Stochastic Geometry and Point Processes


Extremes of spatial shot noise processes

Anup Biswas and François Baccelli studied the scaling limit of a class of shot-noise fields defined on an independently marked stationary Poisson point process and with a power law response function. Under appropriate conditions, they showed that the shot-noise field can be scaled suitably to have a non degenerate alpha-stable limit, as the intensity of the underlying point process goes to infinity. More precisely, finite dimensional distributions  converge and the finite dimensional distributions of the limiting random field have i.i.d. stable random components. This limit is hence called the alpha- stable white noise field. Analogous results are also obtained for the extremal shot-noise field which converges to a Fréchet white noise field.

Information theory and high dimensional stochastic geometry

The most basic capacity and error exponent questions of information theory can be expressed in terms of random geometric objects living in Euclidean spaces with dimensions tending to infinity. This approach was introduced by Venkat Anantharam and François Baccelli to evaluate random coding error exponents in channels with additive stationary and ergodic noise. More generally, the analysis of stochastic geometry in the Shannon regime leads to new high dimension stochastic geometry questions that are currently investigated. Eliza O’Reilly and and Francois Baccelli have also studied determinantal point processes in high dimensions. This work describes the strength and reach of repulsion of a typical point of certain parametric families of determinantal point process in the Shannon regime.

Point maps on point processes

A compatible point-shift f maps, in a translation invariant way, each point of a stationary point process N to some point of N. It is fully determined by its associated point-map, g, which gives the image of the origin by f. The initial question studied by Mir-Omid Haji-Mirsadeghi and François Baccelli is whether there exist probability measures which are left invariant by the translation of -g. The point map probabilities of N are defined from the action of the semigroup of point-map translations on the space of Palm probabilities, and more precisely from the compactification of the orbits of this semigroup action. If the point-map probability is uniquely defined, and if it satisfies certain continuity properties, it then provides a solution to the initial question. Point-map probabilities are shown to be a strict generalization of Palm probabilities: when the considered point-shift f is bijective, the point-map probability of N boils down to the Palm probability of N. When it is not bijective, there exist cases where the point-map probability of N is absolutely continuous with respect to its Palm probability, but there also exist cases where it is singular with respect to the latter.

Each such point-shift defines a random graph on the points of the point process. The connected components of this graph can be split into a collection of foils, which are the analogue of the stable manifold of the point-shift dynamics.
The same authors give a general classification of point-shifts in terms of the cardinality of the foils of these connected components. There are three types: F/F, I/F and I/I as shown in the paper Point-Shift Foliation of a Point Process.

Using the framework of Günter Last, James Murphy has extended the cardinality classification to the case of point processes on unimodular groups. J. Murphy has studied point-shifts of point processes on topological groups at length.

Spatial birth and death processes

Spatial point processes involving birth and death dynamics are ubiquitous in networks. Such dynamics are particularly important in peer-to-peer networks and in wireless networks. In the paper “Mutual Service Processes in R^d, Existence and Ergodicity”, Fabien Mathieu (Bell Laboratories), Ilkka Norros (VTT) and François Baccelli proposed a way to analyze the long term behavior of such dynamics on Euclidean spaces using coupling techniques. This line of though is continued by Mayank Manjrekar on other classes of processes like hard core spatial birth and death processes.

Zeros of Random Tropical Polynomials

Ngoc Mai Tran and François Baccelli derived a tropical version of the result of Kac on the zeros of polynomials with random coefficients (Zeros of Random Tropical Polynomials, Random Polygons and Stick-Breaking). 

The common roots of tropical of a class of random polynomials in two variables is analyzed in a recent work by the same authors in Iterated Gilbert Mosaics and Poisson Tropical Plane Curves using a stochastic geometry approach based on iterated random tessellations.


Chang-sik Choi

Department of Electrical and Computer Engineering, UT Austin
Read More »

James Murphy

Read More »

Natasa Dragovic

Department of Mathematics
Read More »

Ali Khezeli

Department of Mathematics, Sharif University of Technology
Read More »

Charles Radin

Department of Mathematics, UT Austin
512 471 0174
Read More »

Eliza O’Reilly

Department of Mathematics, UT Austin
Read More »

Mir Omid Haji Mirsadeghi 2013-2015

Department of Mathematics, Sharif University of Technology. Visiting Scholar, Department of Mathematics, UT Austin
Read More »

Mayank Manjrekar

Department of Mathematics, UT Austin
Read More »

Gustavo de Veciana

Department of Electrical and Computer Engineering, UT Austin
512 471 1573
Read More »

François Baccelli

Department of Mathematics and Deparment of Electrical and Computer Engineering, UT Austin
512 471 17 54
Read More »

Antonio Sodre

Department of Mathematics, UT Austin
Read More »


2017-05-09_1000975 2016-05-20_1000948

Shape Theorems For Poisson Hail on a Bivariate Ground

Francois Baccelli, Hector A. Chang-Lara, and Sergey Foss ArXiv 2016
Download PDF

Point-Shift Foliation of a Point Process

Francois Baccelli and Mir-Omid Haji-Mirsadeghi ArXiv 2016
Download PDF

On Scaling Limits of Power Law Shot-noise Fields

François Baccelli and Anup Biswas To appear in Stochastic Models 2015
Download PDF

The Boolean Model in the Shannon Regime: Three Thresholds and Related Asymptotics

Venkat Anantharam and François Baccelli Arxiv 2014 To appear in Advances in Applied Probability
Download PDF

Compactification of the Action of a Point-Map on the Palm Probability of a Point Process

François Baccelli and Mir-Omid Haji-Mirsadeghi Arxiv 2014 To appear in the Annals of Probability
Download PDF

Mutual Service Processes in R^d, Existence and Ergodicity

François Baccelli, Fabien Mathieu and Ilkka Norros ArXiv 2014
Download PDF