
M 365C
Fall 2013, Section 57465

Problem Set 9
Due Thu Oct 31

In your solutions to these exercises you may freely use any results proven in class or in
Rudin chapters 1-5, without reproving them.

Exercise 1 (Rudin 5.1)

Suppose that f : R→ R and for all x, y ∈ R we have

|f(x)− f(y)| ≤ (x− y)2.

Prove that f is constant.

Answer of exercise 1

We can rewrite the given equation as |f(x)−f(y)| ≤ |x−y|2. We have |f(x)−f(y)||x−y| < |x−y|,

i.e.
∣∣∣f(x)−f(y)x−y

∣∣∣ < |x−y|. Thus, by the definition of limit, limx→y
f(x)−f(y)

x−y = 0. But this means

f is differentiable at y and f ′(y) = 0. This holds for all y. Thus (by a theorem proven in
class) f is constant.

Exercise 2 (Rudin 5.2)

Suppose that f : (a, b)→ R is differentiable and has f ′(x) > 0 for all x ∈ (a, b).

1. Prove that f is strictly increasing, i.e. if y > x then f(y) > f(x).

2. Prove that the image of f is an interval (c, d) (the values c = −∞ and d = +∞ are
allowed.)

3. Prove that f : (a, b)→ (c, d) is bijective. Thus f has an inverse g : (c, d)→ (a, b).

4. Prove that g is differentiable and g′(f(x)) = 1
f ′(x)

for all x ∈ (a, b).

Answer of exercise 2

1. This follows directly from the mean value theorem: for y > x with both y and
x in (a, b) we have f(y) − f(x) = (y − x)f ′(c) for some c also in (a, b), and thus
f(y)− f(x) > 0.

2. Let E be the image of f . Let c = inf E and d = supE. Then E does not contain any
x < c or any x > d. Also E does not contain c or d. Indeed, if E contains c then
there is some t ∈ (a, b) for which f(t) = c, but then taking t′ ∈ (a, b) with t′ < t it
would follow that f(t′) < f(t), i.e. f(t′) < c, contradicting the fact that E does not
contain any x < c; a similar argument shows E does not contain d.
On the other hand, by the definition of inf, for any z ∈ (c, d), E does contain an
element x < z, and by the definition of sup, E also contains an element y > z. Next,
since f is continuous, we know that E is connected; thus, since it is a connected
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subset of R, E has the property that if x, y ∈ E and x < z < y then z ∈ f(E) also.
Thus z ∈ (c, d).
We have now shown that any z /∈ (c, d) is not in E, and any z ∈ (c, d) is in E, so
E = (c, d).

3. We already know f is surjective onto (c, d), so we just need to know it is injective;
but this is immediate since if y > x we know f(y) > f(x), in particular f(y) 6= f(x).

4. First a remark: if we already knew that g is differentiable then this would follow
immediately from the chain rule, using the fact that x = g(f(x)). Here we don’t know
in advance that g is differentiable, but we do know that the composition g(f(x)) is
differentiable. So we essentially need a very special case of the computation which
appears in the proof of the chain rule. So, consider any sequence tn with tn → f(x).
Since f is bijective, each tn = f(un) for some un. Also, g is continuous (to see this,
restrict to a small compact domain around x and then use the fact that the inverse of
continuous function on compact domain is continuous). Thus g(tn) → g(f(un)), i.e.
un → x. Then

g(f(x))− g(tn)

f(x)− tn
=

x− un
f(x)− f(un)

→ 1

f ′(x)
.

But we have this for every sequence tn → f(x), so

lim
t→f(x)

g(f(x))− g(t)

f(x)− t
=

1

f ′(x)

which gives g′(f(x)) as desired.

Exercise 3 (Rudin 5.3)

Suppose that g : R→ R and that there exists some M such that for all x ∈ R, |g′(x)| ≤
M . For ε > 0, define fε(x) = x + εg(x). Prove that fε is 1-1 if ε is small enough, i.e. show
that there is some ε′ > 0 such that, if 0 < ε < ε′, then fε is 1-1.

Answer of exercise 3

By the mean value theorem, fε will be 1-1 if we have f ′ε(x) > 0 for all x. But f ′ε(x) =
1 + εg′(x) ≥ 1− εM for all x, so if ε < 1/M we will have f ′ε(x) > 0 for all x.

Exercise 4 (Rudin 5.11)

Suppose f : (a, b)→ R is twice differentiable at x. Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

(Hint: use L’Hospital’s rule, Theorem 5.13.)

Answer of exercise 4
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As h → 0 the numerator and denominator both approach 0. Thus we may apply
L’Hospital’s rule, differentiating both top and bottom with respect to h to see that the
limit we are interested in is equal to

lim
h→0

f ′(x+ h)− f ′(x− h)

2h

if the latter limit exists. The latter limit is a “symmmetrized” version of the usual limit
defining the second derivative. To see that it really equals the usual second derivative,
perhaps the fastest way is to note that we can rewrite it as

lim
h→0

f ′(x+ h)− f ′(x)

h
+ lim

h→0

f ′(x)− f ′(x− h)

h

if those two limits separately exist. Fortunately they do exist and are both equal to 1
2
f ′′(x)

(now just using the definition of derivative), so finally we get f ′′(x) as desired.

Exercise 5 (Rudin 4.7)

Define a function f : R2 → R by

f(x, y) =

{
xy2/(x2 + y4) if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0)

1. Given any E ⊂ R2, let f |E denote the restriction of f to E, i.e. f |E : E → R is
defined by f |E(x) = f(x) for all x ∈ E. If E is a straight line through (0, 0) in R2,
prove that f |E is continuous at (x, y) = (0, 0).

2. Prove nevertheless that f is not continuous at (x, y) = (0, 0)!

Answer of exercise 5

1. Along the line x = 0 we have f(x, y) = 0, so f is evidently continuous when restricted
to this line. Along any other line E we can write y = cx for some constant c. Now
consider any sequence of points (xn, yn) which lie in E and approach (0, 0). Then in
particular xn → 0. Now

f(xn, yn) = f(xn, cxn) =
c2x3n

c2x2n + c4x4n
=

c2xn
c2 + c4x2n

→ 0

as xn → 0. And f(0, 0) = 0. So we have shown that if (xn, yn) → (0, 0) and
(xn, yn) ∈ E then limn→∞ f(xn, yn) = f(0, 0). It follows that f |E is continuous at
(0, 0).

2. Now consider a sequence (xn, yn) with yn → 0 and xn = y2n. Then (xn, yn) → (0, 0).
But

f(xn, yn) =
y4n
2y4n

=
1

2

so f(xn, yn)→ 1
2
, while f(0, 0) = 0. Thus f is not continuous at (0, 0).
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