M 382D: Differential Topology
 Spring 2015

Exercise Set 7
Due: Wed Mar 25
Exercise 1. Give examples of the following.

1. A compact manifold M such that there does not exist a compact manifold N with boundary such that ∂N is diffeomorphic to M.
2. A connected noncompact manifold M with boundary such that ∂M is compact and connected.
3. A connected noncompact manifold M with boundary such that ∂M is noncompact and connected.

Exercise 2. This exercise constructs splittings of exact sequences of vector bundles. (In class we explained how to do this in a "geometric" way for the particular exact sequence defining the normal bundle to a submanifold.)

1. Suppose

$$
0 \longrightarrow E^{\prime} \xrightarrow{i} E \xrightarrow{j} E^{\prime \prime} \longrightarrow 0
$$

is a short exact sequence of vector spaces. Recall this means i is injective, j is surjective, and ker $j=i\left(E^{\prime}\right)$. A splitting is a linear map $s: E^{\prime \prime} \rightarrow E$ which is right inverse to j, i.e. $j \circ s=1$. Prove that the space of splittings is an affine space over the vector space $\operatorname{Hom}\left(E^{\prime \prime}, E^{\prime}\right)$. Prove also that a splitting is equivalent to a left inverse to i.
2. Let A be a real affine space and $a_{1}, \ldots, a_{n} \in A$. Suppose $\rho_{1}, \ldots, \rho_{n} \in \mathbb{R}$ satisfy $\rho_{1}+\cdots+\rho_{n}=1$. Make sense of the element $\rho_{1} a_{1}+\cdots+\rho_{n} a_{n} \in A$.
3. Now suppose M is a smooth manifold and

$$
0 \longrightarrow E^{\prime} \xrightarrow{i} E \xrightarrow{j} E^{\prime \prime} \longrightarrow 0
$$

a short exact sequence of vector bundles over M. Use a partition of unity argument to construct a splitting of this sequence.
Exercise 3. The quaternions \mathbb{H} are a division algebra over \mathbb{R} which is a 4-dimensional vector space with basis $1, i, j, k$ and multiplication rule $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k$, $j k=-k j=i, k i=-i k=j$. Construct a norm on the quaternions by setting $\mid a+b i+c j+$ $\left.d k\right|^{2}=a^{2}+b^{2}+c^{2}+d^{2}$, where $a, b, c, d \in \mathbb{R}$. Identify S^{3} as the unit sphere in \mathbb{H}. Use the quaternion multiplication to construct a global trivialization of $T S^{3}$, that is, three vector fields on S^{3} which for each $p \in S^{3}$ form a basis of $T_{p} S^{3}$. (Hint: Warm up by replacing \mathbb{H} with \mathbb{C} and S^{3} with S^{1}.)

Exercise 4. Suppose M is a smooth manifold, $f: M \rightarrow \mathbb{R}$ and $g: M \rightarrow \mathbb{R}^{k}$. Show that $\mathrm{d}(f g)=f \mathrm{~d} g+g \mathrm{~d} f$ (and explain what this equation means).

