M 382D: Differential Topology Spring 2015

Exercise Set 5
Due: Wed Mar 4
Exercise 1. Guillemin/Pollack: Chapter 1, $\S 5$ (p. 32): 2 (just answers, needn't write out proofs), 5, 6, 10, 11
Exercise 2. Guillemin/Pollack: Chapter 1, $\S 6$ (p. 33): 10
Exercise 3. Define

$$
M=\left\{[x, y, z] \in \mathbb{C P}^{2}: x^{2}+y^{2}-z^{2}=0\right\} \subset \mathbb{C P}^{2}
$$

1. Prove that M is a 2 -dimensional submanifold of $\mathbb{C P}^{2}$.
2. Consider the pencil (1-dimensional family) of projective lines

$$
N_{t}=\left\{[x, y, z] \in \mathbb{C P}^{2}: x+y+t z=0\right\} \subset \mathbb{C P}^{2}
$$

Here $t \in \mathbb{C}$. Define a projective line N_{∞} which deserves to be called the limit of N_{t} as $t \rightarrow \infty$. Write an equation for N_{∞}.
3. For which t do M and N_{t} intersect transversely? For those t identify the manifold $M \cap N_{t}$.
4. Redo the problem with $\mathbb{R} \mathbb{P}^{2}$ replacing $\mathbb{C P}^{2}$.

Exercise 4.

1. Let $f=f(x, y, z)$ and $g=g(x, y, z)$ be smooth functions defined on an open set $U \subset \mathbb{A}^{3}$, and suppose each has 0 as a regular value. Then $M=f^{-1}(0)$ and $N=$ $g^{-1}(0)$ are submanifolds of \mathbb{A}^{3} of dimension 2 . Then M and N intersect transversely if and only if a certain condition on f and g holds. What is it?
2. Check your answer for the specific functions

$$
\begin{aligned}
& f=x^{2}+y^{2}+z^{2}-1 \\
& g=(x-a)^{2}+y^{2}+z^{2}-1
\end{aligned}
$$

where a is a real parameter. For what values of a is the intersection transverse? Think about the geometric picture as well as the equations.

