M 365C Fall 2013, Section 57465 Problem Set 13 Due Tue Dec 3

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-7, without reproving them.

Exercise 1 (Rudin 7.12, modified)

Suppose g and f_n are defined on $[0, \infty)$, are Riemann-integrable on [a, b] whenever $0 \le a < b < \infty$, $|f_n(x)| \le g(x)$ for all $x, f_n \to f$ uniformly on every compact subset of $[0, \infty)$, and

$$\int_0^\infty g(x)\,\mathrm{d}x < \infty.$$

Prove that

$$\lim_{n \to \infty} \int_0^\infty f_n(x) \, \mathrm{d}x = \int_0^\infty f(x) \, \mathrm{d}x.$$

(Here by \int_0^∞ we mean the improper integral as defined in a previous homework problem.)

Exercise 2 (Rudin
$$7.4$$
)

Consider

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}.$$

For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded?

Exercise 3 (Rudin 7.20)

If f is continuous on [0, 1] and if

$$\int_0^1 f(x) x^n \, \mathrm{d}x = 0$$

for all $n \ge 0$, prove that f(x) = 0 for all $x \in [0, 1]$. (Hint: The integral of f(x) times any polynomial is zero. Use the Weierstrass theorem to conclude that $\int_0^1 f(x)^2 dx = 0$. Then use the result of an earlier homework problem.)

Exercise 4 (Rudin 7.9)

Let $\{f_n\}$ be a sequence of continuous functions which converge uniformly to a function f on a set E. Prove that

$$\lim_{n \to \infty} f_n(x_n) = f(x)$$

for every sequence of points $x_n \in E$ such that $x_n \to x$ and $x \in E$. Is the converse true, i.e. if this equation holds for every such sequence, does it follow that $f_n \to f$ uniformly on E?

* Exercise 5 (Rudin 7.25)

Suppose $\phi(x, y)$ is a continuous bounded real function defined on the strip $x \in [0, 1]$, $y \in \mathbb{R}$, and c is any constant. Prove that the initial-value problem

$$y' = \phi(x, y), \qquad y(0) = c$$

admits a solution, i.e. that there exists a function y(x) defined on [0, 1] such that y(0) = cand $y'(x) = \phi(x, y(x))$.

(See the long hint in Rudin which breaks this problem into six subparts.)