
M 365C
Fall 2013, Section 57465

Midterm 2

Each problem in Part A is worth 10 points; Part B is worth 25 points.

Part A. True or False. If true, sketch a proof in a few lines. If false, state a coun-
terexample (in this case you do not have to prove that it is a counterexample.) You may use
without proof anything that we proved in class or anything that is proved in Rudin chapters
1-6.

1. Suppose f : R → R and limx→0 f(x) = 50. Then there exists some neighborhood
N ⊂ R of 0 such that for all x ∈ N , if x 6= 0, then f(x) > 49.

True. Indeed, the definition of limit says that there exists some ε such that 0 < |x| <
ε =⇒ |f(x)− 50| < 1; and if |f(x)− 50| < 1 them f(x) > 49.

2. If f : R→ R is continuous, the set E = {x ∈ R | f(x2) ≤ 7} is closed in R.

True. Defining g(x) = f(x2), g is the composition of continuous functions and hence
continuous; and defining V = (−∞, 7], V is a closed subset of R. Then E = g−1(V ) is
also closed.

3. Suppose X and Y are metric spaces, and {an} is a sequence in X. If f : X → Y is
continuous, and the sequence {f(an)} in Y is convergent, then {an} is convergent.

False. For example, take {an} to be any diergent sequence in R, e.g. an = n, and
take f to be the constant function f(x) = 0. Then {f(an)} is just the zero sequence,
so it is convergent.

4. Suppose X and Y are metric spaces. If f : X → Y is continuous, and E ⊂ X, then
f(Ē) = f(E).

False. For example, we could take X = R+ and Y = R, E = N, and f(x) = 1/x.
Then f(Ē) does not contain 0, but f(E) does. (We could also take E = R+ in fact.)
Another example: take X = E = R and Y = R, and f(x) = ex. Then f(E) = (0,∞)
and Ē = E. Thus f(Ē) = (0,∞), but f(E) = [0,∞). Yet another example (in some
sense the most fundamental): take X = E = (0, 1) and Y = [0, 1], and let f(x) = x.
Then Ē = (0, 1), so f(Ē) = (0, 1), but f(E) = [0, 1].

Part B. Suppose f : R → R and g : R → R are continuous. Define a new function
h : R → R by h(x) = f(x) + g(x). Prove carefully that h is continuous. Use only the
definition of continuity.
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Take any p ∈ R and suppose given some ε > 0. Then, since f is continuous, there exists
some δ′ such that

|x− p| < δ′ =⇒ |f(x)− f(p)| < ε/2

Similarly there exists some δ′′ such that

|x− p| < δ′′ =⇒ |g(x)− g(p)| < ε/2

Now take
δ = min(δ′, δ′′)

We then have by the triangle inequality

|x− p| < δ =⇒ |h(x)− h(p)| < |f(x)− f(p)|+ |g(x)− g(p)| < ε

Thus h is continuous at p.
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