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Problem Set 12
Due Thu Nov 21

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-6, without reproving them.

Exercise 1

Prove Rudin’s Theorem 7.9: Suppose {fn} is a sequence of functions, fn : E → R.
Suppose limn→∞ fn(x) = f(x) for all x ∈ E, i.e. fn → f pointwise on E. Put Mn =
sup{|fn(x)− f(x)| : x ∈ E}. Then fn → f uniformly on E if and only if limn→∞Mn = 0.

Exercise 2 (Rudin 7.1)

Suppose fn : E → R is a sequence of functions. We say that {fn} is uniformly bounded
on E if there exists some M ∈ R such that for all x ∈ E and all n ∈ N we have |fn(x)| < M .

Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Exercise 3 (Rudin 7.2)

If {fn} and {gn} are sequences of functions mapping E → R, and converging uniformly
on E, prove that {fn + gn} converges uniformly on E. If in addition each fn is bounded and
each gn is bounded, prove that {fngn} converges uniformly on E.

Exercise 4 (Rudin 7.3)

Construct sequences {fn}, {gn} of functions mapping X → R (with X some metric
space), such that {fn} and {gn} both converge uniformly on X, but {fngn} does not converge
uniformly on X.
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