M 382D: Differential Topology Spring 2015 Exercise Set 8 Due: Mon Apr 6

Exercise 1. Guillemin/Pollack (a lot, but many of them are very short): Chapter 2, §4 (p. 82): 3, 5, 6, 7, 9, 10 (hint: use intersection numbers), 11, 13

Exercise 2. For each of the following construct an example (with justification) or show that it does not exist.

- 1. A map $f: S^1 \times S^1 \to S^2$ with deg₂ $f \neq 0$.
- 2. A map $f : S^2 \to S^1 \times S^1$ with deg₂ $f \neq 0$.
- 3. A map $f : S^2 \to \mathbb{RP}^2$ with deg₂ $f \neq 0$.
- 4. A map $f : \mathbb{RP}^2 \to S^2$ with deg₂ $f \neq 0$.

Exercise 3. A *knot* is the image of an embedding $f : S^1 \to \mathbb{A}^3$. Suppose we have two disjoint knots, which are the images of maps $f, g : S^1 \to \mathbb{A}^3$. Define the mod 2 *linking number* as the mod 2 degree of the map

$$\begin{aligned} f \times g : S^1 \times S^1 &\longrightarrow S^2 \\ s \times t &\longmapsto \frac{f(s) - g(t)}{|f(s) - g(t)|} \end{aligned}$$

- 1. Compute the linking number between the unit circle in the *x*-*y* plane centered at (0,0,0) and the unit circle in the *y*-*z* plane centered at $(0,\frac{1}{2},0)$.
- 2. Suppose that f extends to a map $F : D^2 \to \mathbb{A}^3$ with $\partial F = f$, where D^2 is the unit disk with boundary S^1 . We may assume that F is transverse to $g(S^1)$. Prove that the linking number is the number of points in $F^{-1}(g(S^1))$ mod 2.

Exercise 4. This exercise concerns the "linearity principle" that allows us to recognize when a functional on sections of vector bundles itself comes from a sections of a vector bundle.

1. Suppose *E* is a smooth vector bundle over a manifold *M*, and $\phi : \Gamma(E) \to \mathbb{R}$ is linear over $C^{\infty}(M)$, in the sense that $\phi(s + s') = \phi(s) + \phi(s')$ and for all $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$ we have

$$\phi(fs) = f\phi(s)$$

Then, show that there exists some $\eta \in \Gamma(E^*)$ such that

$$\phi(s) = \eta(s)$$

(Hint: use the existence of local trivializations for *E*, which implies that locally there exist sections $s_1, \ldots, s_k \in \Gamma(E)$ such that any section *s* can be expanded in the form $s = \sum_{i=1}^{k} f_i s_i$, with f_i smooth functions.)

2. Suppose given $\phi : \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to C^{\infty}(M)$ which is alternating and multilinear over $C^{\infty}(M)$. Show that ϕ factors through a canonical map

$$\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \Gamma(\wedge^{\kappa} TM)$$

and thus we can view ϕ as a map ϕ : $\Gamma(\wedge^k TM) \to C^{\infty}(M)$ which is linear over $C^{\infty}(M)$. Using the previous part, conclude that ϕ comes from some $\omega \in \Omega^k(M)$, as we claimed in class.

Exercise 5. For any $\alpha, \beta \in \Omega(N)$ and $f : M \to N$ smooth show that

$$f^*(\alpha \wedge \beta) = f^*\alpha \wedge f^*\beta.$$

Exercise 6. Consider a 1-form $\alpha = g(x)dx$ on the affine line \mathbb{A}^1 . Prove that there exists a function f(x) so that $\alpha = df$. Then try the same problem with \mathbb{A}^1 replaced by the circle S^1 . (Or equivalently, replace α and f with a periodic 1-form and a periodic function.)