## M 382D: Differential Topology Spring 2015 Exercise Set 11 Due: Mon May 4

Exercises marked with  $(\star)$  will definitely not be graded.

**Exercise 1.** Guillemin/Pollack: Chapter 3, §3 (p. 116): 16 (to understand the hint you need to read pages 113-114), 17, 18, (19 ( $\star$ ), 20 ( $\star$ )).

Exercise 2. Guillemin/Pollack: Chapter 3, §4 (p. 130): 2, 5, 10, 11.

**Exercise 3.** Describe (by formulas or by drawing a picture) a vector field on  $S^2$  which has exactly three zeroes.

**Exercise 4.** Show that if *V* is a complex vector space then the underlying real vector space  $V_{\mathbb{R}}$  admits a canonical orientation.

(This is the beginning of a very nice story: if *M* is a complex *manifold* then it also admits a canonical orientation, and this construction is automatically compatible with transverse intersections. In particular all intersection numbers turn out to be *nonnegative* for complex submanifolds intersecting transversally. However, the *self-intersection* number of a complex submanifold can be negative: this occurs when the transversal perturbations are not complex submanifolds anymore.)

**Exercise 5.** Show that the Lie bracket obeys Jacobi identity: for  $X, Y, Z \in \mathfrak{X}(M)$ ,

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

**Exercise 6.** (\*) Let  $X, Y \in \mathfrak{X}(\mathbb{A}^n)$  compactly supported. Let  $\phi_{t,X} : \mathbb{A}^n \to \mathbb{A}^n$  denote the flow of the vector field X for time *t*. Show that

$$\lim_{t\to 0} \frac{1}{t^2} \left( \phi_{t,Y} \circ \phi_{t,X}(0) - \phi_{t,X} \circ \phi_{t,Y}(0) \right) = [X,Y](0).$$

(Hint: Taylor expand everything around 0.)