M 382D: Differential Topology Spring 2015 Exercise Set 5 Due: Wed Mar 4

Exercise 1. Guillemin/Pollack: Chapter 1, §5 (p. 32): 2 (just answers, needn't write out proofs), 5, 6, 10, 11

Exercise 2. Guillemin/Pollack: Chapter 1, §6 (p. 33): 10

Exercise 3. Define

$$M = \{ [x, y, z] \in \mathbb{CP}^2 : x^2 + y^2 - z^2 = 0 \} \subset \mathbb{CP}^2.$$

- 1. Prove that *M* is a 2-dimensional submanifold of \mathbb{CP}^2 .
- 2. Consider the pencil (1-dimensional family) of projective lines

$$N_t = \{ [x, y, z] \in \mathbb{CP}^2 : x + y + tz = 0 \} \subset \mathbb{CP}^2.$$

Here $t \in \mathbb{C}$. Define a projective line N_{∞} which deserves to be called the limit of N_t as $t \to \infty$. Write an equation for N_{∞} .

- 3. For which *t* do *M* and *N*_t intersect transversely? For those *t* identify the manifold $M \cap N_t$.
- 4. Redo the problem with \mathbb{RP}^2 replacing \mathbb{CP}^2 .

Exercise 4.

- 1. Let f = f(x, y, z) and g = g(x, y, z) be smooth functions defined on an open set $U \subset \mathbb{A}^3$, and suppose each has 0 as a regular value. Then $M = f^{-1}(0)$ and $N = g^{-1}(0)$ are submanifolds of \mathbb{A}^3 of dimension 2. Then *M* and *N* intersect transversely if and only if a certain condition on *f* and *g* holds. What is it?
- 2. Check your answer for the specific functions

$$f = x^{2} + y^{2} + z^{2} - 1$$
$$g = (x - a)^{2} + y^{2} + z^{2} - 1$$

where *a* is a real parameter. For what values of *a* is the intersection transverse? Think about the geometric picture as well as the equations.