M 365C

Fall 2013, Section 57465
Problem Set 8
Due Thu Oct 24
In your solutions to these exercises you may freely use any results proven in class or in Rudin chapters 1-4, without reproving them.

Exercise 1

1. For any $k \in \mathbb{N}$, show that the function $f:[0,1] \rightarrow[0,1]$ defined by $f(x)=x^{1 / k}$ is continuous. (Hint: you could do this directly from the definition of continuity, but there is an easier way.)
2. Let $a_{n}=(1-1 / n)^{1 / 3}$. Show that $a_{n} \rightarrow 1$.
3. Let $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$. For any $k \in \mathbb{N}$, show that the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ defined by $f(x)=x^{1 / k}$ is continuous. (Hint: one approach is to reduce this to part 1 above.)

Answer of exercise 1

1. The map $g:[0,1] \rightarrow[0,1]$ defined by $g(x)=x^{k}$ is a continuous bijection whose domain is the compact set $[0,1]$. It follows that the inverse g^{-1} is also continuous. But $g^{-1}(x)=x^{1 / k}=f(x)$. So f is continuous.
2. Let $b_{n}=1-1 / n$. Each $b_{n} \in[0,1], b_{n} \rightarrow 1$ and $f\left(b_{n}\right)=a_{n}$. Since f is continuous it follows that $f\left(b_{n}\right) \rightarrow f(1)=1^{1 / k}=1$. Thus $a_{n} \rightarrow 1$ as desired.
3. First note that the same method we used in part 1 would equally show that the function $f:[0, c] \rightarrow\left[0, c^{1 / k}\right]$ defined by $f(x)=x^{1 / k}$ is continuous, for any $c>0$. Now, any $x \in \mathbb{R}_{+}$is contained in $[0, c]$ for sufficiently large c. This looks like it should be sufficient to show that $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by the same formula is continuous. However, if we are really careful, we might notice that a small lemma is still missing. We state and prove the needed lemma as part of the solution to exercise 2 below.

Exercise 2

Prove that continuity is a local property, in the following sense. Let X and Y be metric spaces, and fix some $p \in X$. Suppose given two functions $f, g: X \rightarrow Y$. Suppose that f is continuous at p, and there exists a neighborhood N of p such that $f(q)=g(q)$ for all $q \in N$. Then, prove that g is continuous at p.

Answer of exercise 2

We will prove something slightly more general. Suppose X and Y are metric spaces, with $E \subset X$, and fix some $p \in E$. Suppose given two functions $f: E \rightarrow Y$ and $g: X \rightarrow Y$. Suppose that f is continuous at p, and there exists a neighborhood N of p, with $N \subset E$, such that $f(q)=g(q)$ for all $q \in N$. Then, we will prove that g is continuous at p.

The proof is as follows. Suppose given any sequence p_{n} in X with $p_{n} \rightarrow p$. We need to show that $g\left(p_{n}\right) \rightarrow g(p)$. For sufficiently large n we have $p_{n} \in N$. We may as well assume that all $p_{n} \in N$ (since throwing away finitely many terms from the sequence $\left\{g\left(p_{n}\right)\right\}$ does not affect the limit.) Since f is continuous at p, it follows that $f\left(p_{n}\right) \rightarrow f(p)$. Since $f\left(p_{n}\right)=g\left(p_{n}\right)$ and $f(p)=g(p)$ it follows that $g\left(p_{n}\right) \rightarrow g(p)$ as desired.

Exercise 3 (Rudin 4.3, modified)

Let X and Y be any metric spaces. Let $f: X \rightarrow Y$ and $g: X \rightarrow Y$ be continuous. Let E be a dense subset of X, such that $f(p)=g(p)$ for all $p \in E$. Then, show that $f(p)=g(p)$ for all $p \in X$. (So, a continuous function can be determined by its values on a dense set.)

Answer of exercise 3

Take any $p \in X$. Since $p \in \bar{E}$, there exists some sequence $\left\{p_{n}\right\}$ in E with $p_{n} \rightarrow p$. Then, since f and g are continuous, we have $f\left(p_{n}\right) \rightarrow f(p)$ and $g\left(p_{n}\right) \rightarrow g(p)$. But since all $p_{n} \in E$, $\left\{f\left(p_{n}\right)\right\}$ and $\left\{g\left(p_{n}\right)\right\}$ are the same sequence. Thus by uniqueness of the limits of sequences, $f(p)=g(p)$.

Exercise 4 (Rudin 4.14)

Let $I=[0,1]$. Suppose $f: I \rightarrow I$ is continuous. Prove that there exists some $x \in I$ for which $f(x)=x$.

Answer of exercise 4

If $f(0)=0$ or $f(1)=1$ then we are done.
Otherwise $f(0)>0$ and $f(1)<1$. Consider the function $g(x)=f(x)-x . g(x)$ is continuous, since $f(x)$ and x are, and $g(x)>0, g(1)<0$. Thus by the intermediate-value theorem we have $g(x)=0$ for some $x \in(0,1)$. But this says $f(x)-x=0$, i.e. $f(x)=x$, as needed.

Exercise 5

Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not uniformly continuous.

Answer of exercise 5

Take $\epsilon=1$, and take any $\delta>0$. Set $x_{1}=1 / \delta+\delta / 2, x_{2}=1 / \delta$. Then

$$
\left|x_{1}^{2}-x_{2}^{2}\right|=1+\delta^{2} / 4>1=\epsilon
$$

Thus there is no δ satisfying the definition of uniform continuity.

* Exercise 6 (Rudin 4.8, modified)

1. Let $E \subset \mathbb{R}$ be bounded. Let $f: E \rightarrow \mathbb{R}$ be uniformly continuous. Prove that $f(E) \subset \mathbb{R}$ is bounded.
2. Give a counterexample to the above if we omit the word "uniformly."

Answer of exercise 6

1. Take $\epsilon=1$. Since f is uniformly continuous, there exists $\delta>0$ such that $|x-y|<$ $\delta \Longrightarrow|f(x)-f(y)|<1$.
Since E is bounded, there is some interval $[a, b]$ such that $E \subset[a, b]$. Thus we may cover E by a finite number of closed intervals I_{1}, \ldots, I_{n} with lengths at most $\delta / 2$. Each $f\left(I_{k}\right)$ is bounded since $x, y \in I_{k} \Longrightarrow|f(x)-f(y)|<1$. But then $f(E)$ is the union of finitely many bounded sets, hence also bounded.
2. Take $E=(0,1)$ and $f(x)=1 / x$.
