M 365C

Fall 2013, SECtion 57465
Problem Set 10
Due Thu Nov 7
In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-6, without reproving them.

Exercise 1 (Rudin 6.2)

Suppose $f(x) \geq 0$ for all $x \in[a, b], f$ is continuous, and $\int_{a}^{b} f(x) \mathrm{d} x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.

Answer of exercise 1

Suppose for contradiction that $f(y)=c \neq 0$ at some $y \in[a, b]$. Then by continuity, there exists some neighborhood $N_{\epsilon}(y)$ such that $f(x)>c / 2$ for all $x \in N$. Now choose a partition P of $[a, b]$ such that one of the intervals of the partition is $I=\left[y-\frac{\epsilon}{2}, y+\frac{\epsilon}{2}\right]$. Let m be the infimum of $f(x)$ for $x \in I$; then $m \geq c / 2$. The full lower sum $L(P, f)$ is obtained by summing the contribution from the interval I plus the contributions from other intervals. All those contributions are nonnegative, so $L(P, f)$ is at least the contribution from I, i.e. $L(P, f) \geq m \epsilon$. But then

$$
\int_{a}^{b} f(x) d x \geq L(P, f) \geq m \epsilon>0
$$

Exercise 2 (Rudin 6.5)

Suppose f is a bounded real function on $[a, b]$ and f^{2} is Riemann integrable on $[a, b]$. Does it follow that f is Riemann integrable on $[a, b]$? Does the answer change if we assume instead that f^{3} is Riemann integrable on $[a, b]$?

Answer of exercise 2

If f^{2} is Riemann integrable it need not follow that f is; a counterexample is provided by the function

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x \in \mathbb{Q} \\
-1 \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

However, if f^{3} is Riemann integrable then the situation is better. Indeed, for any x we can define a "cube root" $x^{1 / 3}$, such that $\left(x^{3}\right)^{1 / 3}=x$. (We had defined $x^{1 / 3}$ before only for $x \geq 0$; but we can extend it to $x<0$ by defining $x^{1 / 3}=-|x|^{1 / 3}$ for $x<0$. Then we can check directly that the resulting function indeed has $\left(x^{3}\right)^{1 / 3}=x$ for all x.) Moreover this function is continuous (we have proved before that it is continuous for $x \geq 0$, but this easily implies it is continuous for all x.) Then $f(x)=\left(f^{3}\right)^{1 / 3}$, and f^{3} is integrable, so f is obtained by applying a continuous function to an integrable function, so f is also integrable.

Exercise 3 (Rudin 6.7, in part)

Suppose f is a real function on $(0,1]$ and f is Riemann integrable on $[c, 1]$ for every $c>0$. We then define

$$
\int_{0}^{1} f(x) \mathrm{d} x=\lim _{c \rightarrow 0} \int_{c}^{1} f(x) \mathrm{d} x
$$

if this limit exists.
If f is Riemann integrable on $[0,1]$, show that this definition agrees with the old one.

Answer of exercise 3

The easy way: if f is Riemann integrable then the function $F(c)=\int_{c}^{1} f(x) \mathrm{d} x$ is continuous on $[0,1]$ (using Rudin's Theorem 6.20). Thus

$$
\lim _{c \rightarrow 0} F(c)=F(0)
$$

which means

$$
\lim _{c \rightarrow 0} \int_{c}^{1} f(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x
$$

which is what we wanted to prove.
The harder way (doing it "by hand"): if f is Riemann integrable on $[0,1]$ then in particular it is bounded, say $|f(x)|<M$ for all $x \in[0,1]$. Thus

$$
\left|\int_{0}^{c} f(x) \mathrm{d} x\right| \leq \int_{0}^{c}|f(x)| \mathrm{d} x \leq M c
$$

so

$$
0 \leq \lim \inf _{c \rightarrow 0}\left|\int_{0}^{c} f(x) \mathrm{d} x\right| \leq \lim \sup _{c \rightarrow 0}\left|\int_{0}^{c} f(x) \mathrm{d} x\right| \leq \lim _{c \rightarrow 0} M c=0
$$

and hence

$$
\lim _{c \rightarrow 0}\left|\int_{0}^{c} f(x) \mathrm{d} x\right|=0
$$

which is equivalent to

$$
\lim _{c \rightarrow 0} \int_{0}^{c} f(x) \mathrm{d} x=0
$$

Now

$$
\int_{c}^{1} f(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x-\int_{0}^{c} f(x) \mathrm{d} x
$$

and so

$$
\lim _{c \rightarrow 0} \int_{c}^{1} f(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x-\lim _{c \rightarrow 0} \int_{0}^{c} f(x) \mathrm{d} x
$$

i.e.

$$
\lim _{c \rightarrow 0} \int_{c}^{1} f(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x
$$

as desired.

