M 365C

Fall 2013, Section 57465
Problem Set 2
Due Thu Sep 12

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-2, without reproving them.

Exercise 1 (Rudin 1.6)

(This problem uses Theorem 1.21 of Rudin: for every real number $x>0$ and integer $n>0$, there exists a unique real number $x^{1 / n}$ such that $x^{1 / n}>0$ and $\left(x^{1 / n}\right)^{n}=x$.)

Fix $b \in \mathbb{R}, b>1$.

1. If m, n, p, q are integers, $n>0, q>0$, and $r=m / n=p / q$, prove that

$$
\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q} .
$$

Hence it makes sense to define $b^{r}=\left(b^{m}\right)^{1 / n}$. (Be sure you understand what this last sentence means!)
2. Prove that $b^{r+s}=b^{r} b^{s}$ if r and s are rational.
3. If x is real, define $B(x)$ to be the set of all numbers b^{t}, where t is rational and $t \leq x$. Prove that

$$
b^{r}=\sup B(r)
$$

when r is rational.
4. By the result of the previous part, it makes sense to define

$$
b^{x}=\sup B(x)
$$

for every real x. With this definition, prove that $b^{x+y}=b^{x} b^{y}$ for every real x and y.

Answer of exercise 1

1. First note that $m q=p n$, so $b^{m q}=b^{p n}$. Thus

$$
\left(b^{m q}\right)^{1 / n q}=\left(b^{p n}\right)^{1 / n q} .
$$

What remains is to show that the left side of this is equal to $\left(b^{m}\right)^{1 / n}$ and the right side is $\left(b^{p}\right)^{1 / q}$. Both sides are similar, so let us just look at the left side. Let $\alpha=\left(b^{m}\right)^{1 / n}$. By definition, α is the unique positive real number with $\alpha^{n}=b^{m}$. Thus $\left(\alpha^{n}\right)^{q}=\left(b^{m}\right)^{q}$. Using the general fact $\left(x^{a}\right)^{b}=x^{a b}$ when a, b are integers, which follows from the definition of exponentiation as repeated multiplication, we then have $\alpha^{n q}=b^{m q}$. But by definition $\left(b^{m q}\right)^{1 / n q}$ is the unique positive real number α obeying this equation. Thus $\alpha=\left(b^{m q}\right)^{1 / n q}$. So we have shown $\left(b^{m}\right)^{1 / n}=\left(b^{m q}\right)^{1 / n q}$ as desired. This completes the proof.
2. Suppose we have two rational numbers $r=r_{1} / r_{2}, s=s_{1} / s_{2}$. Then $r+s=\frac{r_{1} s_{2}+r_{2} s_{1}}{r_{2} s_{2}}$ so $b^{r+s}=\left(b^{r_{1} s_{2}+r_{2} s_{1}}\right)^{1 / r_{2} s_{2}}$. Thus to show $b^{r} b^{s}=b^{r+s}$ it suffices to show $\left(b^{r} b^{s}\right)^{r_{2} s_{2}}=$ $b^{r_{1} s_{2}+r_{2} s_{1}}$. But indeed $b^{r} b^{s}=\left(\left(b^{r_{1}}\right)^{1 / r_{2}}\left(b^{s_{1}}\right)^{1 / s_{2}}\right)^{r_{2} s_{2}}=b^{r_{1} s_{2}} b^{r_{2} s_{1}}=b^{r_{1} s_{2}+r_{2} s_{1}}$ as desired.
3. First we show that for any $q \in \mathbb{Q}$ with $q>0$, we have $b^{q}>1$. To see this, write $q=m / n$ with $m, n>0$. Then $\left(b^{q}\right)^{n}=b^{m}>1$, from which it follows that $b^{q}>1$ also (since for $n>0, x^{n}>1 \Leftrightarrow x>1$).
Now we show b^{r} is an upper bound for $B(r)$. For any $t \in B(r)$, i.e. $t \leq r$, we have $r-t \geq 0$ and thus $b^{r-t} \geq 1$, i.e. $b^{r} \leq b^{t}$.
Finally we must show that if $x<b^{r}$ then x is not an upper bound for $B(r)$. But this is obvious since $b^{r} \in B(r)$.
4. First we show that $b^{x+y} \geq b^{x} b^{y}$. Assume the opposite, $b^{x+y}<b^{x} b^{y}$. Then $b^{x+y} / b^{y}<b^{x}$, so b^{x+y} / b^{y} is not an upper bound for $B(x)$. Thus there exists some $t<x$ such that $b^{x+y} / b^{y}<b^{t}$. Then $b^{x+y} / b^{t}<b^{y}$, so b^{x+y} / b^{t} is not an upper bound for $B(y)$. Thus there exists some $s<y$ such that $b^{x+y} / b^{t}<b^{s}$, i.e. $b^{x+y}<b^{s} b^{t}$. By the previous part, this means $b^{x+y}<b^{s+t}$. But $s+t<x+y$, so $b^{s+t} \in B(x+y)$. This contradicts the fact that b^{x+y} is an upper bound for $B(x+y)$.
Next we show that $b^{x+y} \leq b^{x} b^{y}$. Assume the opposite, $b^{x+y}>b^{x} b^{y}$. Then $b^{x} b^{y}$ is not an upper bound for $B(x+y)$, so there exists some rational $t<x+y$ with $b^{t}>b^{x} b^{y}$. Now there exist rationals r and s with $r+s>t, r<x, s<y$. (To see this: choose any rational t^{\prime} with $t<t^{\prime}<x+y$. Then $t^{\prime}-y<x$, so we may choose some rational r such that $t^{\prime}-y<r<x$. Then let $s=t^{\prime}-r$.) Now $b^{r} \leq b^{x}, b^{s} \leq b^{y}$, and hence $b^{r} b^{s} \leq b^{x} b^{y}$. By the previous part, this means $b^{r+s} \leq b^{x} b^{y}$. Thus $b^{r+s}<b^{t}$, so $b^{r+s-t}<1$, but $r+s-t>0$, which gives a contradiction.

Exercise 2 (Rudin 2.2, modified)

A real number x is called algebraic if there exists an $n \in \mathbb{N}$ and integers a_{0}, \ldots, a_{n}, not all zero, such that

$$
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0
$$

Prove that the set of all algebraic real numbers is countable. (Hint: for every positive integer N, there are only finitely many ways to choose numbers $n, a_{0}, a_{1}, \ldots, a_{n}$ with $n+$ $\left.\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n}\right|=N.\right)$

Answer of exercise 2

First we show that the set of all equations of the specified form is countable. Indeed, let E_{n} be the set of all equations of this form with n fixed. This set is just the set of all tuples $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$; we have proven in class that this set is countable. Then the set of all equations of this form is $\cup_{n=1}^{\infty} E_{n}$, a countable union of countable sets, hence countable.

Next note that any polynomial equation of degree n has at most n distinct real solutions. (Strictly speaking, we should even prove this: one can do so directly, using the polynomial long division algorithm to see that for any polynomial $P(x)$ with $P(x)=0$, one has $P(x)=$ $(x-a) Q(x)$ where Q is a polynomial with $\operatorname{deg} Q=\operatorname{deg} P-1$; then induction gives the
desired statement.) Thus the set of all algebraic real numbers is contained in a countable union of finite sets, hence it is at most countable.

Finally, every integer is algebraic, so the set of all algebraic real numbers cannot be finite; hence it is countable.

Exercise 3 (Rudin 2.5)

Construct a bounded set of real numbers with exactly three limit points.

Answer of exercise 3

For any $x \in \mathbb{R}$, define $E_{x}=\left\{\left.x+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then for any real $a \neq b \neq c$, let $E=E_{a} \cup E_{b} \cup E_{c} . E$ is evidently bounded and has limit points a, b, c.

Let us check that E has no other limit points. Thus suppose given a point y. If $y \notin$ $\{a, b, c\}$ then take any ϵ such that $0<\epsilon<\min \{|y-a|,|y-b|,|y-c|\}$. We claim $N_{\epsilon}(y)$ contains only finitely many points of E. Indeed, for $p=\frac{1}{n}+a$, we have $|y-p| \geq|y-a|-\frac{1}{n}$. But $|y-a|>\epsilon$. If $n>1 /(|y-a|-\epsilon)$ we will have $|y-p| \geq|y|-(|y|-\epsilon)=\epsilon$. Thus, $p \notin N_{\epsilon}(y)$ if $n>1 /(|y-a|-\epsilon)$. Thus $N_{\epsilon}(y) \cap E_{a}$ is finite, and similarly for $N_{\epsilon}(y) \cap E_{b}$ and $N_{\epsilon}(y) \cap E_{c}$. Thus $N_{\epsilon}(y) \cap E$ is finite.

Exercise 4 (Rudin 2.6)

Let E be a subset of a metric space X. Let E^{\prime} be the set of all limit points of E. Let $\bar{E}=E \cup E^{\prime}$ (the closure of E).

1. Prove that E^{\prime} is closed.
2. Prove that \bar{E} and E have the same limit points, i.e. $(\bar{E})^{\prime}=E^{\prime}$.
3. Do E and E^{\prime} always have the same limit points? (If so, prove it; if not, give a counterexample.)

Answer of exercise 4

1. Suppose p is a limit point of E^{\prime}; we want to show that $p \in E^{\prime}$, i.e. that p is a limit point of E. So, let U be any neighborhood of p. U contains some point $q \in E^{\prime}, q \neq p$. Now, since U is open and $q \in U$, we can find some neighborhood V of q which is contained in U. Since q is a limit point of E, V contains some point r of E. Thus $r \in V \subset U$, so U contains a point of E; but U was an arbitrary neighborhood of p, so we conclude p is a limit point of E.
2. Obviously any limit point of E is also a limit point of \bar{E}. It remains to prove that any limit point of \bar{E} is a limit point of E. Thus, suppose p is a limit point of \bar{E}. Then take any neighborhood U of p. U contains some point $q \in \bar{E}$. Since U is open we can find a neighborhood V of $q, V \subset U . V$ must contain some point r of E (if $q \in E$ then we can simply take $r=q$; otherwise $q \in E^{\prime}$ and then V contains some $r \neq q$ with $r \in E$.) This $r \in V \subset U$, so U contains a point of E; but U was an arbitrary neighborhood of p, so we conclude p is a limit point of E.
3. No. For example we can take $E=\{1 / n \mid n \in \mathbb{N}\}$, which has $E^{\prime}=\{0\}$. Then $E^{\prime \prime}=\emptyset$, so $E^{\prime} \neq E^{\prime \prime}$.

Exercise 5 (Rudin 2.9, in part)

Let E be a subset of a metric space X. Let E° be the set of all interior points of E.

1. If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
2. Do E and \bar{E} always have the same interior, i.e. does $E^{\circ}=(\bar{E})^{\circ}$? (If so, prove it; if not, give a counterexample.)

Answer of exercise 5

1. Fix some $p \in G$. Since G is open, there exists a neighborhood U of p with $U \subset G$. But $G \subset E$, so also $U \subset E$. Thus p has a neighborhood contained in E, i.e. p is an interior point of E.
2. No. For example, we can take $E=(-1,0) \cup(0,1)$. This set is open and thus $E^{\circ}=E$. On the other hand $\bar{E}=[-1,1]$ which has interior $(\bar{E})^{\circ}=(-1,1)$.

Exercise 6 (Rudin 2.10, in part)

Let X be any set. For $p \in X$ and $q \in X$, define

$$
d(p, q)= \begin{cases}1 & \text { if } p \neq q \tag{1}\\ 0 & \text { if } p=q\end{cases}
$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed?

Answer of exercise 6

To see that d is a metric the only nontrivial point is to verify the triangle inequality $d(p, q) \leq d(p, r)+d(q, r)$. If $p=q$ then the left side is zero while the right side is nonnegative, so in this case the inequality is satisfied. If $p \neq q$ then the left side is 1 and at least one of the terms on the right side is 1 , while the other is nonnegative, so again the inequality is satisfied.

Now let E be any subset of X, and consider any $p \in E$. The neighborhood $N_{1 / 2}(p)=\{p\}$ (since every point $q \neq p$ has $d(p, q)=1>1 / 2$.) Thus $N_{1 / 2}(p) \subset E$, and hence p is an interior point of E. It follows that E is open. So every subset of the metric space X is open.

Finally, let E be any subset of X again; then E^{c} is open (since every subset of X is open); thus E is closed. So every subset of the metric space X is closed.

