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In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-2, without reproving them.

Exercise 1 (Rudin 1.6)

(This problem uses Theorem 1.21 of Rudin: for every real number z > 0 and integer
n > 0, there exists a unique real number z*/" such that z'/" > 0 and (z'/")" = z.)
Fixbe R, b> 1.

1. If m, n, p, q are integers, n > 0, ¢ > 0, and r = m/n = p/q, prove that
()1 = (1),

Hence it makes sense to define " = (b™)"/". (Be sure you understand what this last
sentence means!)

2. Prove that b™* = b"b* if r and s are rational.
3. If z is real, define B(z) to be the set of all numbers b, where ¢ is rational and ¢ < z.
Prove that
b" = sup B(r)
when r is rational.

4. By the result of the previous part, it makes sense to define
b® = sup B(x)

for every real x. With this definition, prove that ™Y = b*b¥ for every real x and y.
Answer of exercise 1

1. First note that mq = pn, so b4 = b’". Thus
(bmq)l/nq — (bpn)l/nq

What remains is to show that the left side of this is equal to (6™)*/™ and the right side is
(bP)'/4. Both sides are similar, so let us just look at the left side. Let a = (b™)'/". By
definition, « is the unique positive real number with o = ™. Thus (o™)? = (b™)4.
Using the general fact (z%)° = 2% when a, b are integers, which follows from the
definition of exponentiation as repeated multiplication, we then have o"? = ™4, But
by definition (™9)'/ is the unique positive real number o obeying this equation.
Thus o = (b™7)/™4. So we have shown (b™)'/™ = (b™7)'/"4 as desired. This completes
the proof.



2. Suppose we have two rational numbers r = r1/ry, s = s1/89. Then r + s = %
so brts = (prsztrzsi)l/resz - Thus to show b76° = b7+ it suffices to show (b7b°)™2%2 =

pris2t72s . But indeed b7b° = ((b7)V/72(po1)1/52)r2s2 = prisaprzst — prisz4resi ag desired.

3. First we show that for any ¢ € Q with ¢ > 0, we have b? > 1. To see this, write
g =m/n with m,n > 0. Then (b9)" = b™ > 1, from which it follows that b7 > 1 also
(since forn >0, 2" > 1 & x> 1).

Now we show b" is an upper bound for B(r). For any t € B(r), i.e. t < r, we have
r—t>0and thus 0" > 1, i.e. 0" < b

Finally we must show that if x < b" then x is not an upper bound for B(r). But this
is obvious since 0" € B(r).

4. First we show that b**¥ > b*bY. Assume the opposite, b* 7Y < b*bY. Then b*Y/bY < b*,

so b*TY/bY is not an upper bound for B(x). Thus there exists some ¢ < x such that
b*tY /b < bt Then b*1Y /b < ¥, so b*1¥ /b is not an upper bound for B(y). Thus
there exists some s < y such that b*¥/b" < b° i.e. b*TY < b°D'. By the previous part,
this means 0"V < b*t'. But s+t < x4y, so b € B(x +y). This contradicts the
fact that b*¥ is an upper bound for B(x + y).
Next we show that b*T¥ < b*bY. Assume the opposite, b*¥ > b*bY. Then b*bY is not
an upper bound for B(x + y), so there exists some rational ¢t < z + y with b* > b"bY.
Now there exist rationals r and s with r+s > ¢, r < x, s < y. (To see this: choose any
rational ¢’ with t <t < x+y. Then t' —y < x, so we may choose some rational r such
that t' —y <r < x. Then let s =t —r.) Now b" < b*, b* < b¥, and hence b"b* < b*bY.
By the previous part, this means bt < b%bY. Thus b" < b, so b"™7¢ < 1, but
r+ s —t >0, which gives a contradiction.

Exercise 2 (Rudin 2.2, modified)

A real number x is called algebraic if there exists an n € N and integers ay, . . ., a,, not
all zero, such that
apx™ + a1z '+ -+ a1z +a, =0.

Prove that the set of all algebraic real numbers is countable. (Hint: for every positive
integer N, there are only finitely many ways to choose numbers n, ag, aq, ..., a, with n +
lao| + laa] +--- +[an| = N.)

Answer of exercise 2

First we show that the set of all equations of the specified form is countable. Indeed, let
E,, be the set of all equations of this form with n fixed. This set is just the set of all tuples
(ag,...,a,) € N™; we have proven in class that this set is countable. Then the set of all
equations of this form is U2, E,, a countable union of countable sets, hence countable.

Next note that any polynomial equation of degree n has at most n distinct real solutions.
(Strictly speaking, we should even prove this: one can do so directly, using the polynomial
long division algorithm to see that for any polynomial P(z) with P(z) = 0, one has P(z) =
(x — a)Q(x) where @ is a polynomial with deg@ = deg P — 1; then induction gives the



desired statement.) Thus the set of all algebraic real numbers is contained in a countable
union of finite sets, hence it is at most countable.

Finally, every integer is algebraic, so the set of all algebraic real numbers cannot be finite;
hence it is countable.

Exercise 3 (Rudin 2.5)

Construct a bounded set of real numbers with exactly three limit points.
Answer of exercise 3

For any = € R, define £, = {z ~|—% | n € N}. Then for any real a # b # ¢, let
E=FE,UFE,UE,.. FE isevidently bounded and has limit points a, b, c.

Let us check that E has no other limit points. Thus suppose given a point y. If y ¢
{a,b,c} then take any e such that 0 < ¢ < min{|y — al,|y — b|,|y — ¢|}. We claim N,(y)
contains only finitely many points of E. Indeed, for p = % +a, we have |y —p| > |y —a| — %
But |y —a| >e If n > 1/(ly —a| — €) we will have |y —p| > |y| — (Jly| — €) = €. Thus,
p ¢ Nc(y) it n>1/(ly —a| —e€). Thus N.(y) N E, is finite, and similarly for N.(y) N E} and
N.(y) N E.. Thus N.(y) N E is finite.

Exercise 4 (Rudin 2.6)

~ Let E be a subset of a metric space X. Let E’ be the set of all limit points of E. Let
E = FEUF (the closure of E).

1. Prove that E' is closed.
2. Prove that £ and E have the same limit points, i.e. (E) = E'.

3. Do FE and E' always have the same limit points? (If so, prove it; if not, give a
counterexample.)

Answer of exercise 4

1. Suppose p is a limit point of E’; we want to show that p € E’, i.e. that p is a limit
point of E. So, let U be any neighborhood of p. U contains some point ¢ € E’, g # p.
Now, since U is open and ¢ € U, we can find some neighborhood V' of ¢ which is
contained in U. Since ¢ is a limit point of £, V' contains some point r of E. Thus
r €V C U, so U contains a point of E; but U was an arbitrary neighborhood of p,
so we conclude p is a limit point of E.

2. Obviously any limit point of E is also a limit point of £. It remains to prove that any
limit point of E is a limit point of E. Thus, suppose p is a limit point of £. Then
take any neighborhood U of p. U contains some point ¢ € E. Since U is open we
can find a neighborhood V of ¢, V' C U. V must contain some point r of E (if ¢ € E
then we can simply take r = ¢; otherwise ¢ € E’ and then V contains some r # ¢
with r € E.) Thisr € V C U, so U contains a point of E; but U was an arbitrary
neighborhood of p, so we conclude p is a limit point of F.



3. No. For example we can take E = {1/n | n € N}, which has E’ = {0}. Then E” = (),
so B # E".

Exercise 5 (Rudin 2.9, in part)

Let E be a subset of a metric space X. Let E° be the set of all interior points of E.
1. If G C F and G is open, prove that G C E°.

2. Do E and E always have the same interior, i.e. does E° = (E)°? (If so, prove it; if
not, give a counterexample.)

Answer of exercise 5

1. Fix some p € GG. Since G is open, there exists a neighborhood U of p with U C G.
But G C E, so also U C E. Thus p has a neighborhood contained in F, i.e. p is an
interior point of F.

2. No. For example, we can take £/ = (—1,0)U (0, 1). This set is open and thus E° = F.
On the other hand E = [—1, 1] which has interior (E£)° = (—1,1).

Exercise 6 (Rudin 2.10, in part)
Let X be any set. For p € X and ¢ € X, define

if
d(p.0) = {(1) L )

Prove that this is a metric. Which subsets of the resulting metric space are open? Which
are closed?
Answer of exercise 6

To see that d is a metric the only nontrivial point is to verify the triangle inequality
d(p,q) < d(p,r)+d(q,r). If p = q then the left side is zero while the right side is nonnegative,
so in this case the inequality is satisfied. If p £ ¢ then the left side is 1 and at least one of
the terms on the right side is 1, while the other is nonnegative, so again the inequality is
satisfied.

Now let £ be any subset of X, and consider any p € E. The neighborhood Ny 2(p) = {p}
(since every point ¢ # p has d(p,q) = 1 > 1/2.) Thus Ny,2(p) C E, and hence p is an interior
point of E. It follows that E is open. So every subset of the metric space X is open.

Finally, let E be any subset of X again; then E° is open (since every subset of X is open);
thus F is closed. So every subset of the metric space X is closed.



