M 365C

Fall 2013, SECTION 57465
Midterm 2 Samples

True or False. Whichever way you think it goes, sketch a proof in a few lines. You may freely use any result we proved in class, or any result proved in Rudin. Throughout, let X and Y denote metric spaces.

1. If $\left\{x_{n}\right\}$ is a sequence in X with $\lim _{n \rightarrow \infty} x_{n}=x$, and $f: X \rightarrow Y$ is any function, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$.
2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are both continuous, $f(a)>g(a)$ and $f(b)<g(b)$. Then there exists some $x \in[a, b]$ such that $f(x)=g(x)$.
3. If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at a and has $f^{\prime}(a)>0$, then there exists some $x \in(a, b)$ such that $f(x)>f(a)$.
4. If $\sum a_{n}$ converges and $\left\{b_{n}\right\}$ is bounded, then $\sum a_{n} b_{n}$ converges.
5. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, the set $E=\left\{x \in \mathbb{R} \mid f(x)^{3}>2\right\}$ is open.
6. If $f:(0,1) \rightarrow \mathbb{R}$ is bounded and continuous, then it is uniformly continuous.
7. Let $E=\{1 / n \mid n \in \mathbb{N}\} \cup\{0\} \subset \mathbb{R}$. Every function $f: E \rightarrow \mathbb{R}$ is continuous.
8. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $f(x)=x$ for all $x \in \mathbb{Q}$, then $f(x)=x$ for all $x \in \mathbb{R}$.
9. If $f: X \rightarrow Y$ is continuous, and $E \subset X$ is open, then $f(E) \subset Y$ is open.
10. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty} f\left(a_{n}\right)$ is convergent.
11. Suppose given $f: \mathbb{R} \rightarrow \mathbb{R}$ such that there is no x with $f(x)=0$. Define $g(x)=f(x)^{2}$. Suppose g is differentiable. Then f is also differentiable.
12. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$, and $f(0)=0$. Then $f(x)=x$.
13. The function $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=x^{3}$ is uniformly continuous.
14. Suppose given two functions $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$, such that $f(x)=g(x)$ except for countably many points x. Suppose f is Riemann integrable. Then g is also Riemann integrable and $\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} g(x) \mathrm{d} x$.

Extra problem. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Define a new function $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=f(3 x)$. Prove carefully that g is continuous. Use only the definition of continuity.

1. False. For example, we could take $X=Y=\mathbb{R}, x_{n}=1 / n, x=0$, and

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x \neq 0 \\
1 \text { if } x=0
\end{array}\right.
$$

2. True. Apply the Intermediate Value Theorem to $h(x)=f(x)-g(x)$: it has $h(a)<0$, $h(b)>0$, so at some $x \in[a, b]$ it must have $h(x)=0$.
3. True. Since $f^{\prime}(a)>0$ we have $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}>0$. Thus there exists some neighborhood N of a such that $x \in N \Longrightarrow \frac{f(x)-f(a)}{x-a}>0$. For any $x \in(a, b)$ with $x \in N$, we have $x>a$, and $\frac{f(x)-f(a)}{x-a}>0$, so $f(x)-f(a)>0$, i.e. $f(x)>f(a)$.
4. False. Consider the sequence $a_{n}=(-1)^{n} \frac{1}{n}, b_{n}=(-1)^{n}$. Then $\sum a_{n}$ converges but $\sum a_{n} b_{n}$ does not.
5. True. Since f is continuous, $h=f^{3}$ is also continuous. The set E is $h^{-1}((2, \infty))$, and $(2, \infty)$ is an open subset of \mathbb{R}. Thus E is the of the form $h^{-1}(U)$ where h is continuous and U open. Thus E is open.
6. False. This one is tricky. Consider the function $f(x)=\cos (1 / x)$. This function is defined and continuous on $(0,1)$. However, for any δ, there exist x, y with $|x-y|<\delta$ but $f(x)=-1, f(y)=1$. (Take $x=\frac{1}{2 \pi n}, y=\frac{1}{2 \pi(n+1)}$, for large enough n.) Thus if we pick $\epsilon=1$, there is no δ for which $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon$.
7. False. For example, we could take

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x \neq 0 \\
1 \text { if } x=0
\end{array}\right.
$$

8. True. \mathbb{Q} is dense in \mathbb{R}, so for any $x \in \mathbb{R}$ there is a sequence $\left\{x_{n}\right\}$ where all $x_{n} \in \mathbb{Q}$ and $x_{n} \rightarrow x$. Then $f\left(x_{n}\right) \rightarrow f(x)$. But $f\left(x_{n}\right)=x_{n}$, so this says $x_{n} \rightarrow f(x)$. By uniqueness of the limit, then $f(x)=x$.
9. False. Say $f: \mathbb{R} \rightarrow \mathbb{R}$ is a constant function. Then for any open subset $E \subset \mathbb{R}, f(E)$ consists of just a single point, so $f(E)$ is not open.
10. False. Say $f: \mathbb{R} \rightarrow \mathbb{R}$ is $f(x)=1$. Then suppose $\sum a_{n}$ is any convergent series. Then $b_{n}=f\left(a_{n}\right)$ is just the constant sequence $b_{n}=1$. For $\sum b_{n}$ to be convergent we would need $b_{n} \rightarrow 0$, which the constant sequence $b_{n}=1$ certainly doesn't satisfy.
11. False. Say

$$
f(x)=\left\{\begin{array}{l}
-1 \text { if } x \leq 0 \\
1 \text { if } x>0
\end{array}\right.
$$

Then $f(x)$ is not continuous and hence not differentiable, but $f(x)^{2}$ is the constant function 1 , which is differentiable.
12. True. Consider the function $g(x)=f(x)-x$. This function has $g^{\prime}(x)=f^{\prime}(x)-1=$ $1-1=0$. Thus g is a constant function, $g(x)=c$. So $f(x)=x+c$. Plugging in $x=0$ we get $f(0)=c$. But we know $f(0)=0$, so this says $c=0$, i.e. $f(x)=x$.
13. True. Any continuous function on a compact set is uniformly continuous.
14. False. Say $f(x)=0$ for all x. This is Riemann integrable. Say

$$
g(x)=\left\{\begin{array}{l}
1 \text { if } x \in \mathbb{Q} \\
0 \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Then $g(x)$ differs from $f(x)$ only when $x \in \mathbb{Q}$. But $g(x)$ is not Riemann integrable (as we have shown in class).

Extra problem. Fix $p \in \mathbb{R}$ and $\epsilon>0$. Since f is continuous at $3 p$, there exists some δ^{\prime} for which

$$
|y-3 p|<\delta^{\prime} \Longrightarrow|f(y)-f(3 p)|<\epsilon
$$

Now, take $\delta=\delta^{\prime} / 3$, so $\delta^{\prime}=3 \delta$. Now suppose x is arbitrary. Plugging in $y=3 x$ in the above implication gives

$$
|3 x-3 p|<3 \delta \Longrightarrow|f(3 x)-f(3 p)|<\epsilon
$$

i.e.

$$
|x-p|<\delta \Longrightarrow|g(x)-g(p)|<\epsilon
$$

This shows that g is continuous at p. But p was arbitrary, so g is continuous.

