M 365C

Fall 2013, SECTION 57465
Midterm 2

Each problem in Part A is worth 10 points; Part B is worth $\mathbf{2 5}$ points.
Part A. True or False. If true, sketch a proof in a few lines. If false, state a counterexample (in this case you do not have to prove that it is a counterexample.) You may use without proof anything that we proved in class or anything that is proved in Rudin chapters 1-6.

1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $\lim _{x \rightarrow 0} f(x)=50$. Then there exists some neighborhood $N \subset \mathbb{R}$ of 0 such that for all $x \in N$, if $x \neq 0$, then $f(x)>49$.
True. Indeed, the definition of limit says that there exists some ϵ such that $0<|x|<$ $\epsilon \Longrightarrow|f(x)-50|<1$; and if $|f(x)-50|<1$ them $f(x)>49$.
2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, the set $E=\left\{x \in \mathbb{R} \mid f\left(x^{2}\right) \leq 7\right\}$ is closed in \mathbb{R}.

True. Defining $g(x)=f\left(x^{2}\right), g$ is the composition of continuous functions and hence continuous; and defining $V=(-\infty, 7], V$ is a closed subset of \mathbb{R}. Then $E=g^{-1}(V)$ is also closed.
3. Suppose X and Y are metric spaces, and $\left\{a_{n}\right\}$ is a sequence in X. If $f: X \rightarrow Y$ is continuous, and the sequence $\left\{f\left(a_{n}\right)\right\}$ in Y is convergent, then $\left\{a_{n}\right\}$ is convergent.
False. For example, take $\left\{a_{n}\right\}$ to be any diergent sequence in \mathbb{R}, e.g. $a_{n}=n$, and take f to be the constant function $f(x)=0$. Then $\left\{f\left(a_{n}\right)\right\}$ is just the zero sequence, so it is convergent.
4. Suppose X and Y are metric spaces. If $f: X \rightarrow Y$ is continuous, and $E \subset X$, then $f(\bar{E})=\overline{f(E)}$.
False. For example, we could take $X=\mathbb{R}_{+}$and $Y=\mathbb{R}, E=\mathbb{N}$, and $f(x)=1 / x$. Then $f(\bar{E})$ does not contain 0 , but $\overline{f(E)}$ does. (We could also take $E=\mathbb{R}_{+}$in fact.) Another example: take $X=E=\mathbb{R}$ and $Y=\mathbb{R}$, and $f(x)=e^{x}$. Then $f(E)=(0, \infty)$ and $\bar{E}=E$. Thus $f(\bar{E})=(0, \infty)$, but $\overline{f(E)}=[0, \infty)$. Yet another example (in some sense the most fundamental): take $X=E=(0,1)$ and $Y=[0,1]$, and let $f(x)=x$. Then $\bar{E}=(0,1)$, so $f(\bar{E})=(0,1)$, but $\overline{f(E)}=[0,1]$.

Part B. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous. Define a new function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=f(x)+g(x)$. Prove carefully that h is continuous. Use only the definition of continuity.

Take any $p \in \mathbb{R}$ and suppose given some $\epsilon>0$. Then, since f is continuous, there exists some δ^{\prime} such that

$$
|x-p|<\delta^{\prime} \Longrightarrow|f(x)-f(p)|<\epsilon / 2
$$

Similarly there exists some $\delta^{\prime \prime}$ such that

$$
|x-p|<\delta^{\prime \prime} \Longrightarrow|g(x)-g(p)|<\epsilon / 2
$$

Now take

$$
\delta=\min \left(\delta^{\prime}, \delta^{\prime \prime}\right)
$$

We then have by the triangle inequality

$$
|x-p|<\delta \Longrightarrow|h(x)-h(p)|<|f(x)-f(p)|+|g(x)-g(p)|<\epsilon
$$

Thus h is continuous at p.

