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Chapter 1

Quantum theory

1.1 The quantum description

Quantum field theory aims to give an account of the ultimate constituents of
matter and their interactions, but excluding gravitation from the picture except
as a given fixed background. It should tell us, for example, how it is that light,
though usually best described as electromagmetic waves, sometimes behaves like
a stream of particles. The possibility of two such different descriptions of the
same reality arises from the nature of quantum theory, so we must begin with
the relation between quantum theory and classical physics.

Classical physics — that is to say, physics as it was understood at the begin-
ning of the twentieth century — gives a simple and familiar description of the
world. It presupposes that we know about “space” and “time”, given to us as
two smooth Riemannian manifolds of dimensions three and one. It tells us that
the world consists at any time of a collection of point particles located in the
space-manifold M, and that they interact by means of “fields” pervading space
which are described (roughly) by a number of smooth functions on M. Once M
is given, the possible configurations of the world at a given time are the points
of an infinite-dimensional manifold X', and classical physics tells us how the con-
figuration evolves with time. The general mathematical form of the evolution is
strikingly simple. The trajectory is determined by giving any one of its points
and the instantaneous velocity with which it is moving, i.e. by giving a tangent
vector to X. Let us write ) for the bundle of all tangent vectors to X. Classical
physics can be summed up in the statement that there is a smooth closed 2-form
w on Y, and a smooth function H : ) — R called the Hamiltonian, such that the
evolution of y € Y is determined by the differential equation — called Hamilton’s

equation —

dy
—,n) =dH (y;
" (vim),

for every tangent vector 1 to ) at y. (The right-hand side of this equation denotes

wy(
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the gradient of the function H at the point y in the direction 7, while the left-
hand side denotes the value of the 2-form w at the point y on the pair of tangent
vectors % and 7. It is important that w is non-degenerate at each point of ), so
that the tangent vector % is completely determined by giving the left-hand side
of the equation for each 7.)

A manifold with a such a non-degenerate closed 2-form w is called a symplectic
manifold. The symplectic stucture is related to the quantum description of the
world by non-commutative algebra, but, within the classical perspective, it is
linked to the fact that the trajectories of classical physics are characterized by a

variational property: the “principle of least action”. I shall return to that in §x.

I have given this classical description in a non-relativistic language, treating
time and space differently. As far as physics is concerned, there is no fundamental
conceptual problem in going over to a relativistic picture with a unified four-
dimensional space-time manifold on which the fields are defined, and in which the
particles sit as “world-lines”: the fact that space and time seem so very different to
us can in practice be ignored and left to philosophy. The serious problem with the
classical picture is one which at first sight looks merely “technical”, but seems to
be insuperable: it is the difficulty of mixing point particles with “fields”. For the
particles are supposed to move under the influence of a field which acts on them,
and each particle helps generate the field, making a contribution which inevitably
becomes infinite at its own position. But on the other hand the contributions of
the individual particles to the total field cannot be separated out: there is just
one agglomerated field which has to act on each particle, and is infinite at all the
points where we need to know its value.

It is helpful to keep separate the ontological content of classical physics —
that the world consists of particles and fields — from the mathematical structure
(V,w, H) consisting of a symplectic manifold, i.e. a smooth manifold ) with a
non-degenerate closed 2-form w, with a Hamiltonian function H. I shall refer to
such triples as Hamiltonian systems. They can be used to describe not just the
whole world but also any number of subsystems and idealizations of subsystems
of it.

Quantum theory — as distinct from quantum field theory — is not an alter-
native to classical physics, as it has no ontological ingredient corresponding to
the picture of particles in space-time interacting by means of fields. It retains
only the notion of time as something understood in advance. Quantum theory is
simply the idea that classical Hamiltonian systems are “really” approximations
to quantum systems. At each time ¢t a quantum system has a “state” which is
supposed to be a ray L; in a complex Hilbert space H, and it has “ observables”
which are self-adjoint operators in H. But all the information is contained! in the

1T shall return to this point below.
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topological algebra A of operators generated by the observables, together with
the linear map 6; : A — C given by

91&(@ = <¢7 a¢>,

where ¢ € L; is a unit vector in the state-ray.
We can therefore adopt the following point of view, which enables us to put
the classical and quantum pictures side-by-side.

A classical system is described A quantum system is described

by giving a symplectic manifold )) by giving a topological x-algebra A
of possible states, of observables ? |

and at each time ¢ and at each time ¢

the state y, € Y a positive linear map 6, : A — C

of the system. called the state.

The evolution of the system is The evolution of the system is
described by a 1-parameter group described by a 1-parameter group
{u }ier of diffeomorphisms of Y, {us }er of #-algebra automorphisms
so that w(yy) = Yere - of A, so that 0y, ou; = 6.

We can say more than this. In the classical case the flow {u;}, which preserves
the symplectic form, is generated by the Hamiltonian function H : Y — R
according to the equation above. The corresponding fact in the quantum case is
the evolution equation

da/dt = ih[H, a,

where H € A is a self-adjoint element, again called the Hamiltonian. Here [H, A]
denotes the commutator Ha — aH in A, and A is Planck’s constant.

The most obvious difference between the classical and quantum pictures is
that a smooth manifold of states has been replaced by an algebra, and a point
in the state-space has been replaced by a linear form on the algebra. But more
fundamental is to realize that neither of the two parallel pictures just presented
gives us any kind of description of the world. On the classical side we do get a
picture of the world because we have the additional information that the manifold
Y is TX, where X is the manifold of configurations of particles and fields in
space, which we are supposed to know about in advance, and thousands of years
of physics have made us able to see the world as a collection of particles and fields.
On the quantum side we interpret the system in two stages, first recognizing it
as being close to a classical system, and then interpreting the classical system in
terms of particles and fields.

Even to compare the classical and quantum pictures we need to know that a
commutative algebra is the same kind of thing as a space, because a commutative
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algebra can be regarded as the algebra of functions on its spectrum?®. When we
say that the world is described by the quantum data (A, 6;) what we mean is that
we have somehow fixed on a subset which we find especially relevant for us in the
algebra A of observables, part of its attractiveness coming from two properties:

(i) it generates a subalgebra C, of A which is to good enough approximation
a commutative algebra C;'*, and

(ii) the state 6; when restricted to C; is very nearly a homomorphism of
algebras 0512 : Cdlass — C.

We shall certainly look for many other properties as well; for example, that the
chosen observables are not changing too quickly in time.

Once we have chosen C{# and %55 we are back in the classical picture, for
the commutative algebra C&1 is a space of functions on its spectrum ), and §¢lass
is a point y € ). We can then let the system evolve, and our description will
work well for a time, but sooner or later we shall find that the set of observables
we fixed on will no longer nearly commute, or perhaps that 6,|Cy is no longer
nearly a homomorphism, and does not give us even approximately a point of ).
The classical picture which we are using has gone out of focus. According to
orthodox quantum mechanics there is then no substitute for looking at the world
anew and choosing a new classical approximation (C5#5, 052%): we must “adjust
our sets” to bring a classical picture back into focus. From this point of view the
notorious “measurement problem” in quantum mechanics is to explain why there
is a way — even a more-or-less canonical way — to do this. The measurement
problem attracts endlessly ongoing discussion, and my formulation of it is not
quite the usual one. Beyond that, I have nothing substantial to say about it;
but fortunately that does not matter for these lectures. My own instinct is to
think of the quantum picture as the real one, and to regard classical descriptions
as provisional statements which relate only to a suitable selection of observables.
But the quantum picture as I have described it can hardly be taken literally, if
only because it is so resolutely non-relativistic. My perhaps heretical feeling is
that the perspective of quantum field theory offers a more plausible foundation for
physics than does traditional quantum mechanics, but, as it cannot accommodate
gravity, it still cannot be pressed too far.

Let us at any rate accept that when we have a quantum system (A, 6;) we
interpret it in terms of classical approximations. People often speak of the “clas-
sical limit”, but we must remember that it is only a tiny subset of the whole
algebra A that we take a limit of. Ignoring this point, a convenient mathemat-
ical formulation is as follows. We recognize A as a deformation A = A of a

3The spectrum of a commutative algebra C over the complex numbers is the set of all algebra-
homomorphisms C — C. If the algebra A has a topology then we consider only continuous
homomorphisms.
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commutative algebra A, by fitting it into a 1-parameter family of algebras {4}
depending smoothly on the small parameter h, with Ay commutative. We can
then assume that the algebras have the same underlying vector space, so that the
data is a 1-parameter family of multiplications my, : Ag x Ay — A deforming the
given multiplication mg of Ag. In this situation we can define a Poisson bracket

{7 }OnAoby

mu(f,9) = mo(f,g) +ir{f, g} + O(h?).

If Ay is the algebra of smooth functions on a manifold J = Spec(Ay) then
the Poisson bracket, providing it is sufficiently nondegenerate, makes ) into a
symplectic manifold (see Appendix x for more details).

However we look at the matter, we must remember that it makes no sense to
say that a given algebra is a deformation of a commutative algebra without spec-
ifying a great deal more information. In particular, an algebra can perfectly well
be a deformation of many quite different commutative algebras — some simple
examples can be found in Appendix x — and so there can be quite different clas-
sical descriptions of the same quantum system, for example in terms of particles
or in terms of waves.

An important feature of the traditional interpretation of quantum mechanics
is that the result A € R of “measuring” an observable a — i.e. a self-adjoint
element of the algebra 4 — is always an element of the spectrum of a, i.e.
a generalized eigenvalue. Thus if a quantum system describes a collection of
particles then there should be an observable whose eigenvalues are the positive
integers, corresponding to the number of particles in a given region of space. It is
to define the spectrum of an observable that we need the topology on the algebra A
of observables. A number A\ belongs to the spectrum of an operator A in Hilbert
space precisely when A — X is not invertible, and it is common to define the
spectrum of an element a of an arbitrary algebra A in terms of the invertibility
of a— A. But this is not satisfactory for our purposes, for it is very unstable when
A is replaced by a dense subalgebra. (For example, a self-adjoint operator whose
spectrum is the positive integers generates a subalgebra of operators isomorphic
to the polynomial algebra C|[x] in one variable, but so does an operator whose
spectrum is the closed interval [1,2], or indeed any other infinite subset of R.) Tt is
better to define the spectrum of a self-adjoint element a of a topological x-algebra
A as the set of all numbers 6(a) when 6 runs through all the continuous linear
x-maps® A — C whose restriction to the subalgebra of A generated by a is a
homomorphism. ® This gives us back the traditional Copenhagen lore about the

4This means that 6(b*) = 6(b).

5The spectral theorem for a self-adjoint operator a in a Hilbert space H tells us that this
coincides with the usual definition if a belongs to an algebra A of operators in ‘H with the norm
topology.
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values taken by observables: if (A, #) is a small deformation of (Ag, 6y), with Ay
commutative and 6y a homomorphism, then for any a € A the number 6(a) will
be close to 0y(a), i.e. to the value of a continuous function on the space which is
the spectrum of the algebra Aj.

There is a kind of converse to the problem of finding a classical limit for a
quantum system. If we are given a symplectic manifold ) then the algebra A =
C>(Y) has a Poisson bracket®, and we can ask whether there is a deformation
{Ap} of the algebra which gives rise to the bracket. This is the problem of
deformation quantization. For finite dimensional manifolds ) the definitive result,
the culmination of a long history of work in this direction, is Kontsevich’s theorem
[K] which tells us that formally — i.e. if we work with formal power series in an
indeterminate h rather than an actual real parameter — then such a deformation
exists and is unique.

One final point before leaving the foundations of quantum theory: among
the puzzling features of the conventional picture is that the observables are the
self-adjoint elements of an algebra: for the multiplication in the algebra does not
correspond to anything physically natural. (In particular, the product of two self-
adjoint operators is usually not self-adjoint.) An attraction of the formulation
of quantum field theory which I shall present in these lectures is that there is
no “algebra” structure on the observables other than the obvious fact that one
observation can be made after another. In fact when one has a quantum system
(A, 6;) in the above sense it is easy to see — and will be explained in more detail
later on — that all the information is retained if we simply know A as a vector
space together with all the multilinear maps

Ax A x -+ xA — C
given by
(a1, a2, ,an) = Oo(u_y,(an)u_,_,(@n-1)---u_,(a1)),

for every finite sequence of times t| <ty < --- < t,,.

1.2 Variational principles and path integrals

The physics of a single massive particle moving freely in a Riemannian manifold
M is the theory of geodesics. If x : R — M is a smooth path in M then we define
its action from time a to time b as

I LR
Sap(z) = 5 [ llE(@®)[[dt,

Swhich encodes its symplectic structure completely — see Appendix x
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where ||2(t)||? denotes the length-squared of the velocity-vector #(t) defined by
the Riemannian metric of M. Thus S, : PM — R is a smooth function on the
manifold PM of smooth paths in M.

A geodesic or classical trajectory in M is a curve x for which, for all a < b, the
action S, () is stationary under variations of = which vanish at the end-points
a,b. By the usual integration-by-parts formula of the calculus of variations we
can write the gradient of S,; at  in the direction of the tangent vector £ in the
form

dSap(r,8) = (2(b),£(b)) — (#(a),&(a)) — /(i(t),f(f»dt,

where (t) denotes the covariant derivative of @(¢) defined using the Levi-Civita
connection of M. Thus the submanifold P*M of classical trajectories in PM
consists of the paths which satisfy the Euler-Lagrange equation & = 0, and on it
we have

dSap = ep(@) — e(a),

where ¢, : PM — TM evaluates the path and its velocity at time ¢, and « is
the obvious 1-form on T'M. In particular, it follows that the exterior derivative
w = d(gja) is a closed 2-form on P“**M which does not depend on the time .
Furthermore, each evaluation-map ¢, is a diffeomorphism (at least if the manifold
M is complete), and it is plain that the form w is non-degenerate.

An exactly similar discussion applies to the generic situation of classical me-
chanics, where the instantaneous configuation of a system is a point of a finite-
dimensional manifold X, and the system is described by a “Lagrangian” function
L : TX — R which is usually inhomogeneous quadratic on each tangent space to
X. We define the action S,; : PX — R by

b
Sun(z) = / L(x(t), &(t))dt.

We obtain an Euler-Lagrange equation for the classical trajectories by integration
by parts, and once again get the equation (*) on P5X. As before, each ¢; :
PX — TX is a diffeomorphism, and we obtain a symplectic structure on P*sX .

When it was first discovered, the “principle of least action” had an attractive
teleological aspect. The teleology becomes perhaps a little less persuasive when
one realizes that the action is truly minimized only on sufficiently short segments
of the trajectory. Whatever one thinks about that, however, the variational
perspective gives a new and highly attractive approach to quantum mechanics,
which was worked out by Dirac, Wheeler, and Feynmann. The idea is that,
instead of just picking out the submanifold P85X in PX, the action functions
Sap define a complex-valued measure j1g on PX, which is notionally written

dp(z) = 5@/ Dy
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to suggest that each trajectory = has been “weighted” with ¢*@/" (Whether
the action makes sense for a trajectory extending over all of time is probably
best not asked at this point.) The measure pug defines a quantum system in
the following way. For each time ¢, let 4; denote the vector space of smooth
functions f : PX — C for which f(x) depends only on the germ of the path = at
time t. (Of course these spaces A; are canonically isomorphic to each other by
time-translation.) Then for each sequence of times t; < ty < --- < t,, define
Ay x - x Ay, — C

by

(fna T afl) = X fn(x) T fl(x)d:u(x)
As has been remarked above, this gives all the information we need to have a
quantum system.

From the path-integral viewpoint the reason that classical mechanics approx-
imates quantum mechanics is the occurrence of Planck’s constant A — a very
small quantity — in the weighting factor of the measure (*). This means that
the measure is very highly oscillatory except on the critical set P X in PX.
As h tends to 0 the measure pug tends to the delta-function along P X, and
the classical theory is retrieved.

1.3 Waves and particles

Let us think about the classical systems formed by waves and particles in a
space-manifold M, and how they might be approximations to the same quantum
system.

To keep things as simple as possible, I shall suppose that the space M is a
compact connected Riemannian manifold. The simplest kind of wave is described
by a smooth real-valued function on M, so let us take the configuration-space
of waves to be the vector space A"** = C*(M), and the state space to be
yvave = TxYe The configuration space of an assembly of a finite number
of particles in M looks quite different. It breaks up as the disjoint union of a
sequence of connected components M,, indexed by the total number n of particles
present, and M, is the n-fold symmetric product

M, = M"™/Symm,,.

Because I have allowed more than one particle to occupy the same point of M —
i.e. I have allowed multiplicities — M,, is not quite a manifold, but that is not a
serious difficulty, and I shall overlook it for the present and write

ypart — T xpart _ H T(Mn>

n>0
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According to the prescription for “quantization” in elementary quantum me-
chanics, the natural quantum system to put beside the linear classical phase-space
yvave ig obtained by introducing the Hilbert space ‘H of square-integrable func-
tions” on the infinite dimensional vector space X“®°¢. The construction of H
gives us a class of functions on A“*® which are “measurable”, and hence act
on H as multiplication operators. These are the “position operators” of the
waves. The linear function ¢ — ¢(x) on XV which would tell us the value
of the field at a point x of M is not measurable, but for each f € C>(M)
we do have the “smeared” operator ¢; corresponding to the linear function
¢ — [, f(@)p(x)de. We expect the complete algebra A of the quantum sys-

tem to be generated by the operators ¢; and their time-derivatives éf, which
should obey standard commutation-relations

(65, b1 = ih/Mfgdx.

The position operators ¢; generate a commutative subalgebra Q of A which is
isomorphic to the symmetric algebra of the vector space C*(M) = X", It acts
on ‘H by unbounded operators. An algebra homomorphism Q — R, i.e. a point
of the spectrum of Q, is given by an arbitrary continuous linear map XV*'¢ — R,
i.e. by a distribution on M. The class of distributions which arise depends on
the dynamics defining the Hilbert space, but we certainly do not get only sums
of delta functions at points of M, so this algebra of observables does not describe
point excitations in any classical limit.

Nevertheless, the algebra A of operators on H contains another commutative
subalgebra C which is also isomorphic to the symmetric algebra of C*°(M) but
acts on the Hilbert space in a very different way. It is generated by unbounded
operators which I shall denote by a; for f € C*(M). The spectrum of C con-
sists not of all distributions on M, but only of those which are finite sums of
delta-functions at points of M. More precisely, C maps by a continuous algebra
homomorphism to the algebra of smooth functions on XP** and it is through
this algebra that it acts on the Hilbert space. The map

C N Coo(Xpart)

takes as to the sequence of functions f, : M,, — R, where

Fol@y, .. xy) = Zf(xi).

Tt is not obvious how to define this space: the appropriate definition depends on the dy-
namics of the system, i.e. on the Hamiltonian function TX%*¢ — R expressing the total energy
of the system. I shall assume for the moment that we have a free field theory, corresponding
to non-interacting particles. This case will be discussed in detail in §xxx.
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This homomorphism of algebras is injective, and its image is dense. The action of
the polynomial algebra C on the quantum Hilbert space extends by continuity to
an action of C°°(AXP**). This is the sense in which the quantum system describes
collections of particles in M rather than smeared-out objects.

There is a basic algebraic mechanism in quantum field theory which ensures
that an action of the symmetric algebra of C* (M) has this property of describing
point-particles in M. To understand it, let us begin by considering a single
unbounded self-adjoint operator a in a Hilbert space.

To give an unbounded self-adjoint operator a in ‘H is by definition the same
as to give the bounded operator f(a) for all f in the algebra Cy(R) of continuous
complex-valued functions on the line R which tend to 0 at oo, i.e. to give a is the
same as to give a *-action of the algebra Cy(R) on H. The spectrum of a is the
closed subset o, of R such that the algebra of operators topologically generated
by a is isomorphic to Cy(o,), with a itself corresponding to the inclusion o, — R.
In other words, o, is the smallest subset of R such that the action of Cy(R) on
H factorizes through Cy(o). (As was mentioned above, in the usual language of
quantum mechanics one says that “a measurement of a always yields a number
ino,”.)

The following simple property ensures that the spectrum of a is precisely
N cCR.

Proposition 1.3.1 If an unbounded self-adjoint operator a : H — H in a Hilbert
space H is of the form a = bb*, where b is such that [b*,b] = b*b — bb* = 1, then
the spectrum o, 1s N. More precisely, we have an orthogonal decomposition

H = ©ir>oHy,

where Hy, is the k-eigenspace of a, and b maps H;. isomorphically to Hiy1, while
b* maps Hy, isomorphically to Hx—1 when k > 1, and maps Hy to 0.

This well-known result — a reformulation of the Stone-von Neumann theo-
rem®— generalizes to give us a condition which ensures that an action of the
symmetric algebra C of C*(M) describes particles, i.e. that the action of C fac-
torizes through the algebra Co(XP**). For to say that a system (A, #) describes
a collection of particles in a space-manifold M we need to have commuting self-
adjoint operators ay € A for each measurable subset U of M such that

(i) the spectrum of each ay is N=1{0,1,2, ... }, and

(ii) > ay, = ay when U is the disjoint union of the sets U;.

8If we write b = Q + iP with P and @ self-adjoint, then P and Q satisfy [P, Q] = i/2, and
the Stone-von Neumann theorem tells us that the algebra generated by P and @ has a unique
irreducible representation, in which bb* = P? + Q* — 1/2 acts with spectrum N.
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For a system of operators {ay}, the condition (ii) simply amounts to saying

that
aU:/a(x)dx,
U

where a(z) is an operator-valued distribution on M. By smearing the operators
a(x) we obtain an action on H of the symmetric algebra C of the vector space
C*(M). Then each a; has spectrum N if the action of C on H extends to an action
of the commutative algebra C>®(XPa"). An easy generalization? of Proposition
1.1 shows that this is the case if there is another operator-valued distribution
b(x) such that a(x) = b(z)b(x)*, and we have the commutation relations

[b(z)", b(2")] = d(x, "),

[b(z), b(z")] =0,

where §(z,2’) is the Dirac delta-function along the diagonal in M x M. It is
better, however, to state the result without introducing the ill-defined “product”
b(x)b(x)*, which involves a pointwise product of distributions. The essential
property we want the product to have is

so we can state the result as follows.

Proposition 1.3.2 The action of a self-adjoint operator-valued distribution {a(x)}
extends to an action of the algebra C*(XP>") if there is another operator-valued
distribution {b(z)} which satisfies the commutation relations above, as well as

[b(x), a(z)] = 6(z, 2")a(a"),

and if, furthermore, for any vector &, we have

a(x)é =0 forallz <= b(x)*¢ =0 for all z.

On a formal level this result is fairly plain. For the operator a,, is positive,
and the commutation relations

[axs, b(z)] = b(z) [ans, b(2)"] = —b(x)”

show that the action of b(x) (respectively of b(x)*) takes an eigenvector of ays to
another eigenvector with the eigenvalue raised (respectively, lowered) by 1. There
must therefore be vectors {2 € H which are annihilated by all the b(z)*, and for
each such €2 the vector

b(21)b(2) . .. b(w)Q2

9T shall be cavalier here about the analytical details, as they will be treated carefully in §xxx
below.
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is an eigenvector of each ay with the eigenvalue f(x1) + f(xa) + ... + f(xx).

The algebra generated by smearing operators b(z) and b(xz)* which satisfy
the above commutation relations is isomorphic to the algebra A which was the
natural quantization of the “wave” system )Y"*¥¢. Indeed there is a wide choice
of isomorphisms. For example, let us write

() = (b(z) +b(x)")/V2 (@) = ih(b(x) — b(x)")/ V2,

and define the self-adjoint operators

by = / f@yp)de = / f(@)d(e)da

for f € C*>°(M). Then the operators ¢y commute among themselves, as do the
1y, while we have

[, ] = if / fod.

These are precisely the relations which we used to define the quantum algebra A
associated to the system Y"*¢. We get, however, the same relations if we replace
1y and z/}f by ¢y = ¥ps and gz.Sf = 2/)15f, where P is any linear automorphism
of the vector space C*(M) and P is its contragredient, i.e. the transpose of its
inverse. We shall see in §xxx that the correct choice for the usual theory of free
particles of mass m is to take P = (m?+A)~2, where A is the (positive) Laplace
operator of the Riemannian manifold M. This corresponds to “waves” obeying
the Klein-Gordon equation

(9/0t)*¢ + Ap = 0.

The quantized algebra AP**' corresponding to the algebra of functions on
yrart = TxPart ig generated by the commutative algebra C of functions on AP
and their time derivatives. This algebra is contained in the algebra A = A%ave
of the wave theory generated by the ¢; and ¢ 7, but nevertheless A" is strictly
larger than AP**. For the Hilbert space H on which A" acts has a positive
integer grading H = &H,, given by the “particle number”, i.e. by the eigenspaces
of ap;. The component H,, can be identified with the space of L? functions on
M,,, and the operators ay act on it through the algebra of functions on M,,. The
algebra AP** preserves the grading of H. The operators py and ¢, however, do
not preserve the grading, and do not correspond to functions on YP**. They
have no analogue in the particle description. In fact by and b} respectively raise
and lower the grading by 1, and are traditionally called creation and annihilation
operators.



Chapter 2

Quantum field theory

Quantum field theory is part of quantum theory, but it introduces a quite new
ontological component. Like classical physics it presupposes that we are given a
definite space-time manifold, and that — oversimplifying a little —- the essential
observables are [ocal with respect to space-time. This means — roughly, again
— that for each space-time point x there is given a vector space A, of “local
observables at 7 contained in the algebra A, and that the subspaces A, together
generate A as an algebra. This is a lot less than saying that the world is made up
of particles, but it does allow us to ask what kinds of thing might or might not be
present at a space-time point x. It is perfectly compatible with a particle picture,
but it de-emphasizes the individuality of the particles, and leads one towards the
idea that quantum field theory always describes assemblies of indistinguishable
particles.
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