M 382D: Differential Topology Spring 2015 Exercise Set 2 Due: Fri Feb 6

Exercise 1. Guillemin/Pollack Chapter 1, §2 (p. 11): 2, 4, 10, 11

Exercise 2. Consider the 2-sphere

$$S^2 = \{(x, y, z) \in \mathbb{A}^3 : x^2 + y^2 + z^2 = 1\}.$$

- There is an obvious inclusion $i : S^2 \to \mathbb{A}^3$. Show that the differential di_p at any point $p \in S^2$ is an injection $di_p : T_pS^2 \to \mathbb{R}^3$ and identify the image.
- On the upper hemisphere $U = \{z > 0\}$ the functions (x, y) give a chart. To get a second chart take spherical coordinates (θ, ϕ) , related to (x, y) by

$$x = \sin \phi \cos \theta$$
$$y = \sin \phi \sin \theta.$$

Identify some (maximal) subset of *U* on which (θ, ϕ) give a chart. At any point *p* on that subset, express the vector $\partial/\partial x \in T_p S^2$ in terms of $\partial/\partial \theta \in T_p S^2$ and $\partial/\partial \phi \in T_p S^2$. Also, compute $di(\partial/\partial x) \in T_{i(p)} \mathbb{A}^3$.

Exercise 3. Fix positive numbers *r* and *R* with r < R. Let the torus *T* be the surface of revolution in \mathbb{A}^3 (with coordinates *x*, *y*, *z*) obtained by revolving the circle

$$y = 0$$
, $(x - R)^2 + z^2 = r^2$

about the *z*-axis.

- Show that *T* is a 2-manifold.
- Define the *Gauss map* g : T → S² by mapping a point p ∈ T to the unit normal vector to T at p, considered as a point of S². (Here rely on the notion of "unit normal" you have studied before; we have not discussed it in this class.) Show that g is smooth. Compute its differential in some coordinate system.

Exercise 4. Let P(z) be a polynomial in a single complex variable. Consider the family of equations P(z) = s for a variable complex number s. Suppose that for some z_0, s_0 we have $P(z_0) = s_0$, and z_0 is a *simple* root of $P(z) - s_0$. Let $t \mapsto s_t$ be a smooth curve through s_0 . Prove that there is a smooth curve $t \mapsto z_t$, for t in a neighborhood of 0, such that $P(z_t) = s_t$. What happens at t for which $P(z) - s_t$ develops a double root?

Exercise 5. This problem gives a standard and important corollary of the inverse function theorem. It states a condition under which we can solve an equation of two variables implicitly for one variable as a function of the other.

Suppose *X*, *Y*, *Z* are manifolds and *F* : *X* × *Y* → *Z* a smooth map with $F(x_0, y_0) = z_0$ for some $x_0 \in X$, $y_0 \in Y$, and $z_0 \in Z$. Assume that the restriction of the differential $dF_{(x_0,y_0)}$ to $T_{y_0}Y \subset T_{(x_0,y_0)}(X \times Y)$ is an isomorphism onto $T_{z_0}Z$. Prove that there exists a neighborhood *U* of x_0 and *V* of y_0 and a smooth function $f : U \to V$ such that

$$F(x, f(x)) = z_0$$

for all $x \in U$. (More generally, for z in a neighborhood of z_0 , we can find a function $f_z : U \to V$ which solves the equation $F(x, f_z(x)) = z$.)

Exercise 6. Let *X* be a complete metric space and *S* any metric space. Suppose

$$K: S \times X \to X$$

is a continuous map and a contraction in $x \in X$ uniformly over $s \in S$, i.e., there is a constant 0 < C < 1 such that

$$d(K(s, x_1), K(s, x_2)) \le Cd(x_1, x_2), \quad s \in S, \quad x_1, x_2 \in X.$$

Let $x_s \in X$ denote the fixed point of $K(s, -) : X \to X$. Prove that the map $S \to X$ given by $s \mapsto x_s$ is continuous.