7→ HS be a CFT, and suppose that for each α ∈ Ω− 1
2 (S1) we have an operator

Dα : HS −→ HS which is natural with respect to Diff(S1) and satisfies

(9.0.9) D2
α = Lα2

where Lα2 means the action on HS of the vector field α2 ∈ Ω−1(S) regarded as an element of
the Lie algebra of Diff(S1). We require the cobordism operators UΣ : HS0 −→ HS1 associated
to a Riemann surface Σ : S0  S1 to satisfy

(9.0.10) α1 ◦ UΣ = UΣ ◦ α0

where α0, α1 are the restrictions to S0, S1 of a holomorphic α ∈ Ω−frac12
hol (Σ) (see end of section

5).
A theory of this type should be thought of as modeling the square summable spinor fields

Γ(LM) = HS1 on a loop space LM as I tried to explain in my Bourbaki talk on Elliptic
Cohomology (see [?]). The Dirac operator Dα : Γ(LM) −→ Γ(LM) when α = (dθ)−

1
2 .

An N = 2 supersymmetric CFT arises, morally, when M is Kähler. Then HS1 = Γ(TM)
possesses in addition an action of the loop group LT, for λ ∈ LT acts on each complex tangent
space TγLM by

(9.0.11) (λ · ξ)(θ) = λ(θ)ξ(θ),

with ξ(θ) ∈ Tγ(0)M . When we combine this action with those of V ectC(S1) and LC = Lie(LT)⊗C
we obtain the action of a certain Lie superalgebra a(2) whose even part is the complexified Lie
algebra of the semi-direct product Diff(S1) o LT. This is the N = 2 superalgebra.

Meanwhile there is another Lie superalgebra ã(2), with the same even part V ectC(S1) o LC,
which we expect to act on the differential forms on LM when M is Kähler. The action of the
even part is clear. The odd part is

(9.0.12) V ectC(S1)⊕ LC.

Here ξ ∈ V ectC(S1) acts as iξ, the inner product with the vector fields on LM defined by ξ
(which reparameterizes the loops); and f ∈ LC acts by an operator df characterized by d1 = d -
the de Rham differential and λ ◦ df ◦ λ−1 = dλf , where λ ∈ LT.

When the algebra ã(2) acts on HS1 , we have d2
1 = 0, so we have a cochain complex, and in fact

a string algebra. We also have a (p, q)-grading on HS1 coming from the action of the constants
λT ⊂ LT.
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The remarkable fact is that there are two natural isomorphisms

(9.0.13) ã(2) −→ a(2)

compatible with the propagation operators of CFT. This means that an N = 2 supersymmetric
CFT gives us two string algebras, which are said to be related by mirror symmetry.
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