Spatial Birth-Death Wireless Networks

In this paper, Abishek Sankararaman and Fran├žois Baccelli introduce a new form of spatial dynamics motivated by ad-hoc wireless networks. They study a birth death process where particles arrive in space as a Poisson process in space and time, and depart the system on completion of file transfer. The instantaneous rate of file transfer of any link is given by the Shannon formula of treating interference as noise. As the instantaneous interference seen by a link is dependent on the configuration of links present, this dynamics is an example of one where dynamics shapes geometry and in turn the geometry shapes the dynamics. In this paper, the authors establish a sharp phase-transition for stability of such dynamics. Moreover, whenever such dynamics is stable, they prove that the steady state is a clustered point process. Through simulations, they also argue that such dynamics cannot be simplified to any form of non-spatial queuing type dynamics. Lately, this paper with Sergey Foss extended the dynamics on grids to show a similar stability phase-transition in the case of infinite network, i.e. in an infinite grid.