M 365C

Fall 2013, SECTION 57465
Problem Set 6
Due Thu Oct 10

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-3, without reproving them.

Exercise 1 (Rudin 3.6, modified)

Investigate the behavior (convergence or divergence) of $\sum a_{n}$ if

1. $a_{n}=\sqrt{n+1}-\sqrt{n}$,
2. $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$,
3. $a_{n}=\left(n^{1 / n}-1\right)^{n}$.

Answer of exercise 1

1. The partial sums are just $s_{n}=\sum_{k=1}^{n} a_{k}=\sqrt{n+1}-1$. But for any $M \in \mathbb{R}$, if we take $n>(M+1)^{2}-1$, then $\sqrt{n+1}-1>M$. Thus s_{n} is unbounded above, and thus $\lim _{n \rightarrow \infty} s_{n}$ does not exist. Thus $\sum a_{n}$ diverges.
2. In a previous assignment you have shown that $\sqrt{n}(\sqrt{n-1}-\sqrt{n}) \rightarrow \frac{1}{2}$. It follows that there exists N such that for all $n \geq N, \sqrt{n}(\sqrt{n-1}-\sqrt{n})<1$. Thus for all $n \geq N$, $\sqrt{n-1}-\sqrt{n}<\frac{1}{\sqrt{n}}$, so $0<a_{n}<\frac{1}{n^{3 / 2}}$. But $\sum_{n} \frac{1}{n^{3 / 2}}$ converges. It follows that $\sum a_{n}$ also converges.
3. Apply the root test: let $\alpha=\lim _{n \rightarrow \infty} \sup \left(n^{1 / n}-1\right)$. Rudin shows that $n^{1 / n} \rightarrow 1$. Thus $\alpha=1-1=0<1$, so $\sum_{n} a_{n}$ converges.

Exercise 2 (Rudin 3.8)

If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.

Answer of exercise 2

This problem is deceptively tricky. It is tempting to try to do it by establishing some inequality like $\left|\sum_{n=p}^{q} a_{n} b_{n}\right| \leq M\left|\sum_{n=p}^{q} a_{n}\right|$, but I think this won't work: no such inequality can exist, since in some cases we might have $\left|\sum_{n=p}^{q} a_{n}\right|=0$ but $\sum_{n=p}^{q} a_{n} b_{n} \neq 0$. (for example imagine that $a_{1}=1, a_{2}=-1$, while $b_{1}=1, b_{2}=1 / 2$, and consider $p=1, q=2$.) In fact, it is pretty delicate to get the estimate we want, but fortunately Rudin has done the hard work for us, as follows.
$\left\{b_{n}\right\}$ is monotonic and bounded, so it has some limit M. Let $c_{n}=b_{n}-M$. Then $\left\{c_{n}\right\}$ is also monotonic and $c_{n} \rightarrow 0$. Since $a_{n} b_{n}=a_{n}\left(c_{n}+M\right)$, and $\sum M a_{n}$ converges, we see that $\sum a_{n} b_{n}$ converges if and only if $\sum a_{n} c_{n}$ converges. If $\left\{c_{n}\right\}$ is monotonically decreasing then Theorem 3.42 of Rudin shows that $\sum a_{n} c_{n}$ indeed converges. If $\left\{c_{n}\right\}$ is monotonically increasing then we define $c_{n}^{\prime}=-c_{n}$ and apply Theorem 3.42 to $\sum a_{n} c_{n}^{\prime}$.

Exercise 3 (Rudin 3.20)

Suppose $\left\{p_{n}\right\}$ is a Cauchy sequence in a metric space X, and some subsequence $\left\{p_{n_{k}}\right\}$ converges to a point $p \in X$. Prove that the full sequence $\left\{p_{n}\right\}$ converges to p.

Answer of exercise 3

Fix $\epsilon>0$. We want to show that there exists $N \in \mathbb{N}$ such that $n>N \Longrightarrow d\left(p_{n}, p\right)<\epsilon$. Since $\left\{p_{n}\right\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $m, n>N \Longrightarrow d\left(p_{m}, p_{n}\right)<\epsilon / 2$. Since the subsequence $\left\{p_{n_{k}}\right\}$ converges to p, there exists some $k \in \mathbb{N}$ such that $d\left(p_{n_{k}}, p\right)<\epsilon / 2$ and $n_{k}>N$. Then for $n>N$ we have

$$
d\left(p_{n}, p\right)<d\left(p_{n}, p_{n_{k}}\right)+d\left(p_{n_{k}}, p\right)=\epsilon / 2+\epsilon / 2=\epsilon .
$$

Exercise 4 (Rudin 3.21)

Suppose $\left\{E_{n}\right\}$ is a sequence of closed nonempty and bounded sets in a complete metric space X, with $E_{n} \supset E_{n+1}$, and $\lim _{n \rightarrow \infty} \operatorname{diam} E_{n}=0$. Prove that $\cap_{n=1}^{\infty} E_{n}$ consists of exactly one point.

Answer of exercise 4

Pick a sequence $\left\{p_{n}\right\}$ in X, with $p_{n} \in E_{n}$ for all n. We will show that $\left\{p_{n}\right\}$ is a Cauchy sequence. Indeed, fix some $\epsilon>0$. Since $\operatorname{diam} E_{n} \rightarrow 0$, there exists some $N \in \mathbb{N}$ for which $\operatorname{diam} E_{N}<\epsilon$. For any $n, m>N$ we have $p_{n}, p_{m} \in E_{N}$ and thus $d\left(p_{n}, p_{m}\right)<\epsilon$, so $\left\{p_{n}\right\}$ is a Cauchy sequence as desired. Since X is complete, it follows that $\left\{p_{n}\right\}$ converges; let p be the limit.

Now we want to show that $p \in E_{N}$ for all N. Since $p_{n} \rightarrow p$, for any $\epsilon>0$ there is some n for which $p_{n} \in N_{\epsilon}(p)$; also $p_{n} \in E_{N}$, so $N_{\epsilon}(p)$ contains a point of E_{N}. Hence p is a limit point of E_{N}. But E_{N} is closed, so this means $p \in E_{N}$. Since this holds for all N, we have $p \in \cap_{n=1}^{\infty} E_{n}$.

Finally, we need to show that p is the only point in $\cap_{n=1}^{\infty} E_{n}$. So, suppose there is some $q \in \cap_{n=1}^{\infty} E_{n}$ with $q \neq p$. Then there exists some n such that $\operatorname{diam}\left(E_{n}\right)<d(p, q)$. Since both p and q are in E_{n}, this is a contradiction.

* Exercise 5 (Rudin 3.22)

Suppose X is a nonempty complete metric space, and $\left\{G_{n}\right\}$ is a sequence of open subsets of X, such that each G_{n} is dense in X. Prove that $\cap_{n=1}^{\infty} G_{n}$ is not empty. (In fact, it is dense
in X.) (Hint: find a shrinking sequence of neighborhoods E_{n} such that $\bar{E}_{n} \subset G_{n}$, and apply the previous exercise.)

Answer of exercise 5

It is useful to first think about an easier question: how do we know even that $G_{1} \cap G_{2}$ is not empty? Pick any $q \in G_{1}$. Since G_{1} is open, there is some neighborhood N of q with $N \subset G_{1}$. Then since G_{2} is dense in X, either $q \in G_{2}$ or q is a limit point of G_{2}; in either case N contains a point $p \in G_{2}$. Then $p \in G_{1} \cap G_{2}$.

Now we consider the real question.
First, let p_{1} be any point of G_{1}. Since G_{1} is open, there exists some ϵ for which $N_{\epsilon}\left(p_{1}\right) \subset$ G_{1}. Picking some $\epsilon^{\prime}<\epsilon$, let $E_{1}=N_{\epsilon^{\prime}}\left(p_{1}\right)$; then $\bar{E}_{1} \subset N_{\epsilon}\left(p_{1}\right) \subset G_{1}$.

Next, take any $q_{2} \in E_{1}$. Since E_{1} is open, there is some neighborhood N of q_{2} such that $N \subset E_{1}$. Then since G_{2} is dense in X, either $q_{2} \in G_{2}$ or q_{2} is a limit point of G_{2}; in either case N contains a point $p_{2} \in G_{2}$. Now, since N and G_{2} are both open, there exists some ϵ such that $N_{\epsilon}\left(p_{2}\right) \subset N \subset E_{1}$ and also $N_{\epsilon}\left(p_{2}\right) \subset G_{2}$. Pick some $\epsilon^{\prime}<\epsilon$, and let $E_{2}=N_{\epsilon^{\prime}}\left(p_{2}\right)$; then $\bar{E}_{2} \subset N_{\epsilon}\left(p_{2}\right) \subset E_{1}$ and also $\bar{E}_{2} \subset G_{2}$.

Continuing in this way we obtain subsets $E_{1} \supset E_{2} \supset E_{3} \supset \cdots$ with $\bar{E}_{n} \subset G_{n}$. By shrinking E_{n} if necessary at each step, we can arrange that diam $E_{n}<1 / n$, so diam $E_{n} \rightarrow 0$. Thus, using the previous exercise, $\cap_{n=1}^{\infty} \bar{E}_{n}$ contains a single point p. Then p is also in $\cap_{n=1}^{\infty} G_{n}$.

