
CHAPTER 6

Integration

1. The Definition

Our final chapter is the other half of calculus: the integral. The
intuitive notion behind the integral is very simple. Specifically suppose
that f is a function which is continuous on [a, b] (we will see that it
is not necessary to assume that f is continuous, but we will make this
assumption for the sake of our intuition). Also assume for intuitional
simplicity that f is positive on [a, b] . Finally assume that f is simple
enough that we may easily draw its graph.

If, on the Cartesian plane, we draw the vertical lines x = a and
x = b, we see that there is a shape defined by the region surrounded
by x = a, x = b, the graph of f and the x-axis. You should draw some
examples of this situation. We have given one example in Figure 1.
The point of integration is to find the area of this shape. Unless f is
extremely simple (like a straight line or something), geometry does not
give us a formula for this area. In fact, it’s not even clear that we have
precise definition for word ‘area.’

Thus we need a new approach to finding (or even defining) this
area. We begin by thinking of some objects of which we do know the
area. The simplest is probably the rectangle: the area of a recangle
should certainly be the product of its length and width. Our approach
to finding more complicated areas will actually be a very clever use of
this simple observation.

Our strategy begins by estimating the area in question. Indeed,
one naive way of estimating the area with rectangles is with a single
rectangle. To do this, as shown in Figure 2, we place a rectangle with
its bottom side on the x-axis, and its left and right sides on the line
x = a and x = b. We place the top of the rectangle at some value of
the function on [a, b]. In the example shown in the figure, we chose the
lowest value of f , but any choice would give an estimate.
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f (x) 

a b 

Figure 1. This is the shape of which we want to find the area.

f (x) 

a b 

Figure 2. A naive way to estimate the area is by draw-
ing a rectangle of similar size.

As you can tell from the figure, this estimate may not be all that
precise: large parts of the shape lie outside of the rectangle and part
of the rectangle lies outside of the shape. Thus we need to refine our
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method of estimation: instead of using one rectangle, we will use two,
as the top picture of Figure 3.

We split the interval [a, b] into two pieces by choosing some point,
x1, between a and b. We draw two rectangles: both of them have
bottom side at the x-axis. One has left and right sides x = a and
x = x1. Its top is at some value of f on [a, x1] (in this case the lowest).
The other rectangle is similarly constructed between x1 and b. To
estimate the area of the shape in question, we simply add the areas of
the two rectangles.

As we can see in the pictures, estimating in this way tends to work
better than the first way. This should not be too surprising: we are
using more information from the function than with the first estimation
(i.e. two values rather than one). In the bottom picture of Figure 3,
we use four rectangles: for this we have to choose 3 points between a
and b and apply a similar construction. We expect that this estimation
of the area will be even better than the second.

We now define the notion of integral precisely. An important step
is our process was splitting the interval [a, b] into multiple pieces so
that we can use multiple rectangles. This leads to the first definition
of this section.

Definition. A partition of an interval [a, b] is a finite sequence (x1, . . . , xn)
such that

a = x0 < x1 < · · · < xn = b.

If P and Q are two partitions of [a, b] we say that Q refines P if every
point in [a, b] which occurs in P also occurs in Q.

What is the intuitive purpose of the notion of a partition? What
about of the notion of refinement?

As above, a partition leads to an estimate of the area in question.
Indeed, a partition with n elements leads us to n rectangles: the bot-
tom, left, and right sides of the rectangles are given and we need only
choose the tops. Of course the top of the rectangle which lies between
xi and xi+1 should be a value of f between xi and xi+1. There are
basically two systematic ways of choosing this value. We can use the
highest value of f or we can choose the lowest value. Of course, not
every function has a highest or lowest value on an interval, but we can
use the next best thing.
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f (x) 
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Figure 3. A somewhat better estimate is achieved by
drawing multiple rectangles

Definition. Let P = (x0, x1, . . . , xn) be a partition of [a, b] and let f
be a function whose domain contains [a, b] which is bounded on [a, b].
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For 1 ≤ i ≤ n we set

Mi(f, P ) = sup{f(x) : xi−1 ≤ x ≤ xi}
= sup f

(
[xi−1, xi]

)

mi(f, P ) = inf{f(x) : xi−1 ≤ x ≤ xi}
= inf f

(
[xi−1, xi]

)

∆i = xi − xi−1.

Thus mi(f, P ) is the ‘lowest’ value of f on the interval [xi−1, xi]
and Mi(f, P ) is the ‘highest.’ Notice that mi(f, P ) and Mi(f, P ) exist
because f is bounded on [a, b]. ∆i is the length of the interval (and
so the width of the resulting rectangle). These notions thus give us to
systematic ways of estimating the area, given a partition.

Definition. Let P be a partition of the interval [a, b] and let f be a
function which is bounded on [a, b]. We define the upper Riemann
sum of f with respect to P , denoted U(f, P ), by

U(f, P ) =
n∑

i=1

Mi(f, P )∆i

and we define the lower Riemann sum of f with respect to P , de-
noted L(f, P ), by

L(f, P ) =
n∑

i=1

mi(f, P )∆i.

Check for yourself that both of these definitions provide estimates
as we have described. Check that (given P ) the upper Riemann sum
is the highest estimate of the type we have described and the lower
Riemann sum is the lowest. Given that our definitions have been a bit
involved, we should also try some examples.

6.1. Let f(x) = x and g(x) = x2. Let n ∈ N and let Pn be the
partition of [0, 1] given by (0, 1

n
, 2
n
, . . . , n−1

n
, 1) be a partition of [0, 1].

Draw a picture illustrating L(f, P4), U(f, P4), L(g, P4), and U(g, P4).
Find expressions for L(f, Pn), U(f, Pn), L(g, Pn), and U(g, Pn).

6.2. Let f : [a, b] → R be bounded and let P be a partition of [a, b].
Let m = inf f([a, b]) and M = sup f([a, b]).
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(1) Prove

m (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M (b− a).

(2) Prove that if Q refines P then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Hint: For the second part, first prove that it suffices to show this when
Q has one more element that P .

Thus we see that as our estimates get more and more refined, the
lower sums go up. Thus we might expect that the best estimate that a
lower sum will give us is the highest one. Likewise, we expect that the
best estimates that the upper sums can give us is the lowest one. This
leads us to the following definition (once again the highest lower sum
and the lowest upper sum may not exist).

Definition. Let f be a function which is bounded on the interval [a, b].
We define the upper Riemann integral of f , denoted U(f, [a, b]), by

U(f, [a, b]) = inf
{
U(f, P ) : P is a partition of [a, b]

}
.

We define the lower Riemann integral of f , denoted L(f, [a, b]), by

L(f, [a, b]) = sup
{
L(f, P ) : P is a partition of [a, b]

}
.

(Why do these exist?) We say f is Riemann integrable on [a, b]
if L(f, [a, b]) = U(f, [a, b]). In this case we call the common value of
U(f, [a, b]) and L(f, [a, b]) the (definite) Riemann integral of f over

the interval [a, b] which we denote by
∫ b

a
f or

∫ b

a
f(x)dx.

6.3. Show that for f and g as in Problem 6.1 for all n ∈ N, U(f, Pn) 6=
U(f, [0, 1]), L(f, Pn) 6= L(f, [0, 1]) and similarly for g.

We begin by giving a non-example: that is, we show that not every
bounded function is integrable.

6.4. Let f be given by

f(x) =

{
0 x ∈ [0, 1] \Q
1 x ∈ [0, 1] ∩Q.

Show that f is not integrable.
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2. Integrable Functions

Of course we hope that many functions are integrable as this will
allow us to compute a lot of different areas. In this section, we will
show that all continuous functions are in fact integrable, because the
definition of integrability is a bit elaborate, it is necessary to do some
preliminary work.

6.5. Let f be a function which is bounded on [a, b] and let P and Q
be partitions of [a, b]. Prove that L(f, P ) ≤ U(f,Q).

Hint: Consider the partition R = P ∪Q.

6.6. Let f be a function which is bounded on [a, b]. Show that L(f) ≤
U(f).

6.7. Let f(x) = x. Let Pn be the partition of [0, 1] given by Pn =
(0, 1

n
, 2
n
, . . . , n−1

n
, 1).

(1) Find L(f, Pn) and U(f, Pn).
(2) Find U(f, Pn)− L(f, Pn).

(3) Show f is integrable on [0, 1] and find
∫ 1

0
f .

The next result gives a very useful characterization of integrability.

6.8. Let f be a function which is bounded on [a, b]. Show that f is
integrable on [a, b] if and only if for all ǫ > 0 there exists a partition
P = (x0, . . . , xn) of the interval [a, b] such that

U(f, P )− L(f, P ) =

n∑

i=1

(
Mi(f, P )−mi(f, P )

)
∆i < ǫ.

6.9. Let f be a function which is increasing and bounded on [a, b].
Prove that f is integrable on [a, b].

Hint: For a monotone function we know explicitly what Mi(f, P ) and
mi(f, P ) are.

6.10. Let f be a function which is continuous on [a, b]. Prove that f
is integrable on [a, b].

Hint: Use Problem 4.57 to conclude that f is uniformly continuous
on [a, b]. Let ǫ > 0 be arbitrary and choose δ > 0 so that if x, y ∈ [a, b]
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with |x− y| < δ then |f(x)− f(y)| < ǫ
b−a

. Let P be any partition with
each ∆ix < δ and use Problem 6.8.

3. Properties of Integrals

For every concept we have introduced, we have seen that there is
something like ‘Limit Laws,’ which are useful in computing examples.
As you probably already know, integrals are no exception.

6.11. Let f and g be functions which are integrable on [a, b]. Let c ∈ R

be an arbitrary constant. Prove that

(1) c · f is integrable on [a, b] and
∫ b

a

c · f = c

∫ b

a

f.

(2) f + g is integrable on [a, b] and
∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

Hint: Show

Mi(f + g, P ) ≤Mi(f, P ) +Mi(g, P )

and hence conclude that U(f + g, P ) ≤ U(f, P ) + U(g, P ). Similarly,
show that L(f + g, P ) ≥ L(f, P ) + L(g, P ). Use Problem 6.8 to con-
clude integrability. Then prove the equation.

6.12. Let f and g be functions which are integrable on [a, b] with

f(x) ≤ g(x) for all x ∈ [a, b]. Prove that
∫ b

a
f ≤

∫ b

a
g.

6.13. Let a < c < b and let f be a function.

(1) Assume f is integrable on [a, b]. Prove that f is integrable on
[a, c] and [c, b].

(2) Assume that f is integrable on [a, c] and on [c, b]. Prove that
f is integrable on [a, b] and

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

It is actually convenient for notational reasons for us to consider
something like backwards integrals. In other words, for a < b, the
concept we have been studying so far might be called the “integral
from a to b.” The “integral from b to a” is just the opposite.
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Definition. If f is a function which is integrable on [a, b] we define∫ a

b
f = −

∫ b

a
f . We also define

∫ a

a
f = 0.

6.14. Let f be integrable on an interval containing a, b and c. Prove
that, no matter the order of a, b, and c, we have

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

6.15. Let f be a function which is integrable on [a, b]. Prove that

(1) |f | is integrable on [a, b]

(2)
∣∣∫ b

a
f
∣∣ ≤

∫ b

a
|f |.

Hint: For the first part, prove thatMi(|f |, P )−mi(|f |, P ) ≤Mi(f, P )−
mi(f, P ).

6.16. Prove that if f and g are integrable on [a, b] then f ·g is integrable
on [a, b].

Hint: Since f and g are integrable we may define

Mf = sup{|f(x)| : a ≤ x ≤ b},
Mg = sup{|g(x)| : a ≤ x ≤ b}.

Use the fact that

f(x) · g(x)− f(y) · g(y) = f(x) ·
(
g(x)− g(y)

)
+
(
f(x)− f(y)

)
· g(y)

to conclude

Mi(f · g, P )−mi(f · g, P )
≤ Lf ·

(
Mi(g, P )−mi(g, P )

)
+
(
Mi(f, P )−mi(f, P )

)
·Mg.

Now use Problem 6.8

Thus the product of integral functions is integrable. Integrals, how-
ever, do not behave so well with respect to multiplication. In other
words, we have seen the the product of sequences converges to the
product of the limits of the two sequences and likewise for limits of
functions. The analogous statement, however is not true for integrals.
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6.17. Give an example of an interval [a, b] and two functions f and g
which are integrable on [a, b] such that

[∫ b

a

f(x)dx

] [∫ b

a

g(x)dx

]
6=

∫ b

a

f(x)g(x)dx.

Given the complication resulting from the previous behavior, you
are probably aware of some techniques people have developed to deal
with integrals of products. We will state and prove them in a later
section.

6.18. Given an example of a function f which is integrable on [0, 1],
but not continuous.

6.19. Show that the function f(x) =
√
1− x2 is integrable on [0, 1].

Thus ∫ 1

0

√
1− x2dx

exists as a real number. But we also see that it is one fourth the area
of the unit circle, that is it equals π/4. Multiplying by 4, we conclude
that π exists as a real number.

4. Fundamental Theorems of Calculus

We saw that even computing
∫ 1

0
xdx from the definition of integral

took some work. Of course nobody actually computes integrals this way
in calculus. Instead they use the Fundamental Theorem of Calculus.
Loosely speaking, this theorem says that the derivative and the integral
are opposites (or probably more appropriately inverses). As its name
suggests, it is considered the crucial result in understanding calculus.
It is commonly broken into two different theorems and we will also
prove it this way.

6.20. Prove the first Fundamental Theorem of Calculus:
Let f be a function which is integrable on [a, b]. Define a function

F : [a, b] → R by

F (x) =

∫ x

a

f =

∫ x

a

f(t)dt

F is uniformly continuous on [a, b], and if f is continuous at c ∈ (a, b)
then F ′(c) = f(c).
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Hint: For uniform continuity show that if a ≤ x ≤ y ≤ b then

F (y)− F (x) =

∫ y

x

f.

Now estimate
∫ y

x
f from above and below in terms of y−x. For F ′(c) =

f(c) show that

F (x)− F (c)

x− c
− f(c) =

1

x− c

∫ x

c

[f − f(c)] .

Use the fact that f is continuous at c to conclude that the right hand
side can be made arbitrarily small by taking x sufficiently close to c.

The second part of the the Fundamental Theorem is the one that
it often more convenient to use.

6.21. Prove the second Fundamental Theorem of Calculus:
If f is a function which is continuous on [a, b] and differentiable on

(a, b), then
∫ b

a
f ′(x)dx = f(b)− f(a).

Hint: If P = (x0, x1, . . . , xn) is any partition of [a, b] then, by Prob-
lem 5.14, for each 1 ≤ i ≤ n we can find ti ∈ (xi−1, xi) so that

f(b)− f(a) =
n∑

i=1

(
f(xi)− f(xi−1)

)
=

n∑

i=1

f ′(ti)∆i .

Show L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P ).

6.22. Suppose that k ∈ N. Compute

lim
n→∞

1

nk+1

n∑

i=1

ik.

5. Integration Rules

Once we have the fundamental theorems of calculus we can prove
two of the important rules of integration; integration by parts, and
integration by substitution (or u-substitution). These turn out to be
reinterpretations of the product rule and of the chain rule, respectively.

6.23. Prove that if f and g are functions that are differentiable on
[a, b] and both f ′ and g′ are integrable on [a, b] then

∫ b

a

f(x) · g′(x)dx = f(b) · g(b)− f(a) · g(a)−
∫ b

a

f ′(x) · g(x)dx.
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6.24. Suppose that u is differentiable on [c, d] and u′ is continuous on
[c, d]. Let a = u(c) and b = u(d). Suppose that f is continuous on
u
(
[c, d]

)
. Prove that

∫ b

a

f =

∫ d

c

(f ◦ u) · u′.

Hint: Let F (x) =
∫ x

a
f . Use Problem 6.20 to show that F is differen-

tiable and use Problem 5.9 to show that F ◦ u is differentiable. Now
apply Problem 6.21.

Notice we don’t need to assume that u
(
[c, d]

)
= [a, b].


