M 365C Fall 2013, Section 57465 Midterm 1

True or False. If true, sketch a proof in a few lines. If false, state a counterexample (in this case you do not have to prove that it is a counterexample.) You may use without proof anything that we proved in class or anything that is proved in Rudin chapters 1-3.

Throughout, let X denote a metric space.

1. If $E \subset X$ is closed, then any subset of E is also closed.

False. For example, take $X = \mathbb{R}$; then $E = \mathbb{R}$ is closed, but the subset $(0, 1) \subset E$ is not closed.

2. If $E \subset Y \subset X$, and E is open when considered as a subset of the metric space Y, then E is open when considered as a subset of the metric space X.

False. For example, take $X = \mathbb{R}^2$, $Y = \{(x,0) | x \in \mathbb{R}\} \subset X$, and $E = \{(x,0) | 0 < x < 1\} \subset Y \subset X$. Then *E* is open when considered as a subset of *Y* (this is just the fact that (0, 1) is an open subset of \mathbb{R}), but *E* is not open when considered as a subset of *X* (since any neighborhood of a point in *E* will contain some points with $y \neq 0$.)

3. If $E \subset X$ is countable, then \overline{E} is also countable.

False. For example, take $X = \mathbb{R}$ and $E = \mathbb{Q}$. Then E is countable, but $\overline{E} = \mathbb{R}$ (as shown in one of the homework assignments), which is not countable.

4. If $E \subset X$ is connected, then \overline{E} is also connected.

True. We will show the contrapositive: if \overline{E} is disconnected, then E is disconnected. Suppose \overline{E} is disconnected; then $\overline{E} = A \cup B$ with A, B nonempty and separated. Then $E = (A \cap E) \cup (B \cap E)$. Also $A \cap E$ and $B \cap E$ are separated: this follows from the fact that $\overline{A \cap E} = \overline{A} \cap \overline{E} \subset \overline{A}$, hence $\overline{A \cap E} \cap B = \emptyset$ (since A and B are separated), hence $\overline{A \cap E} \cap (B \cap E) = \emptyset$; similarly $\overline{B \cap E} \cap (A \cap E) = \emptyset$. This almost shows that E is disconnected, but we still need to check that $A \cap E$ and $B \cap E$ are nonempty. For this, assume that $A \cap E = \emptyset$. Then $\overline{A \cap E} = \overline{A} \cap \overline{E} = \emptyset$ also. Then in particular $A \cap \overline{E} = \emptyset$. But we know $\overline{E} = A \cup B$. It follows that $\overline{E} = B$. This contradicts the fact that A, B are separated and A nonempty. Thus our assumption was false, so $A \cap E$ is nonempty; similarly $B \cap E$ is nonempty.

5. If $K_n \subset X$ is compact for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} K_n$ is compact.

False. For example, say $X = \mathbb{R}$ and $K_n = \{n\} \subset \mathbb{R}$. Each K_n contains a single point, hence in particular K_n is a finite set, hence compact; but $\bigcup_{n=1}^{\infty} K_n = \mathbb{N}$ which is not bounded and hence not compact.

6. If $\{p_n\}$ is a sequence in \mathbb{R} , with $|p_n| \to 5$, then $\{p_n\}$ has a convergent subsequence.

True. Since $|p_n| \to 5$, there exists some N for which $n > N \implies ||p_n| - 5| < 1$, hence $|p_n| < 6$. Then let $M = \max\{|p_1|, |p_2|, \ldots, |p_N|, 6\}$; for all n we have $|p_n| \le M$, so $\{p_n\}$ is a bounded sequence in \mathbb{R} , thus it has a convergent subsequence.

7. If $E \subset \mathbb{R}$ is compact, then $\{(x, y) | x \in E, y \in E\} \subset \mathbb{R}^2$ is compact.

True. Let $F = \{(x, y) | x \in E, y \in E\}$. Since $F \subset \mathbb{R}^2$, to show it is compact, it suffices to show that it is closed and bounded. First we show F is bounded. We know E is compact, so E is bounded, i.e. there is some M for which $x \in E \implies |x| < M$. Then for $(x, y) \in F$ we have $\sqrt{|x|^2 + |y|^2} < |x| + |y| < 2M$. Thus F is bounded. Next we show F is closed. For this, suppose (x, y) is a limit point of F. Then for every $\epsilon > 0$ there exists some $(x', y') \in F$ with $(x', y') \neq (x, y)$ and $\sqrt{|x' - x|^2 + |y' - y|^2} < \epsilon$; in particular $|x' - x| < \epsilon$. Thus either $x \in E$ or x is a limit point of E, in which case again $x \in E$, since we know E is compact and thus closed. So $x \in E$. Similarly $y \in E$. Thus $(x, y) \in F$, and so F is closed.