M 365C
Fall 2013, SECTION 57465
Problem Set 7
Due Thu Oct 17

In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-4, without reproving them.

Exercise 1 (Rudin 3.10)

Suppose that the coefficients a_{n} of the power series $\sum a_{n} x^{n}$ are integers, infinitely many of which are nonzero. Prove that the radius of convergence of the series is at most 1 .

Answer of exercise 1

Since infinitely many $\left|a_{n}\right| \geq 1$, it follows that infinitely many $\left|a_{n}\right|^{1 / n} \geq 1$. But then

$$
\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n} \geq \lim _{n \rightarrow \infty} \sup 1=1
$$

By the root test the desired result follows.

Exercise 2

1. Consider the sequence of functions $\left\{f_{n}\right\}$ where $f_{n}:[0,1] \rightarrow[0,1]$ is given by $f_{n}(x)=$ x^{n}. Show that for each $x \in[0,1]$ the sequence of real numbers $\left\{f_{n}(x)\right\}$ converges, and compute the limit.
2. Let $f(x)$ denote the limit you computed in the previous part; this gives a new function $f:[0,1] \rightarrow \mathbb{R}$. Is f continuous?

Answer of exercise 2

We have shown in class that $\lim _{n \rightarrow \infty} x^{n}=0$ for $|x|<1$; and $\lim _{n \rightarrow \infty} x^{n}=\lim _{n \rightarrow \infty} 1=1$ for $x=1$. Thus

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x \in[0,1) \\
1 \text { if } x=1
\end{array}\right.
$$

This function is not continuous at $x=1$: for example, taking $\epsilon=1 / 2$, there is evidently no δ such that $|x-1|<\delta \Longrightarrow|f(x)-1|<\epsilon$.

Exercise 3

Let X be any set. For $p \in X$ and $q \in X$, define

$$
d(p, q)= \begin{cases}1 & \text { if } p \neq q \\ 0 & \text { if } p=q\end{cases}
$$

With this distance function, X is a metric space (as you proved in an earlier homework). Let Y be any metric space. Prove that every function $f: X \rightarrow Y$ is continuous.

Answer of exercise 3

For any $\epsilon>0$, set $\delta=1 / 2$. Then $d(p, q)<\delta \Longrightarrow p=q$, which in turn implies $f(p)=f(q)$, and thus $d(f(p), f(q))<\epsilon$, as needed.

Exercise 4 (Rudin 4.1)

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\lim _{h \rightarrow 0}(f(x+h)-f(x-h))=0
$$

for all $x \in \mathbb{R}$. Does it follow that f is continuous?

Answer of exercise 4

Consider the function

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x \neq 0 \\
1 \text { if } x=0
\end{array}\right.
$$

This function is not continuous at $x=0$ (for example, taking $\epsilon=1 / 2$, there is evidently no δ such that $|x-0|<\delta \Longrightarrow|f(x)-1|<\epsilon$.) However, $f(x)$ does obey the equation $\lim _{h \rightarrow 0}(f(x+h)-f(x-h))=0$. Indeed, for any x we have $\lim _{h \rightarrow 0} f(x+h)=0$ and $\lim _{h \rightarrow 0} f(x-h)=0$. (To prove this, for any ϵ, when $x \neq 0$ take any $\delta<|x|$ in the definition of limit, and when $x=0$ take any $\delta>0$.)

Thus the answer to the question is "no, it does not follow from this equation that f is continuous."

Exercise 5 (Rudin 4.2)

If X, Y are metric spaces and $f: X \rightarrow Y$ is continuous, prove that for every $E \subset X$,

$$
f(\bar{E}) \subset \overline{f(E)}
$$

Prove by an example that this inclusion may be proper, i.e. it may happen that $f(\bar{E}) \neq \overline{f(E)}$.

Answer of exercise 5

Consider any point $y \in f(\bar{E})$. If $y \in f(E)$ then obviously $y \in \overline{f(E)}$. If $y \notin f(E)$, then $y=f(x)$ for x a limit point of E. In this case we may choose a sequence $\left\{x_{n}\right\}$ in E with $x_{n} \rightarrow x, x_{n} \neq x$. Then since f is continuous we also have $f\left(x_{n}\right) \rightarrow f(x)$. This says that $f(x)$ is a limit point of $f(E)$. But $f(x)=y$, so y is a limit point of $f(E)$, so $y \in \overline{f(E)}$.

To see that the inclusion may be proper, take $X=\mathbb{R}_{+}, Y=\mathbb{R}, E=\mathbb{N} \subset \mathbb{R}_{+}$, and let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be given by $f(x)=1 / x$. Then $\bar{E}=\mathbb{N}$ so $f(\bar{E})=\{1 / n \mid n \in \mathbb{N}\}$, while $f(E)=\{1 / n \mid n \in \mathbb{N}\} \cup\{0\}$.

Exercise 6 (Rudin 4.3)

Let X be a metric space and $f: X \rightarrow \mathbb{R}$ be continuous. Let $Z(f)$ be the set of all $p \in X$ for which $f(p)=0$. Prove that $Z(f)$ is closed in X.

Answer of exercise 6

By definition $Z(f)=f^{-1}(\{0\}) .\{0\}$ is a finite set, hence a closed subset of \mathbb{R}. Since f is continuous, it follows that $Z(f)$ is closed.

