
M 365C
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Midterm 1

True or False. If true, sketch a proof in a few lines. If false, state a counterexample (in
this case you do not have to prove that it is a counterexample.) You may use without proof
anything that we proved in class or anything that is proved in Rudin chapters 1-3.

Throughout, let X denote a metric space.

1. If E ⊂ X is closed, then any subset of E is also closed.

False. For example, take X = R; then E = R is closed, but the subset (0, 1) ⊂ E is
not closed.

2. If E ⊂ Y ⊂ X, and E is open when considered as a subset of the metric space Y , then
E is open when considered as a subset of the metric space X.

False. For example, take X = R2, Y = {(x, 0) |x ∈ R} ⊂ X, and E = {(x, 0) | 0 <
x < 1} ⊂ Y ⊂ X. Then E is open when considered as a subset of Y (this is just the
fact that (0, 1) is an open subset of R), but E is not open when considered as a subset
of X (since any neighborhood of a point in E will contain some points with y 6= 0.)

3. If E ⊂ X is countable, then Ē is also countable.

False. For example, take X = R and E = Q. Then E is countable, but Ē = R (as
shown in one of the homework assignments), which is not countable.

4. If E ⊂ X is connected, then Ē is also connected.

True. We will show the contrapositive: if Ē is disconnected, then E is disconnected.
Suppose Ē is disconnected; then Ē = A∪B with A, B nonempty and separated. Then
E = (A ∩ E) ∪ (B ∩ E). Also A ∩ E and B ∩ E are separated: this follows from the
fact that A ∩ E = A ∩ E ⊂ A, hence A ∩ E ∩ B = ∅ (since A and B are separated),
hence A ∩ E ∩ (B ∩ E) = ∅; similarly B ∩ E ∩ (A ∩ E) = ∅. This almost shows that
E is disconnected, but we still need to check that A ∩ E and B ∩ E are nonempty.
For this, assume that A ∩ E = ∅. Then A ∩ E = A ∩ E = ∅ also. Then in particular
A∩E = ∅. But we know E = A∪B. It follows that E = B. This contradicts the fact
that A, B are separated and A nonempty. Thus our assumption was false, so A∩E is
nonempty; similarly B ∩ E is nonempty.

5. If Kn ⊂ X is compact for each n ∈ N, then ∪∞n=1Kn is compact.

False. For example, say X = R and Kn = {n} ⊂ R. Each Kn contains a single point,
hence in particular Kn is a finite set, hence compact; but ∪∞n=1Kn = N which is not
bounded and hence not compact.
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6. If {pn} is a sequence in R, with |pn| → 5, then {pn} has a convergent subsequence.

True. Since |pn| → 5, there exists some N for which n > N =⇒ ||pn| − 5| < 1, hence
|pn| < 6. Then let M = max{|p1|, |p2|, . . . , |pN |, 6}; for all n we have |pn| ≤M , so {pn}
is a bounded sequence in R, thus it has a convergent subsequence.

7. If E ⊂ R is compact, then {(x, y) |x ∈ E, y ∈ E} ⊂ R2 is compact.

True. Let F = {(x, y) |x ∈ E, y ∈ E}. Since F ⊂ R2, to show it is compact, it suffices
to show that it is closed and bounded. First we show F is bounded. We know E is
compact, so E is bounded, i.e. there is some M for which x ∈ E =⇒ |x| < M . Then
for (x, y) ∈ F we have

√
|x|2 + |y|2 < |x| + |y| < 2M . Thus F is bounded. Next we

show F is closed. For this, suppose (x, y) is a limit point of F . Then for every ε > 0
there exists some (x′, y′) ∈ F with (x′, y′) 6= (x, y) and

√
|x′ − x|2 + |y′ − y|2 < ε; in

particular |x′ − x| < ε. Thus either x ∈ E or x is a limit point of E, in which case
again x ∈ E, since we know E is compact and thus closed. So x ∈ E. Similarly y ∈ E.
Thus (x, y) ∈ F , and so F is closed.

2


