
M 365C
Fall 2013, Section 57465

Problem Set 2
Due Thu Sep 12

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-2, without reproving them.

Exercise 1 (Rudin 1.6)

(This problem uses Theorem 1.21 of Rudin: for every real number x > 0 and integer
n > 0, there exists a unique real number x1/n such that x1/n > 0 and (x1/n)n = x.)

Fix b ∈ R, b > 1.

1. If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

(bm)1/n = (bp)1/q.

Hence it makes sense to define br = (bm)1/n. (Be sure you understand what this last
sentence means!)

2. Prove that br+s = brbs if r and s are rational.

3. If x is real, define B(x) to be the set of all numbers bt, where t is rational and t ≤ x.
Prove that

br = supB(r)

when r is rational.

4. By the result of the previous part, it makes sense to define

bx = supB(x)

for every real x. With this definition, prove that bx+y = bxby for every real x and y.

Answer of exercise 1

1. First note that mq = pn, so bmq = bpn. Thus

(bmq)1/nq = (bpn)1/nq.

What remains is to show that the left side of this is equal to (bm)1/n and the right side is
(bp)1/q. Both sides are similar, so let us just look at the left side. Let α = (bm)1/n. By
definition, α is the unique positive real number with αn = bm. Thus (αn)q = (bm)q.
Using the general fact (xa)b = xab when a, b are integers, which follows from the
definition of exponentiation as repeated multiplication, we then have αnq = bmq. But
by definition (bmq)1/nq is the unique positive real number α obeying this equation.
Thus α = (bmq)1/nq. So we have shown (bm)1/n = (bmq)1/nq as desired. This completes
the proof.
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2. Suppose we have two rational numbers r = r1/r2, s = s1/s2. Then r + s = r1s2+r2s1
r2s2

so br+s = (br1s2+r2s1)1/r2s2 . Thus to show brbs = br+s it suffices to show (brbs)r2s2 =
br1s2+r2s1 . But indeed brbs = ((br1)1/r2(bs1)1/s2)r2s2 = br1s2br2s1 = br1s2+r2s1 as desired.

3. First we show that for any q ∈ Q with q > 0, we have bq > 1. To see this, write
q = m/n with m,n > 0. Then (bq)n = bm > 1, from which it follows that bq > 1 also
(since for n > 0, xn > 1⇔ x > 1).
Now we show br is an upper bound for B(r). For any t ∈ B(r), i.e. t ≤ r, we have
r − t ≥ 0 and thus br−t ≥ 1, i.e. br ≤ bt.
Finally we must show that if x < br then x is not an upper bound for B(r). But this
is obvious since br ∈ B(r).

4. First we show that bx+y ≥ bxby. Assume the opposite, bx+y < bxby. Then bx+y/by < bx,
so bx+y/by is not an upper bound for B(x). Thus there exists some t < x such that
bx+y/by < bt. Then bx+y/bt < by, so bx+y/bt is not an upper bound for B(y). Thus
there exists some s < y such that bx+y/bt < bs, i.e. bx+y < bsbt. By the previous part,
this means bx+y < bs+t. But s + t < x + y, so bs+t ∈ B(x + y). This contradicts the
fact that bx+y is an upper bound for B(x+ y).
Next we show that bx+y ≤ bxby. Assume the opposite, bx+y > bxby. Then bxby is not
an upper bound for B(x+ y), so there exists some rational t < x+ y with bt > bxby.
Now there exist rationals r and s with r+s > t, r < x, s < y. (To see this: choose any
rational t′ with t < t′ < x+y. Then t′−y < x, so we may choose some rational r such
that t′− y < r < x. Then let s = t′− r.) Now br ≤ bx, bs ≤ by, and hence brbs ≤ bxby.
By the previous part, this means br+s ≤ bxby. Thus br+s < bt, so br+s−t < 1, but
r + s− t > 0, which gives a contradiction.

Exercise 2 (Rudin 2.2, modified)

A real number x is called algebraic if there exists an n ∈ N and integers a0, . . . , an, not
all zero, such that

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0.

Prove that the set of all algebraic real numbers is countable. (Hint: for every positive
integer N , there are only finitely many ways to choose numbers n, a0, a1, . . . , an with n +
|a0|+ |a1|+ · · ·+ |an| = N .)

Answer of exercise 2

First we show that the set of all equations of the specified form is countable. Indeed, let
En be the set of all equations of this form with n fixed. This set is just the set of all tuples
(a0, . . . , an) ∈ Nn; we have proven in class that this set is countable. Then the set of all
equations of this form is ∪∞n=1En, a countable union of countable sets, hence countable.

Next note that any polynomial equation of degree n has at most n distinct real solutions.
(Strictly speaking, we should even prove this: one can do so directly, using the polynomial
long division algorithm to see that for any polynomial P (x) with P (x) = 0, one has P (x) =
(x − a)Q(x) where Q is a polynomial with degQ = degP − 1; then induction gives the
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desired statement.) Thus the set of all algebraic real numbers is contained in a countable
union of finite sets, hence it is at most countable.

Finally, every integer is algebraic, so the set of all algebraic real numbers cannot be finite;
hence it is countable.

Exercise 3 (Rudin 2.5)

Construct a bounded set of real numbers with exactly three limit points.

Answer of exercise 3

For any x ∈ R, define Ex = {x + 1
n
| n ∈ N}. Then for any real a 6= b 6= c, let

E = Ea ∪ Eb ∪ Ec. E is evidently bounded and has limit points a, b, c.
Let us check that E has no other limit points. Thus suppose given a point y. If y /∈

{a, b, c} then take any ε such that 0 < ε < min{|y − a|, |y − b|, |y − c|}. We claim Nε(y)
contains only finitely many points of E. Indeed, for p = 1

n
+ a, we have |y− p| ≥ |y− a| − 1

n
.

But |y − a| > ε. If n > 1/(|y − a| − ε) we will have |y − p| ≥ |y| − (|y| − ε) = ε. Thus,
p /∈ Nε(y) if n > 1/(|y − a| − ε). Thus Nε(y) ∩ Ea is finite, and similarly for Nε(y) ∩ Eb and
Nε(y) ∩ Ec. Thus Nε(y) ∩ E is finite.

Exercise 4 (Rudin 2.6)

Let E be a subset of a metric space X. Let E ′ be the set of all limit points of E. Let
Ē = E ∪ E ′ (the closure of E).

1. Prove that E ′ is closed.

2. Prove that Ē and E have the same limit points, i.e. (Ē)′ = E ′.

3. Do E and E ′ always have the same limit points? (If so, prove it; if not, give a
counterexample.)

Answer of exercise 4

1. Suppose p is a limit point of E ′; we want to show that p ∈ E ′, i.e. that p is a limit
point of E. So, let U be any neighborhood of p. U contains some point q ∈ E ′, q 6= p.
Now, since U is open and q ∈ U , we can find some neighborhood V of q which is
contained in U . Since q is a limit point of E, V contains some point r of E. Thus
r ∈ V ⊂ U , so U contains a point of E; but U was an arbitrary neighborhood of p,
so we conclude p is a limit point of E.

2. Obviously any limit point of E is also a limit point of Ē. It remains to prove that any
limit point of Ē is a limit point of E. Thus, suppose p is a limit point of Ē. Then
take any neighborhood U of p. U contains some point q ∈ Ē. Since U is open we
can find a neighborhood V of q, V ⊂ U . V must contain some point r of E (if q ∈ E
then we can simply take r = q; otherwise q ∈ E ′ and then V contains some r 6= q
with r ∈ E.) This r ∈ V ⊂ U , so U contains a point of E; but U was an arbitrary
neighborhood of p, so we conclude p is a limit point of E.
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3. No. For example we can take E = {1/n | n ∈ N}, which has E ′ = {0}. Then E ′′ = ∅,
so E ′ 6= E ′′.

Exercise 5 (Rudin 2.9, in part)

Let E be a subset of a metric space X. Let E◦ be the set of all interior points of E.

1. If G ⊂ E and G is open, prove that G ⊂ E◦.

2. Do E and Ē always have the same interior, i.e. does E◦ = (Ē)◦? (If so, prove it; if
not, give a counterexample.)

Answer of exercise 5

1. Fix some p ∈ G. Since G is open, there exists a neighborhood U of p with U ⊂ G.
But G ⊂ E, so also U ⊂ E. Thus p has a neighborhood contained in E, i.e. p is an
interior point of E.

2. No. For example, we can take E = (−1, 0)∪ (0, 1). This set is open and thus E◦ = E.
On the other hand Ē = [−1, 1] which has interior (Ē)◦ = (−1, 1).

Exercise 6 (Rudin 2.10, in part)

Let X be any set. For p ∈ X and q ∈ X, define

d(p, q) =

{
1 if p 6= q,

0 if p = q.
(1)

Prove that this is a metric. Which subsets of the resulting metric space are open? Which
are closed?

Answer of exercise 6

To see that d is a metric the only nontrivial point is to verify the triangle inequality
d(p, q) ≤ d(p, r)+d(q, r). If p = q then the left side is zero while the right side is nonnegative,
so in this case the inequality is satisfied. If p 6= q then the left side is 1 and at least one of
the terms on the right side is 1, while the other is nonnegative, so again the inequality is
satisfied.

Now let E be any subset of X, and consider any p ∈ E. The neighborhood N1/2(p) = {p}
(since every point q 6= p has d(p, q) = 1 > 1/2.) Thus N1/2(p) ⊂ E, and hence p is an interior
point of E. It follows that E is open. So every subset of the metric space X is open.

Finally, let E be any subset of X again; then Ec is open (since every subset of X is open);
thus E is closed. So every subset of the metric space X is closed.
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