
APPENDIX B

Appendix to Chapter 3

The study of mathematics goes well beyond a knowledge of the real
numbers. In this chapter, we discuss some topics which are tangentially
related to the material of this course, but which can take a willing
student a bit further into more advanced mathematics.

1. Cardinality

Intuitively, cardinality is the major of the ‘size’ of a set. For exam-
ple, we should predict that a set containing two elements (regardless
of what they are) should be ‘larger’ in some essential way than a set
containing only one. In fact, mathematicians were surprised to discover
that an infinite set can actually be essentially larger than another, a
fact we will prove.

Definition. If A and B are sets, we write |A| = |B| if there exists a
bijection f : A→ B. We read |A| = |B| as “the cardinality of A equals
the cardinality of B.
Note. By Theorem 2.7 in Chapter 2, |A| = |B| ⇒ |B| = |A|.

Again |A| = |B| intuitively means that both sets have the “same
number of elements”. This is not startling for finite sets. It is no
surprise that |{a, b, c}| = |{1, 2, 3}|. However this definition can lead
to non-intuitive results. We can have A ⊆ B, A 6= B yet |A| = |B|
(how?).

Definition. A is finite if A = ∅ or if there exists n ∈ N with |A| =
|{1, 2, . . . , n}|. (We then say |A| = 0 or |A| = n accordingly.) A is
infinite if A is not finite. A is countably infinite if |A| = |N|. A is
countable if A is finite or countably infinite.

Are all infinite sets also countably infinite?

B.1. Prove that a set A is
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(1) countably infinite if and only if we can write A = {a1, a2, . . .}
where ai 6= aj if i 6= j.

(2) countably infinite if and only if A is infinite and we can write
A = {a1, a2, . . .}.

(3) countable if and only if A = ∅ or we can write A = {a1, a2, . . .}.
Deduce that if B ⊆ A and A is countable, then B is countable.

B.2. Let |A| = |B| and |B| = |C|. Prove that |A| = |C|.

B.3. Prove that

(1) |N| = |{2, 4, 6, 8, . . .}|
(2) |N| = |Z|
(3) |N| = |{x ∈ Q : x > 0}|
(4) |N| = |Q|.

Hint: For the third part, assuming an > 0 turn

1

2

(
an +

2

an

)
>
√

2

into an equivalent condition on a quadratic polynomial. Proceed by
induction.

B.4. If A is countable and B is countable prove that A×B is countable.

Hint: You want to construct a list of all elements in A×B (see 1.17).
Can you make an infinite matrix of these elements starting with

a1 a2 a3 . . .

b1
b2
b3
...

Can you take this matrix and make a list as in 1.17c)?

Our next problem is due to G. Cantor. It is a famous result which
shook the mathematical world and has found its way into numerous
“popular” math/science books. Cantor went insane. The problem’s
solution relies on the decimal representation of a real number. In turn
this actually involves the notion of convergence of a sequence of reals
which we address in chapter 3. But you can use it here. (1/3 = .333...
means that 1/3 = limn→∞ xn where xn = .33...3 (n entries). Beware
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of this fact: Some numbers have 2 decimal representations, e.g., 1 =
1.000... = .999... . This can only happen to numbers which can be
represented as decimals with 9 repeating forever from some point.)

B.5. In this problem, we consider the cardinality of R.

(1) Prove that (0, 1) is not countable.
(2) Show that |(0, 1]| = |[0, 1]|.
(3) If a < b show that |(0, 1)| = |(a, b)| = |[0, 1]| = |[a, b]|.

Hint: For the first part, assume that (0, 1) is countable. Then we can
list (0, 1) = {a1, a2, a3, . . .}. Write each ai as a decimal to get an infinite
matrix as the following example illustrates.

a1 = 0.13974 · · ·
a2 = 0.000002 · · ·
a3 = 0.55556 · · ·
a4 = 0.345587 · · ·
a5 = 0.9871236 · · ·

...

Can you find a decimal in (0, 1) that is not on this list? Can you
describe an algorithm for producing such a number?

We prove in the main body of the text that irrationals exist, but
here we can prove much more.

B.6. Prove the following.

(1) If A and B are countable then A ∪B is countable.
(2) R \Q is uncountable (i.e., not countable).
(3) If a < b then (a, b) ∩ (R \Q) 6= ∅.
(4) Prove that if I is countable and for all i ∈ I, Ai is a countable

set then
⋃
i∈I
Ai is countable.

So irrationals do exist. Does this proof give you any explicit number
in R \Q?

We have not defined |A| ≤ |B| yet.

B.7. Give a definition for |A| ≤ |B|. Your definition should satisfy

(1) |A| ≤ |A|
(2) |A| ≤ |B| and |B| ≤ |C| implies that |A| ≤ |C|.
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B.8. Suppose A and B are sets with |A| ≤ |B| and |B| ≤ |A|. Then
|A| = |B|.

Hint: This seemingly trivial statement is actually quite challenging to
prove.

Definition. |A| < |B| if |A| ≤ |B| and |A| 6= |B|.

Definition. If A is a set, the power set of A, denoted P(A), is the
set of all subsets of A.

Thus, for example,

P({1, 2}) = {φ, {1}, {2}, {3}}.

B.9. Prove that for all sets A, |A| < |P(A)|.

Hint: Show there does not exist a function f : A → P(A) which is
onto by assuming such an f exists and considering B ∈ P(A) where
B = {a ∈ A : a /∈ f(a)}.

The previous problem demonstrates that there is not largest cardi-
nal.

2. Open and Closed Sets

We have remarked already that the material of the previous section
belongs to the branch of mathematics known as set theory. The ma-
terial of this section, belongs to a branch known as topology. Roughly
speaking, topology might be considered the study of what it means
for two elements of a set to be “close to each other.” We will restrict
ourselves exclusively to the topological properties of R, but topology
is a very rich subject whose objects goes well beyond merely the real
numbers.

Definition. Let ε > 0. The interval (a− ε, a+ ε) is said to be an open
interval centered at a of radius ε.

B.10. Let a < b. Show that (a, b) is an open interval of radius εfor
some ε > 0. What is the center? What is ε?

Definition. Let S ⊆ R.
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(1) S is open if for all a ∈ S there exists ε > 0 with (a−ε, a+ε) ⊆ S
(2) S is closed if C(S) = R \ S is open.

Is every S ⊆ R either open or closed? Can you justify your answer?

B.11. Prove that every open interval is an open set and every closed
interval is a closed set.

B.12. Classify as open, closed, both or neither

(1) ∅
(2) [0, 1]
(3) Q
(4) R \Q
(5) R
(6) [0, 1] ∪ [2, 3]
(7) { 1

n
: n ∈ N}

Definition. Let S ⊂ R.

(1) x ∈ int(S) if there exists ε > 0 with (x− ε, x+ ε) ⊆ S.
(2) x ∈ bd(S) if for all ε > 0, (x− ε, x+ ε)∩S 6= ∅ and (x− ε, x+

ε) ∩ C(S) 6= ∅.

We point out that “int” is short for interior and “bd” is short for
boundary.

B.13. For each S find int(S) and bd(S)

(1) [0, 1]
(2) (0, 1)
(3) Q
(4) R
(5) {1, 2, 3}
(6) { 1

n
: n ∈ N}

B.14. Suppose that S ⊆ R. Prove the following

(1) int(S) ⊆ S and int(S) is an open set.
(2) S is open ⇔ S = int(S).
(3) S is open ⇔ S ∩ bd(S) = ∅.
(4) S is closed ⇔ S ⊇ bd(S).

B.15. Prove the following
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(1) If I is a set and for all i ∈ I, Ai is an open set, then
⋃
i∈I
Ai is

open.
(2) If I is any set and for all i ∈ I, Fi is a closed set then

⋂
i∈I
Fi is

closed.

(3) If n ∈ N and Ai is an open set for each i ≤ n then
n⋂
i=1

Ai is

open.

(4) If n ∈ N and Ai is a closed set for each i ≤ n then
n⋃
i=1

Ai is

closed.

B.16. Show by example that the last two parts of the previous problem
cannot be extended to infinite intersections or unions.

Definition. Let S ⊆ R, x ∈ R.

(1) x is an accumulation point of S if for all ε > 0, {y ∈ R : 0 <
|x− y| < ε} ∩ S 6= ∅.

(2) S ′ = {x : x is an accumulation point of S}.
(3) x is an isolated point of S if x ∈ S \ S ′.
(4) S̄ = S ∪ S ′.

S̄ is called the closure of S.

B.17. Let S ⊆ R. Prove the following.

(1) x ∈ S is an isolated point of S if and only if there exists ε > 0
such that (x− ε, x+ ε) ∩ S = {x}. Let S ⊆ R.

(2) Let x ∈ R. Prove that x ∈ S ′ if and only if for all ε > 0,
(x− ε, x+ ε) ∩ S is infinite.

B.18. For each set S below find S ′, S̄ and all isolated points of S.

(1) R
(2) ∅
(3) Q
(4) (0, 1]
(5) Q ∩ (0, 1)
(6) (R \Q) ∩ (0, 1)
(7) { 1

n
: n ∈ N}

B.19. Prove the following. S ⊆ R.

(1) S is closed if and only if S ⊇ S ′.
(2) S̄ is closed.
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(3) S is closed if and only if S = S̄.
(4) If F ⊇ S and F is closed then F ⊇ S̄.

3. Compactness

Our next topic in topology is compactness. The definition is quite
abstract and will take effort to absorb. We will later prove that a
continuous function on a compact domain achieves both a maximum
and a minimum value — quite a useful thing in applications.

Definition. Let S ⊆ R.

(1) Let {Ai}i∈I be a family of open sets. {Ai}i∈I is an open cover
for S if S ⊆

⋃
i∈I
Ai.

(2) Let {Ai}i∈I be an open cover for S. A subcover of this open
cover is any collection {Ai}i∈I0 where I0 ⊆ I such that

⋃
i∈I0

Ai ⊇

S.
(3) S is compact if every open cover of S admits a finite subcover,

i.e., whenever {Ai}i∈I is a family of open sets such that S ⊆⋃
i∈I
Ai then there exists a finite set F ⊆ I so that S ⊆

⋃
i∈F

Ai.

For example, {(n − 1, n + 1) : n ∈ Z} is an open cover of R. For
all x ∈ Q, let εx be a positive number (which might be different for
different x. Is {(x − εx, x + εx) : x ∈ Q} necessarily an open cover of
R?

This definition above is very abstract and may require study and
time to absorb. Note that the definition requires that every open cover
of S admits a finite subcover. To show S is not compact you only need
construct one open cover without a finite subcover. Compactness plays
a key role in analysis (and topology).

B.20. Which of the following sets are compact?

(1) {1, 2, 3}
(2) ∅
(3) (0, 1)
(4) [0, 1)
(5) R

B.21. Let S ⊆ R be compact. Prove that

(1) S is bounded.
(2) S is closed.
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Hint: Assume not in each case and produce an open cover without a
finite subcover.

B.22. Prove that [0, 1] is compact.

Hint: Let {Ai}i∈I be any open cover of [0, 1]. Let

B = {x ∈ [0, 1] : [0, x] can be covered by a finite subcover of {Ai}i∈I} .

Then 0 ∈ B so B 6= ∅. Let x = sup(B). Show x ∈ B. Show x = 1.

B.23. Let K ⊆ R be compact and let F ⊆ K be closed. Prove that F
is compact.

Hint: If {Ai}i∈I covers F then {Ai}i∈I ∪ {C(F )} covers K.

B.24. Let K ⊆ R be closed and bounded.

(1) Prove min(K) and max(K) both exist if K 6= ∅.
(2) Prove that K is compact.

We see that K ⊆ R is compact ⇔ K is closed and bounded.

B.25. Let I1 ⊇ I2 ⊇ I3 ⊇ · · · be a nested sequence of closed, bounded
and nonempty sets in R. Then

∞⋂
n=1

In 6= ∅.

Hint: Assume it is empty. Then

R = C

( ∞⋂
n=1

In

)
=
∞⋃
n=1

C(In) ⊇ I1 .

B.26. Let K ⊆ R be compact and infinite. Prove that K ′ 6= ∅.

Hint: Assume K ′ = ∅.

B.27. Let A ⊆ R be bounded and infinite. Prove that A′ 6= ∅.

4. Sequential Limits and Closed Sets

Definition. Let A ⊆ R. A is sequentially closed if whenever (an)∞n=1

is a sequence in A converging to a limit a, then a ∈ A.
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B.28. If A ⊆ R is closed then it is sequentially closed.

B.29. If A ⊆ R is sequentially closed then it is closed.

B.30. If A ⊆ R then A is closed if and only if it is sequentially closed.


