M 365C

Fall 2013, Section 57465
Problem Set 4
Due Thu Sep 26

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-2, without reproving them - except for the first exercise as noted.

Exercise 1 (Rudin 2.12)

Let $E=\left(\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}\right) \subset \mathbb{R}$. Prove that E is compact directly from the definition of compactness (i.e., without using the theorem that says closed and bounded subsets of \mathbb{R} are compact).

Answer of exercise 1

Suppose $\left\{G_{\alpha}\right\}$ is any open cover of E. Let $G_{0} \in\left\{G_{\alpha}\right\}$ be an element with $0 \in G_{0}$ (this must exist, since $\left\{G_{\alpha}\right\}$ covers the whole of E.) Then 0 is an interior point of G_{0} (since G_{0} is open), hence there is $\epsilon>0$ such that $N_{\epsilon}(0) \subset G_{0}$. Pick some $n>1 / \epsilon$. Then for all $m \geq n$ we have $1 / m \in G_{0}$. Now let G_{1}, \ldots, G_{n-1} be elements of $\left\{G_{\alpha}\right\}$ containing respectively 1 , $1 / 2, \ldots, 1 /(n-1)$. The collection $\left\{G_{0}, G_{1}, \ldots, G_{n-1}\right\}$ is an open cover of E, which gives the desired open subcover of the original $\left\{G_{\alpha}\right\}$. Thus E is compact.

Exercise 2 (Rudin 2.19)

1. If A and B are disjoint closed sets in some metric space X, prove that A and B are separated.
2. Prove the same for disjoint open sets.
3. Fix $p \in X$ and $\delta>0$. Define $A=\{q \in X \mid d(p, q)<\delta\}$. Define $B=\{q \in$ $X \mid d(p, q)>\delta\}$. Prove that A and B are separated.
4. Prove that every connected metric space with at least two points is uncountable. (Hint: use the previous part.)

Answer of exercise 2

1. We have $A=\bar{A}$ and $B=\bar{B}$, and A and B disjoint; so $A \cap \bar{B}=A \cap B=\emptyset$, and $\bar{A} \cap B=A \cap B=\emptyset$, as required.
2. Suppose $x \in A \cap \bar{B}$. Since $A \cap B=\emptyset, x$ must be a limit point of B. There is a neighborhood N of x which is contained in A, since x is interior to A. But this neighborhood must also contain some point of B. This contradicts the fact that $A \cap B=\emptyset$.
3. A is a neighborhood, so A is open. Similarly, for any $q \in B$, letting $\epsilon<d(p, q)-\delta$ we can use the triangle inequality to show $N_{\epsilon}(q) \subset B$. Thus B is open. But A and B are obviously disjoint, so the previous part shows they are separated.
4. Suppose X is connected. Take any $p \in X$. For any $\delta>0$, the sets A and B from the previous part are separated. But X is connected, so $A \cup B$ cannot be the whole of X. Thus there must be some point $q_{\delta} \in X$ such that $d\left(p, q_{\delta}\right)=\delta$. Now let $E=\left\{q_{\delta} \mid \delta \in \mathbb{R}\right\} \subset X$. The map $q_{\delta} \mapsto \delta$ is a bijective correspondence between E and \mathbb{R}. Thus E is uncountable, since \mathbb{R} is uncountable; but E is a subset of X. Thus X must also be uncountable.

Exercise 3 (Rudin 2.22, modified)

Given a metric space X and a set $E \subset X$, we say E is dense in X if $\bar{E}=X$. Prove that \mathbb{Q} is dense in \mathbb{R}.

Answer of exercise 3

Say $p \in \mathbb{R}$. We have shown that between any two real numbers there is a rational number. Hence for any $\epsilon>0$ there is a rational number between p and $p+\epsilon$. It follows that $N_{\epsilon}(p)$ contains a rational number, so p is a limit point of \mathbb{Q}.

* Exercise 4 (Rudin 2.25, modified)

Suppose that K is a compact metric space. Prove that K has a dense subset which is at most countable. (Hint: first show that for every $n \in \mathbb{N}$, there are finitely many neighborhoods of radius $1 / n$ whose union covers K.)

Answer of exercise 4

Fix some $n \in \mathbb{N}$. Then $\left\{N_{1 / n}(p) \mid p \in K\right\}$ is an open cover of K, which thus has a finite subcover; in other words, there exists a finite set $E_{n} \subset K$ such that for any $p \in K$, there exists some $q \in E_{n}$ such that $d(p, q)<1 / n$. Let $E=\cup_{n \in \mathbb{N}} E_{n}$; then E is a countable union of finite sets, hence E is at most countable. We would like to show E is dense in K. For this, it suffices to show that for any $p \in K$, there is some $q \in E$ with $d(p, q)<\epsilon$. But this follows from what we know aobut E_{n} : just pick some $n>1 / \epsilon$ and use the fact that $E_{n} \subset E$.

Exercise 5 (Rudin 3.1)

Suppose that $\left\{a_{n}\right\}$ is a convergent sequence in \mathbb{R}. Prove that $\left\{\left|a_{n}\right|\right\}$ is also a convergent sequence in \mathbb{R}.

Answer of exercise 5

Suppose $a_{n} \rightarrow a$; we will prove $\left|a_{n}\right| \rightarrow|a|$. For this first note that $||x|-|y|| \leq|x-y|$ (if x and y have the same sign then the two sides are simply equal, while if the signs are different then we may assume $x>0, y=-z$ with $z>0$, in which case the desired inequality is $|x-z| \leq|x|+|z|$, which is the triangle inequality.) Now, fix some $\epsilon>0$. Since $a_{n} \rightarrow a$, there is N such that $n>N \Longrightarrow\left|a_{n}-a\right|<\epsilon$. But then it follows that $\left|\left|a_{n}\right|-|a|\right|<\epsilon$ as well. Thus $\left|a_{n}\right| \rightarrow|a|$ as desired.

