M 365C Fall 2013, Section 57465 Midterm 2 samples

True or False. Whichever way you think it goes, sketch a proof in a few lines. You may freely use any result we proved in class, or any result proved in Rudin. Throughout, let X and Y denote metric spaces.

- 1. If $\{x_n\}$ is a sequence in X with $\lim_{n\to\infty} x_n = x$, and $f: X \to Y$ is any function, then $\lim_{n\to\infty} f(x_n) = f(x)$.
- 2. Suppose $f : [a,b] \to \mathbb{R}$ and $g : [a,b] \to \mathbb{R}$ are both continuous, f(a) > g(a) and f(b) < g(b). Then there exists some $x \in [a,b]$ such that f(x) = g(x).
- 3. If $f : [a, b] \to \mathbb{R}$ is differentiable at a and has f'(a) > 0, then there exists some $x \in (a, b)$ such that f(x) > f(a).
- 4. If $\sum a_n$ converges and $\{b_n\}$ is bounded, then $\sum a_n b_n$ converges.
- 5. If $f : \mathbb{R} \to \mathbb{R}$ is continuous, the set $E = \{x \in \mathbb{R} \mid f(x)^3 > 2\}$ is open.
- 6. If $f:(0,1) \to \mathbb{R}$ is bounded and continuous, then it is uniformly continuous.
- 7. Let $E = \{1/n \mid n \in \mathbb{N}\} \cup \{0\} \subset \mathbb{R}$. Every function $f : E \to \mathbb{R}$ is continuous.
- 8. If $f : \mathbb{R} \to \mathbb{R}$ is continuous, and f(x) = x for all $x \in \mathbb{Q}$, then f(x) = x for all $x \in \mathbb{R}$.
- 9. If $f: X \to Y$ is continuous, and $E \subset X$ is open, then $f(E) \subset Y$ is open.
- 10. If $f : \mathbb{R} \to \mathbb{R}$ is continuous, and $\sum_{n=1}^{\infty} a_n$ is convergent, then $\sum_{n=1}^{\infty} f(a_n)$ is convergent.
- 11. Suppose given $f : \mathbb{R} \to \mathbb{R}$ such that there is no x with f(x) = 0. Define $g(x) = f(x)^2$. Suppose g is differentiable. Then f is also differentiable.
- 12. Suppose $f : \mathbb{R} \to \mathbb{R}$ has f'(x) = 1 for all $x \in \mathbb{R}$, and f(0) = 0. Then f(x) = x.
- 13. The function $f:[0,1] \to \mathbb{R}$ given by $f(x) = x^3$ is uniformly continuous.
- 14. Suppose given two functions $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$, such that f(x) = g(x) except for countably many points x. Suppose f is Riemann integrable. Then g is also Riemann integrable and $\int_a^b f(x) dx = \int_a^b g(x) dx$.

Extra problem. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Define a new function $g : \mathbb{R} \to \mathbb{R}$ by g(x) = f(3x). Prove carefully that g is continuous. Use only the definition of continuity.

1. False. For example, we could take $X = Y = \mathbb{R}$, $x_n = 1/n$, x = 0, and

$$f(x) = \begin{cases} 0 \text{ if } x \neq 0, \\ 1 \text{ if } x = 0 \end{cases}$$

- 2. **True**. Apply the Intermediate Value Theorem to h(x) = f(x) g(x): it has h(a) < 0, h(b) > 0, so at some $x \in [a, b]$ it must have h(x) = 0.
- 3. True. Since f'(a) > 0 we have $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} > 0$. Thus there exists some neighborhood N of a such that $x \in N \implies \frac{f(x)-f(a)}{x-a} > 0$. For any $x \in (a,b)$ with $x \in N$, we have x > a, and $\frac{f(x)-f(a)}{x-a} > 0$, so f(x) f(a) > 0, i.e. f(x) > f(a).
- 4. False. Consider the sequence $a_n = (-1)^n \frac{1}{n}$, $b_n = (-1)^n$. Then $\sum a_n$ converges but $\sum a_n b_n$ does not.
- 5. **True**. Since f is continuous, $h = f^3$ is also continuous. The set E is $h^{-1}((2, \infty))$, and $(2, \infty)$ is an open subset of \mathbb{R} . Thus E is the of the form $h^{-1}(U)$ where h is continuous and U open. Thus E is open.
- 6. False. This one is tricky. Consider the function $f(x) = \cos(1/x)$. This function is defined and continuous on (0, 1). However, for any δ , there exist x, y with $|x y| < \delta$ but f(x) = -1, f(y) = 1. (Take $x = \frac{1}{2\pi n}$, $y = \frac{1}{2\pi (n+1)}$, for large enough n.) Thus if we pick $\epsilon = 1$, there is no δ for which $|x y| < \delta \implies |f(x) f(y)| < \epsilon$.
- 7. False. For example, we could take

$$f(x) = \begin{cases} 0 \text{ if } x \neq 0, \\ 1 \text{ if } x = 0 \end{cases}$$

- 8. **True**. \mathbb{Q} is dense in \mathbb{R} , so for any $x \in \mathbb{R}$ there is a sequence $\{x_n\}$ where all $x_n \in \mathbb{Q}$ and $x_n \to x$. Then $f(x_n) \to f(x)$. But $f(x_n) = x_n$, so this says $x_n \to f(x)$. By uniqueness of the limit, then f(x) = x.
- 9. False. Say $f : \mathbb{R} \to \mathbb{R}$ is a constant function. Then for any open subset $E \subset \mathbb{R}$, f(E) consists of just a single point, so f(E) is not open.
- 10. False. Say $f : \mathbb{R} \to \mathbb{R}$ is f(x) = 1. Then suppose $\sum a_n$ is any convergent series. Then $b_n = f(a_n)$ is just the constant sequence $b_n = 1$. For $\sum b_n$ to be convergent we would need $b_n \to 0$, which the constant sequence $b_n = 1$ certainly doesn't satisfy.
- 11. False. Say

$$f(x) = \begin{cases} -1 \text{ if } x \le 0, \\ 1 \text{ if } x > 0 \end{cases}$$

Then f(x) is not continuous and hence not differentiable, but $f(x)^2$ is the constant function 1, which is differentiable.

- 12. True. Consider the function g(x) = f(x) x. This function has g'(x) = f'(x) 1 = 1 1 = 0. Thus g is a constant function, g(x) = c. So f(x) = x + c. Plugging in x = 0 we get f(0) = c. But we know f(0) = 0, so this says c = 0, i.e. f(x) = x.
- 13. True. Any continuous function on a compact set is uniformly continuous.
- 14. False. Say f(x) = 0 for all x. This is Riemann integrable. Say

$$g(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q}, \\ 0 \text{ if } x \notin \mathbb{Q} \end{cases}$$

Then g(x) differs from f(x) only when $x \in \mathbb{Q}$. But g(x) is not Riemann integrable (as we have shown in class).

Extra problem. Fix $p \in \mathbb{R}$ and $\epsilon > 0$. Since f is continuous at 3p, there exists some δ' for which

$$|y-3p|<\delta'\implies |f(y)-f(3p)|<\epsilon$$

Now, take $\delta = \delta'/3$, so $\delta' = 3\delta$. Now suppose x is arbitrary. Plugging in y = 3x in the above implication gives

$$|3x - 3p| < 3\delta \implies |f(3x) - f(3p)| < \epsilon$$

i.e.

$$|x-p| < \delta \implies |g(x) - g(p)| < \epsilon$$

This shows that g is continuous at p. But p was arbitrary, so g is continuous.