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Problem Set 4
Due Thu Sep 26

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-2, without reproving them — except for the first exercise as noted.

Exercise 1 (Rudin 2.12)

Let E = ({0}∪ { 1
n
|n ∈ N}) ⊂ R. Prove that E is compact directly from the definition of

compactness (i.e., without using the theorem that says closed and bounded subsets of R are
compact).

Answer of exercise 1

Suppose {Gα} is any open cover of E. Let G0 ∈ {Gα} be an element with 0 ∈ G0 (this
must exist, since {Gα} covers the whole of E.) Then 0 is an interior point of G0 (since G0

is open), hence there is ε > 0 such that Nε(0) ⊂ G0. Pick some n > 1/ε. Then for all m ≥ n
we have 1/m ∈ G0. Now let G1, . . . , Gn−1 be elements of {Gα} containing respectively 1,
1/2, . . . , 1/(n−1). The collection {G0, G1, . . . , Gn−1} is an open cover of E, which gives the
desired open subcover of the original {Gα}. Thus E is compact.

Exercise 2 (Rudin 2.19)

1. If A and B are disjoint closed sets in some metric space X, prove that A and B are
separated.

2. Prove the same for disjoint open sets.

3. Fix p ∈ X and δ > 0. Define A = {q ∈ X | d(p, q) < δ}. Define B = {q ∈
X | d(p, q) > δ}. Prove that A and B are separated.

4. Prove that every connected metric space with at least two points is uncountable.
(Hint: use the previous part.)

Answer of exercise 2

1. We have A = Ā and B = B̄, and A and B disjoint; so A ∩ B̄ = A ∩ B = ∅, and
Ā ∩B = A ∩B = ∅, as required.

2. Suppose x ∈ A ∩ B̄. Since A ∩ B = ∅, x must be a limit point of B. There is
a neighborhood N of x which is contained in A, since x is interior to A. But this
neighborhood must also contain some point of B. This contradicts the fact that
A ∩B = ∅.

3. A is a neighborhood, so A is open. Similarly, for any q ∈ B, letting ε < d(p, q) − δ
we can use the triangle inequality to show Nε(q) ⊂ B. Thus B is open. But A and B
are obviously disjoint, so the previous part shows they are separated.
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4. Suppose X is connected. Take any p ∈ X. For any δ > 0, the sets A and B from
the previous part are separated. But X is connected, so A ∪ B cannot be the whole
of X. Thus there must be some point qδ ∈ X such that d(p, qδ) = δ. Now let
E = {qδ | δ ∈ R} ⊂ X. The map qδ 7→ δ is a bijective correspondence between E and
R. Thus E is uncountable, since R is uncountable; but E is a subset of X. Thus X
must also be uncountable.

Exercise 3 (Rudin 2.22, modified)

Given a metric space X and a set E ⊂ X, we say E is dense in X if Ē = X. Prove that
Q is dense in R.

Answer of exercise 3

Say p ∈ R. We have shown that between any two real numbers there is a rational number.
Hence for any ε > 0 there is a rational number between p and p + ε. It follows that Nε(p)
contains a rational number, so p is a limit point of Q.

* Exercise 4 (Rudin 2.25, modified)

Suppose that K is a compact metric space. Prove that K has a dense subset which is at
most countable. (Hint: first show that for every n ∈ N, there are finitely many neighborhoods
of radius 1/n whose union covers K.)

Answer of exercise 4

Fix some n ∈ N. Then {N1/n(p) | p ∈ K} is an open cover of K, which thus has a finite
subcover; in other words, there exists a finite set En ⊂ K such that for any p ∈ K, there
exists some q ∈ En such that d(p, q) < 1/n. Let E = ∪n∈NEn; then E is a countable union
of finite sets, hence E is at most countable. We would like to show E is dense in K. For
this, it suffices to show that for any p ∈ K, there is some q ∈ E with d(p, q) < ε. But this
follows from what we know aobut En: just pick some n > 1/ε and use the fact that En ⊂ E.

Exercise 5 (Rudin 3.1)

Suppose that {an} is a convergent sequence in R. Prove that {|an|} is also a convergent
sequence in R.

Answer of exercise 5

Suppose an → a; we will prove |an| → |a|. For this first note that ||x| − |y|| ≤ |x − y|
(if x and y have the same sign then the two sides are simply equal, while if the signs are
different then we may assume x > 0, y = −z with z > 0, in which case the desired inequality
is |x − z| ≤ |x| + |z|, which is the triangle inequality.) Now, fix some ε > 0. Since an → a,
there is N such that n > N =⇒ |an − a| < ε. But then it follows that ||an| − |a|| < ε as
well. Thus |an| → |a| as desired.
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