M 382D: Differential Topology Spring 2015 Exercise Set 3 Due: Mon Feb 16

Exercise 1. Guillemin/Pollack Chapter 1, §4 (p. 25): 2, 5, 9, 10. For 9 and 10 you need the definition of the orthogonal group: it is the group of all $n \times n$ real matrices *A* obeying $AA^T = 1$ (as discussed on pages 22-23).

Exercise 2. This exercise is essentially a tautology, which we already mentioned in class, but which seems worth a moment's reflection.

Let *M* be a smooth manifold, $U \subset M$ an open subset, and $x : U \to \mathbb{A}^n$. Prove that (U, x) is a chart if and only if $x : U \to f(U)$ is a diffeomorphism.

Exercise 3. Let *M* be a manifold. The *tangent bundle TM* is defined as the disjoint union of all the tangent spaces, $\bigcup_{p \in M} T_p M$. Equip *TM* with a natural topology and smooth atlas. (Hint: Consider a chart (U, x) of *M*. Then, essentially by our *definition* of $T_p M$, we have a natural identification between the open subset $\bigcup_{p \in U} T_p M \subset TM$ and $U \times \mathbb{R}^n$.) What is the dimension of *TM*? Can you describe TS^1 as a familiar manifold?

Exercise 4. This exercise gives a little more practice working with projective spaces.

1. Define complex projective space \mathbb{CP}^n as the set of equivalence classes

$$\mathbb{CP}^{n} = \{ [z^{0}, z^{1}, \dots, z^{n}] : (z^{0}, z^{1}, \dots, z^{n}) \neq (0, 0, \dots, 0) \} / \sim,\$$

where

$$[z^0,\ldots,z^n] \sim [{z'}^0,\ldots,{z'}^n]$$
 if and only if ${z'}^i = \lambda z^i$

for some $\lambda \in \mathbb{C}^{\times}$. Put a natural structure of smooth manifold on \mathbb{CP}^n . (Consider $U_i = \{[z^0, \ldots, z^n] : z^i \neq 0\}$.) Construct a diffeomorphism between \mathbb{CP}^1 and the standard 2-sphere.

2. Suppose you identify the 3-sphere with the unit sphere in \mathbb{C}^2

$$S^{3} = \{(z^{1}, z^{2}) \in \mathbb{C}^{2} : |z^{1}|^{2} + |z^{2}|^{2} = 1\}.$$

Then show that the map

$$f: S^3 \longrightarrow S^2$$
$$(z^1, z^2) \longmapsto [z^1, z^2]$$

is a submersion. What is the inverse image of a point? The map f is called the *Hopf fibration*. (For fun, think about what you can say about the inverse image of a 2-point subset of S^2 .)

Exercise 5. Here is a more abstract, coordinate-free approach to the manifold structures on projective spaces. Let *V* be a finite dimensional vector space over \mathbb{R} or \mathbb{C} and denote by $\mathbb{P}V$ the set of lines in *V*. Recall that a *line* is a 1-dimensional vector space, so a line in *V* is a one-dimensional subspace of *V*.

Let $L \subset V$ be a line and $W \subset V$ a complementary subspace, i.e., $V = L \oplus W$. Define

$$\phi_{L,W}: \operatorname{Hom}(L,W) \longrightarrow \mathbb{P}V$$
$$T \longmapsto L_T$$

where $L_T = \{\ell + T\ell : \ell \in L\}$ is the graph of *T*. We can identify L_T as the image of the linear map $\mathbf{1}_L + T : L \to L \oplus W = V$. Show that the image of $\phi_{L,W}$ is $\mathbb{P}V \setminus \mathbb{P}W$.

Now consider a second pair (L', W') and the corresponding $\phi_{L',W'}$. We now have two parametrizations of $\mathbb{P}V \setminus (\mathbb{P}W \cup \mathbb{P}W')$, so can compare by an overlap isomorphism

$$f: U \longrightarrow U',$$

where $U \subset \text{Hom}(L, W)$ and $U' \subset \text{Hom}(L', W')$ are the images of $\mathbb{P}V \setminus (\mathbb{P}W \cup \mathbb{P}W')$ under the two parametrizations. Write a formula for the map f. Show that f is smooth. (Hint: The formula involves $\pi^{L',W'}: V \to L'$, the projection onto L' with kernel W'.)

Use the parametrizations $\phi_{L,W}$ to topologize $\mathbb{P}V$ and construct a smooth atlas, so make $\mathbb{P}V$ a smooth manifold. What is its dimension? Prove that an injective linear map $V' \to V$ induces a smooth map $\mathbb{P}V' \to \mathbb{P}V$.

Construct a natural isomorphism (take this to mean that it doesn't depend on choices)

$$T_L(\mathbb{P}V) \to \operatorname{Hom}(L, V/L).$$

Exercise 6. This exercise is preparation for our discussion of partitions of unity.

1. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} e^{-1/x^2}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

Prove that *f* is C^{∞} . Sketch the graph of *f*. Compare *f* to its Taylor series at x = 0.

2. Given real numbers a < b show that

$$g(x) := f(x-a)f(b-x)$$

is smooth and vanishes outside the interval (*a*, *b*).

- 3. Given real numbers a < b, construct a C^{∞} function h such that: (i) h(x) = 0 for $x \le a$, (ii) h(x) = 1 for $x \ge b$, and (iii) h is monotonic nondecreasing.
- 4. Given real numbers a < b < c < d, construct a C^{∞} function k so that (i) k(x) = 0 for $x \le a$, (ii) k(x) = 1 for $b \le x \le c$, and (iii) k(x) = 0 for $x \ge d$.
- 5. Given real numbers $a^i < b^i < c^i < d^i$, i = 1, ..., n, construct a C^{∞} function $k : \mathbb{A}^n \to \mathbb{R}$ so that (i) $k(x^1, ..., x^n) = 0$ if any $x^i \le a^i$; (ii) $k(x^1, ..., x^n) = 1$ if $b^i \le x^i \le c^i$ for all i = 1, ..., n; and (iii) $k(x^1, ..., x^n) = 0$ if any $x^i \ge d^i$.
- 6. Prove that on every manifold *M* there is a nonconstant C^{∞} function $f : M \to \mathbb{R}$.