Information theory and high dimensional stochastic geometry

The most basic capacity and error exponent questions of information theory can be expressed in terms of random geometric objects living in Euclidean spaces with dimensions tending to infinity. This approach was introduced by Venkat Anantharam and François Baccelli to evaluate random coding error exponents in channels with additive stationary and ergodic noise. More generally, the analysis of stochastic geometry in the Shannon regime leads to new high dimension stochastic geometry questions that are currently investigated. Eliza O’Reilly and and Francois Baccelli have also studied determinantal point processes in high dimensions. This work describes the strength and reach of repulsion of a typical point of certain parametric families of determinantal point process in the Shannon regime.