M 365C Fall 2013, Section 57465 Midterm 1 samples

True or False. If true, sketch a proof in a few lines. If false, state a counterexample. Throughout, let X denote a metric space.

- 1. If $E \subset X$ is compact, then E^c is open.
- 2. If $E \subset \mathbb{R}$ is countable, then E is closed.
- 3. If $E \subset X$, and $\epsilon > 0$, then $\bigcup_{p \in E} N_{\epsilon}(p)$ is open.
- 4. If E° is open, then E is open. (Recall that E° is the set of all interior points of E.)
- 5. The sequence $\{p_n\}$ in X converges if and only if every subsequence of $\{p_n\}$ converges.
- 6. Given any collection of closed intervals in \mathbb{R} , the union of the collection is closed.
- 7. Every bounded subset of \mathbb{R} is contained in a compact set.
- 8. Every nonempty compact subset of \mathbb{R} has a limit point.
- 9. If $E \subset \mathbb{R}$ is bounded, then $\{a + b \mid a, b \in E\}$ is also bounded.
- 10. Every subset of \mathbb{Q} which is bounded below in \mathbb{Q} has a greatest lower bound in \mathbb{Q} .
- 11. Every subset of $\mathbb{Q} \subset \mathbb{R}$ which is bounded below in \mathbb{Q} has a greatest lower bound in \mathbb{R} .
- 12. If $E \subset X$ is disconnected, then \overline{E} is also disconnected.
- 13. If $K \subset X$ is compact and $p \in X$, the set $\{d(p,q) \mid q \in K\}$ has a minimum element.
- 14. If the sequence $\{p_n\}$ in \mathbb{R} converges, then the sequence $\{p_n^2\}$ also converges.
- 15. If the sequence $\{p_n^2\}$ in \mathbb{R} converges, then the sequence $\{p_n\}$ also converges.
- 16. If $|p_n| < 2$ for all n, then the sequence $\{p_n\}$ has a convergent subsequence.