
M 365C
Fall 2013, Section 57465

Problem Set 10
Due Thu Nov 7

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-6, without reproving them.

Exercise 1 (Rudin 6.2)

Suppose f(x) ≥ 0 for all x ∈ [a, b], f is continuous, and
∫ b
a
f(x) dx = 0. Prove that

f(x) = 0 for all x ∈ [a, b].

Answer of exercise 1

Suppose for contradiction that f(y) = c 6= 0 at some y ∈ [a, b]. Then by continuity, there
exists some neighborhood Nε(y) such that f(x) > c/2 for all x ∈ N . Now choose a partition
P of [a, b] such that one of the intervals of the partition is I = [y − ε

2
, y + ε

2
]. Let m be

the infimum of f(x) for x ∈ I; then m ≥ c/2. The full lower sum L(P, f) is obtained by
summing the contribution from the interval I plus the contributions from other intervals.
All those contributions are nonnegative, so L(P, f) is at least the contribution from I, i.e.
L(P, f) ≥ mε. But then ∫ b

a

f(x) dx ≥ L(P, f) ≥ mε > 0.

Exercise 2 (Rudin 6.5)

Suppose f is a bounded real function on [a, b] and f 2 is Riemann integrable on [a, b].
Does it follow that f is Riemann integrable on [a, b]? Does the answer change if we assume
instead that f 3 is Riemann integrable on [a, b]?

Answer of exercise 2

If f 2 is Riemann integrable it need not follow that f is; a counterexample is provided by
the function

f(x) =

{
1 if x ∈ Q,
−1 if x /∈ Q.

However, if f 3 is Riemann integrable then the situation is better. Indeed, for any x we
can define a “cube root” x1/3, such that (x3)1/3 = x. (We had defined x1/3 before only for
x ≥ 0; but we can extend it to x < 0 by defining x1/3 = −|x|1/3 for x < 0. Then we can
check directly that the resulting function indeed has (x3)1/3 = x for all x.) Moreover this
function is continuous (we have proved before that it is continuous for x ≥ 0, but this easily
implies it is continuous for all x.) Then f(x) = (f 3)1/3, and f 3 is integrable, so f is obtained
by applying a continuous function to an integrable function, so f is also integrable.

Exercise 3 (Rudin 6.7, in part)
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Suppose f is a real function on (0, 1] and f is Riemann integrable on [c, 1] for every c > 0.
We then define ∫ 1

0

f(x) dx = lim
c→0

∫ 1

c

f(x) dx

if this limit exists.
If f is Riemann integrable on [0, 1], show that this definition agrees with the old one.

Answer of exercise 3

The easy way: if f is Riemann integrable then the function F (c) =
∫ 1

c
f(x)dx is contin-

uous on [0, 1] (using Rudin’s Theorem 6.20). Thus

lim
c→0

F (c) = F (0)

which means

lim
c→0

∫ 1

c

f(x) dx =

∫ 1

0

f(x) dx

which is what we wanted to prove.
The harder way (doing it “by hand”): if f is Riemann integrable on [0, 1] then in partic-

ular it is bounded, say |f(x)| < M for all x ∈ [0, 1]. Thus∣∣∣∣∫ c

0

f(x) dx

∣∣∣∣ ≤ ∫ c

0

|f(x)|dx ≤Mc

so

0 ≤ lim inf
c→0

∣∣∣∣∫ c

0

f(x) dx

∣∣∣∣ ≤ lim sup
c→0

∣∣∣∣∫ c

0

f(x) dx

∣∣∣∣ ≤ lim
c→0

Mc = 0

and hence

lim
c→0

∣∣∣∣∫ c

0

f(x) dx

∣∣∣∣ = 0

which is equivalent to

lim
c→0

∫ c

0

f(x) dx = 0.

Now ∫ 1

c

f(x) dx =

∫ 1

0

f(x) dx−
∫ c

0

f(x) dx

and so

lim
c→0

∫ 1

c

f(x) dx =

∫ 1

0

f(x) dx− lim
c→0

∫ c

0

f(x) dx

i.e.

lim
c→0

∫ 1

c

f(x) dx =

∫ 1

0

f(x) dx

as desired.
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