M 382D: Differential Topology Spring 2015 Exercise Set 7 Due: Wed Mar 25

Exercise 1. Give examples of the following.

- 1. A compact manifold *M* such that there does not exist a compact manifold *N* with boundary such that ∂N is diffeomorphic to *M*.
- 2. A connected noncompact manifold M with boundary such that ∂M is compact and connected.
- 3. A connected noncompact manifold *M* with boundary such that ∂M is noncompact and connected.

Exercise 2. This exercise constructs splittings of exact sequences of vector bundles. (In class we explained how to do this in a "geometric" way for the particular exact sequence defining the normal bundle to a submanifold.)

1. Suppose

$$0 \longrightarrow E' \stackrel{i}{\longrightarrow} E \stackrel{j}{\longrightarrow} E'' \longrightarrow 0$$

is a short exact sequence of vector spaces. Recall this means *i* is injective, *j* is surjective, and ker j = i(E'). A *splitting* is a linear map $s : E'' \to E$ which is right inverse to *j*, i.e. $j \circ s = 1$. Prove that the space of splittings is an affine space over the vector space Hom(E'', E'). Prove also that a splitting is equivalent to a left inverse to *i*.

- 2. Let *A* be a real affine space and $a_1, \ldots, a_n \in A$. Suppose $\rho_1, \ldots, \rho_n \in \mathbb{R}$ satisfy $\rho_1 + \cdots + \rho_n = 1$. Make sense of the element $\rho_1 a_1 + \cdots + \rho_n a_n \in A$.
- 3. Now suppose *M* is a smooth manifold and

$$0 \longrightarrow E' \stackrel{i}{\longrightarrow} E \stackrel{j}{\longrightarrow} E'' \longrightarrow 0$$

a short exact sequence of vector bundles over *M*. Use a partition of unity argument to construct a splitting of this sequence.

Exercise 3. The *quaternions* \mathbb{H} are a division algebra over \mathbb{R} which is a 4-dimensional vector space with basis 1, *i*, *j*, *k* and multiplication rule $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. Construct a norm on the quaternions by setting $|a + bi + cj + dk|^2 = a^2 + b^2 + c^2 + d^2$, where $a, b, c, d \in \mathbb{R}$. Identify S^3 as the unit sphere in \mathbb{H} . Use the quaternion multiplication to construct a global trivialization of TS^3 , that is, three vector fields on S^3 which for each $p \in S^3$ form a basis of T_pS^3 . (Hint: Warm up by replacing \mathbb{H} with \mathbb{C} and S^3 with S^1 .)

Exercise 4. Suppose *M* is a smooth manifold, $f : M \to \mathbb{R}$ and $g : M \to \mathbb{R}^k$. Show that d(fg) = fdg + gdf (and explain what this equation means).