
M 365C
Fall 2013, Section 57465

Problem Set 8
Due Thu Oct 24

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-4, without reproving them.

Exercise 1

1. For any k ∈ N, show that the function f : [0, 1] → [0, 1] defined by f(x) = x1/k is
continuous. (Hint: you could do this directly from the definition of continuity, but
there is an easier way.)

2. Let an = (1− 1/n)1/3. Show that an → 1.

3. Let R+ = {x ∈ R |x ≥ 0}. For any k ∈ N, show that the function f : R+ → R+

defined by f(x) = x1/k is continuous. (Hint: one approach is to reduce this to part 1
above.)

Answer of exercise 1

1. The map g : [0, 1] → [0, 1] defined by g(x) = xk is a continuous bijection whose
domain is the compact set [0, 1]. It follows that the inverse g−1 is also continuous.
But g−1(x) = x1/k = f(x). So f is continuous.

2. Let bn = 1 − 1/n. Each bn ∈ [0, 1], bn → 1 and f(bn) = an. Since f is continuous it
follows that f(bn)→ f(1) = 11/k = 1. Thus an → 1 as desired.

3. First note that the same method we used in part 1 would equally show that the
function f : [0, c] → [0, c1/k] defined by f(x) = x1/k is continuous, for any c > 0.
Now, any x ∈ R+ is contained in [0, c] for sufficiently large c. This looks like it should
be sufficient to show that f : R+ → R defined by the same formula is continuous.
However, if we are really careful, we might notice that a small lemma is still missing.
We state and prove the needed lemma as part of the solution to exercise 2 below.

Exercise 2

Prove that continuity is a local property, in the following sense. Let X and Y be metric
spaces, and fix some p ∈ X. Suppose given two functions f, g : X → Y . Suppose that f is
continuous at p, and there exists a neighborhood N of p such that f(q) = g(q) for all q ∈ N .
Then, prove that g is continuous at p.

Answer of exercise 2

We will prove something slightly more general. Suppose X and Y are metric spaces, with
E ⊂ X, and fix some p ∈ E. Suppose given two functions f : E → Y and g : X → Y .
Suppose that f is continuous at p, and there exists a neighborhood N of p, with N ⊂ E,
such that f(q) = g(q) for all q ∈ N . Then, we will prove that g is continuous at p.
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The proof is as follows. Suppose given any sequence pn in X with pn → p. We need
to show that g(pn) → g(p). For sufficiently large n we have pn ∈ N . We may as well
assume that all pn ∈ N (since throwing away finitely many terms from the sequence {g(pn)}
does not affect the limit.) Since f is continuous at p, it follows that f(pn) → f(p). Since
f(pn) = g(pn) and f(p) = g(p) it follows that g(pn)→ g(p) as desired.

Exercise 3 (Rudin 4.3, modified)

Let X and Y be any metric spaces. Let f : X → Y and g : X → Y be continuous. Let
E be a dense subset of X, such that f(p) = g(p) for all p ∈ E. Then, show that f(p) = g(p)
for all p ∈ X. (So, a continuous function can be determined by its values on a dense set.)

Answer of exercise 3

Take any p ∈ X. Since p ∈ Ē, there exists some sequence {pn} in E with pn → p. Then,
since f and g are continuous, we have f(pn)→ f(p) and g(pn)→ g(p). But since all pn ∈ E,
{f(pn)} and {g(pn)} are the same sequence. Thus by uniqueness of the limits of sequences,
f(p) = g(p).

Exercise 4 (Rudin 4.14)

Let I = [0, 1]. Suppose f : I → I is continuous. Prove that there exists some x ∈ I for
which f(x) = x.

Answer of exercise 4

If f(0) = 0 or f(1) = 1 then we are done.
Otherwise f(0) > 0 and f(1) < 1. Consider the function g(x) = f(x) − x. g(x) is

continuous, since f(x) and x are, and g(x) > 0, g(1) < 0. Thus by the intermediate-value
theorem we have g(x) = 0 for some x ∈ (0, 1). But this says f(x)− x = 0, i.e. f(x) = x, as
needed.

Exercise 5

Show that the function f : R→ R defined by f(x) = x2 is not uniformly continuous.

Answer of exercise 5

Take ε = 1, and take any δ > 0. Set x1 = 1/δ + δ/2, x2 = 1/δ. Then

|x21 − x22| = 1 + δ2/4 > 1 = ε.

Thus there is no δ satisfying the definition of uniform continuity.

* Exercise 6 (Rudin 4.8, modified)

1. Let E ⊂ R be bounded. Let f : E → R be uniformly continuous. Prove that
f(E) ⊂ R is bounded.

2. Give a counterexample to the above if we omit the word “uniformly.”

Answer of exercise 6
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1. Take ε = 1. Since f is uniformly continuous, there exists δ > 0 such that |x − y| <
δ =⇒ |f(x)− f(y)| < 1.
Since E is bounded, there is some interval [a, b] such that E ⊂ [a, b]. Thus we may
cover E by a finite number of closed intervals I1, . . . , In with lengths at most δ/2.
Each f(Ik) is bounded since x, y ∈ Ik =⇒ |f(x) − f(y)| < 1. But then f(E) is the
union of finitely many bounded sets, hence also bounded.

2. Take E = (0, 1) and f(x) = 1/x.

3


