## M 365C

Fall 2013, SECTION 57465
Problem Set 5
Due Thu Oct 3

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-3, without reproving them.

## Exercise 1

Let $X$ be a metric space, $\left\{p_{n}\right\} \subset X$ a convergent sequence with $p_{n} \rightarrow p$, and $\left\{q_{n}\right\} \subset X$ a convergent sequence with $q_{n} \rightarrow q$. Prove that $d\left(p_{n}, q_{n}\right) \rightarrow d(p, q)$. (This last convergence takes place in $\mathbb{R}$.)

## Answer of exercise 1

Fix some $\epsilon>0$. Then there exists some $N^{\prime}$ such that $n>N^{\prime} \Longrightarrow d\left(p_{n}, p\right)<\epsilon / 2$, and there exists some $N^{\prime \prime}$ such that $n>N^{\prime \prime} \Longrightarrow d\left(q_{n}, q\right)<\epsilon / 2$. Let $N=\max \left(N^{\prime}, N^{\prime \prime}\right)$. Using the triangle inequality in $\mathbb{R}$, we have

$$
\left|d\left(p_{n}, q_{n}\right)-d(p, q)\right| \leq\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}, q\right)\right|+\left|d\left(p_{n}, q\right)-d(p, q)\right|
$$

Next we can use the triangle inequality in $X$, to get

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}, q\right)\right| \leq d\left(q, q_{n}\right)
$$

and

$$
\left|d\left(p_{n}, q\right)-d(p, q)\right| \leq d\left(p, p_{n}\right)
$$

Combining these, for $n>N$ we have

$$
\left|d\left(p_{n}, q_{n}\right)-d(p, q)\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

Thus $d\left(p_{n}, q_{n}\right) \rightarrow d(p, q)$ as desired.

## Exercise 2 (Rudin 3.2, modified)

Calculate $\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n$, and prove that your answer is correct. (Hint: first show that $\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n}$.)

## Answer of exercise 2

Multiplying out shows directly that $\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n}$. Now, dividing by $n$ in numerator and denominator, this becomes $\frac{1}{\sqrt{1+1 / n}+1}$. We will prove below that $\sqrt{1+1 / n} \rightarrow$ 1 ; having proved that, it will follow that the desired limit is $1 / 2$.

We want to show that $\sqrt{1+1 / n} \rightarrow 1$. So, let $a_{n}=\sqrt{1+1 / n}$. We have $a_{n}^{2}-1=1 / n$. Factoring, this becomes $\left(a_{n}+1\right)\left(a_{n}-1\right)=1 / n$, i.e. $a_{n}-1=\frac{1}{n\left(a_{n}+1\right)}$. Since $a_{n}>0$ this says
$a_{n}-1<1 / n$. On the other hand we can easily see that $a_{n}>1$. Thus $1<a_{n}<1+1 / n$, so $\left|a_{n}-1\right|<1 / n$. Thus, for any $\epsilon$, if we choose $N>1 / \epsilon$, then for all $n \leq N$ we have $\left|a_{n}-1\right|<\epsilon$. Thus $a_{n} \rightarrow 1$ as desired.

## Exercise 3 (Rudin 3.5)

For any two real sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ prove that

$$
\lim _{n \rightarrow \infty} \sup \left(a_{n}+b_{n}\right) \leq \lim _{n \rightarrow \infty} \sup a_{n}+\lim _{n \rightarrow \infty} \sup b_{n}
$$

## Answer of exercise 3

Let $\gamma=\lim _{n \rightarrow \infty} \sup \left(a_{n}+b_{n}\right), \alpha=\lim _{n \rightarrow \infty} \sup a_{n}, \beta=\lim _{n \rightarrow \infty} \sup b_{n}$. Fix some $\epsilon>0$.
By the definition of $\gamma$, there exists a subsequence $\left\{a_{k_{n}}+b_{k_{n}}\right\}$ which converges to a limit greater than $\gamma-\epsilon / 3$. Then there exists some $N$ such that $n>N$ implies $a_{k_{n}}+b_{k_{n}}>\gamma-\epsilon / 3$. Also by the definition of $\alpha$ and $\beta$, there exists some $N^{\prime}$ such that $n>N^{\prime}$ implies $a_{k_{n}}<\alpha+\epsilon / 3$, and some $N^{\prime \prime}$ such that $n>N^{\prime \prime}$ implies $b_{k_{n}}<\beta+\epsilon / 3$. Thus if we take $n>\max \left(N, N^{\prime}, N^{\prime \prime}\right)$ we will have

$$
\gamma-\epsilon / 3<a_{k_{n}}+b_{k_{n}}<\alpha+\beta+2 \epsilon / 3
$$

and thus $\gamma<\alpha+\beta+\epsilon$, for any $\epsilon>0$. Thus $\gamma \leq \alpha+\beta$ as desired.

