M 382D: Differential Topology Spring 2015

Exercise Set 3
Due: Mon Feb 16
Exercise 1. Guillemin/Pollack Chapter 1, $\S 4$ (p. 25): 2, 5, 9, 10. For 9 and 10 you need the definition of the orthogonal group: it is the group of all $n \times n$ real matrices A obeying $A A^{T}=1$ (as discussed on pages 22-23).

Exercise 2. This exercise is essentially a tautology, which we already mentioned in class, but which seems worth a moment's reflection.

Let M be a smooth manifold, $U \subset M$ an open subset, and $x: U \rightarrow \mathbb{A}^{n}$. Prove that (U, x) is a chart if and only if $x: U \rightarrow f(U)$ is a diffeomorphism.

Exercise 3. Let M be a manifold. The tangent bundle $T M$ is defined as the disjoint union of all the tangent spaces, $\bigcup_{p \in M} T_{p} M$. Equip $T M$ with a natural topology and smooth atlas. (Hint: Consider a chart (U, x) of M. Then, essentially by our definition of $T_{p} M$, we have a natural identification between the open subset $\bigcup_{p \in U} T_{p} M \subset T M$ and $U \times \mathbb{R}^{n}$.) What is the dimension of $T M$? Can you describe $T S^{1}$ as a familiar manifold?

Exercise 4. This exercise gives a little more practice working with projective spaces.

1. Define complex projective space $\mathbb{C P}^{n}$ as the set of equivalence classes

$$
\mathbb{C P}^{n}=\left\{\left[z^{0}, z^{1}, \ldots, z^{n}\right]:\left(z^{0}, z^{1}, \ldots, z^{n}\right) \neq(0,0, \ldots, 0)\right\} / \sim,
$$

where

$$
\left[z^{0}, \ldots, z^{n}\right] \sim\left[z^{\prime 0}, \ldots, z^{\prime n}\right] \quad \text { if and only if } \quad z^{\prime i}=\lambda z^{i}
$$

for some $\lambda \in \mathbb{C}^{\times}$. Put a natural structure of smooth manifold on $\mathbb{C P}^{n}$. (Consider $U_{i}=\left\{\left[z^{0}, \ldots, z^{n}\right]: z^{i} \neq 0\right\}$.) Construct a diffeomorphism between $\mathbb{C P}^{1}$ and the standard 2-sphere.
2. Suppose you identify the 3 -sphere with the unit sphere in \mathbb{C}^{2}

$$
S^{3}=\left\{\left(z^{1}, z^{2}\right) \in \mathbb{C}^{2}:\left|z^{1}\right|^{2}+\left|z^{2}\right|^{2}=1\right\}
$$

Then show that the map

$$
\begin{aligned}
f: S^{3} & \longrightarrow S^{2} \\
\left(z^{1}, z^{2}\right) & \longmapsto\left[z^{1}, z^{2}\right]
\end{aligned}
$$

is a submersion. What is the inverse image of a point? The map f is called the Hopf fibration. (For fun, think about what you can say about the inverse image of a 2-point subset of S^{2}.)

Exercise 5. Here is a more abstract, coordinate-free approach to the manifold structures on projective spaces. Let V be a finite dimensional vector space over \mathbb{R} or \mathbb{C} and denote by $\mathbb{P} V$ the set of lines in V. Recall that a line is a 1-dimensional vector space, so a line in V is a one-dimensional subspace of V.

Let $L \subset V$ be a line and $W \subset V$ a complementary subspace, i.e., $V=L \oplus W$. Define

$$
\begin{aligned}
\phi_{L, W}: \operatorname{Hom}(L, W) & \longrightarrow \mathbb{P} V \\
T & \longmapsto L_{T}
\end{aligned}
$$

where $L_{T}=\{\ell+T \ell: \ell \in L\}$ is the graph of T. We can identify L_{T} as the image of the linear map $\mathbf{1}_{L}+T: L \rightarrow L \oplus W=V$. Show that the image of $\phi_{L, W}$ is $\mathbb{P} V \backslash \mathbb{P} W$.
Now consider a second pair $\left(L^{\prime}, W^{\prime}\right)$ and the corresponding $\phi_{L^{\prime}, W^{\prime}}$. We now have two parametrizations of $\mathbb{P} V \backslash\left(\mathbb{P} W \cup \mathbb{P} W^{\prime}\right)$, so can compare by an overlap isomorphism

$$
f: U \longrightarrow U^{\prime}
$$

where $U \subset \operatorname{Hom}(L, W)$ and $U^{\prime} \subset \operatorname{Hom}\left(L^{\prime}, W^{\prime}\right)$ are the images of $\mathbb{P} V \backslash\left(\mathbb{P} W \cup \mathbb{P} W^{\prime}\right)$ under the two parametrizations. Write a formula for the map f. Show that f is smooth. (Hint: The formula involves $\pi^{L^{\prime}, W^{\prime}}: V \rightarrow L^{\prime}$, the projection onto L^{\prime} with kernel W^{\prime}.)
Use the parametrizations $\phi_{L, W}$ to topologize $\mathbb{P} V$ and construct a smooth atlas, so make $\mathbb{P} V$ a smooth manifold. What is its dimension? Prove that an injective linear map $V^{\prime} \rightarrow V$ induces a smooth map $\mathbb{P} V^{\prime} \rightarrow \mathbb{P} V$.
Construct a natural isomorphism (take this to mean that it doesn't depend on choices)

$$
T_{L}(\mathbb{P} V) \rightarrow \operatorname{Hom}(L, V / L)
$$

Exercise 6. This exercise is preparation for our discussion of partitions of unity.

1. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

Prove that f is C^{∞}. Sketch the graph of f. Compare f to its Taylor series at $x=0$.
2. Given real numbers $a<b$ show that

$$
g(x):=f(x-a) f(b-x)
$$

is smooth and vanishes outside the interval (a, b).
3. Given real numbers $a<b$, construct a C^{∞} function h such that: (i) $h(x)=0$ for $x \leq a$, (ii) $h(x)=1$ for $x \geq b$, and (iii) h is monotonic nondecreasing.
4. Given real numbers $a<b<c<d$, construct a C^{∞} function k so that (i) $k(x)=0$ for $x \leq a$, (ii) $k(x)=1$ for $b \leq x \leq c$, and (iii) $k(x)=0$ for $x \geq d$.
5. Given real numbers $a^{i}<b^{i}<c^{i}<d^{i}, i=1, \ldots, n$, construct a C^{∞} function $k: \mathbb{A}^{n} \rightarrow$ \mathbb{R} so that (i) $k\left(x^{1}, \ldots, x^{n}\right)=0$ if any $x^{i} \leq a^{i}$; (ii) $k\left(x^{1}, \ldots, x^{n}\right)=1$ if $b^{i} \leq x^{i} \leq c^{i}$ for all $i=1, \ldots, n$; and (iii) $k\left(x^{1}, \ldots, x^{n}\right)=0$ if any $x^{i} \geq d^{i}$.
6. Prove that on every manifold M there is a nonconstant C^{∞} function $f: M \rightarrow \mathbb{R}$.

