Recent advances in neuroscience provide theoretical neuroscientists with a vast wealth of new data and open questions related to information theory, high-dimensional geometry of representation and computation, and dynamics in the brain. The groups of Ila Fiete, Ngoc Mai Tran and Thibaud Taillefumier study these questions from analytical and numerical perspectives. Fiete and Tran have recently studied the learning capacity of neural networks (see “A binary Hopfield network with 1/\log(n) information rate and applications to grid cell decoding“, “ Robust exponential memory in Hopfield networks“, and “ Associative content-addressable networks with exponentially many robust stable states“).