Complex Geometry: Exercise Set 4

Exercise 1

Show that the sheafification F*+ of a sheaf F is canonically isomorphic to F itself.

Exercise 2

Fix an abelian group G. Suppose that F is the constant presheaf F(U) = G. What is
the sheafification F 17

Exercise 3

Suppose F is a sheaf of Ox-modules over a complex manifold X. Show that F is the
sheaf of sections of a holomorphic vector bundle of rank r if and only if F is locally free over
Ox of rank r.

Exercise 4

Suppose F is a sheaf of abelian groups over M and ¢ : M — N is a continuous map.
Define the direct image ¢..F by ¢.F(U) = F(¢p~1(U)).

1. Show that ¢,F is a sheaf.

(We used a special case of this implicitly in lecture when we discussed the Cech
resolution: there we had the inclusion maps i; : Uy < M, and we defined C* =
D11=k41 (11« (Fluy)-)

2. Suppose M — N is a covering map of degree d, and F is the sheaf of sections of a
holomorphic vector bundle of rank n. Show that ¢,F is the sheaf of sections of a
holomorphic vector bundle of rank nd. (It is probably simplest to use the equivalent
characterization in terms of locally free O-modules.)

3. Say M = C, N = C, and ¢(z) = 22. What is ¢.(O)? (There are two obvious
possibilities: either ¢,(O) is the sheaf of sections of a rank 2 holomorphic vector
bundle, or it is something more complicated because of the ramification at z = 0.)

Exercise 5

You may be surprised that sheaves naturally push forward since we have been emphasizing
the point of view that a sheaf is a kind of generalization of a vector bundle, and vector bundles
naturally pull back.

We can define the inverse image of a sheaf, with a bit more difficulty. Given ¢ : M — N
continuous, define ¢~'F to be the sheafification of U — limy~ ) F(V). (Note that if
i: S — M is the inclusion of a closed subset, then (i~'F)(S) is what we defined in lecture
to be F(5).)

1. Show by example that the sheafification is really necessary in this definition.

2. Show by example that if F is the sheaf of sections of a holomorphic vector bundle
F, ¢=1F is generally not the sheaf of sections of ¢*F (unfortunately). Indeed, if



¢ : X — Y and F is a sheaf of Oy-modules, then ¢~'F is not even a sheaf of Ox-
modules. (We could say something similar about C'*° bundles etc, replacing O by the
sheaf of C'™ functions, or even more generally by any sheaf of rings.)

3. To fix this problem, when F is an Oy-module, we can define
Q' F = ¢71./T" Xp-1(0y) Ox.

(This definition should be interpreted with sheafification, as usual for operations on
sheaves.) This amounts to forcing ¢*F to be a sheaf of Ox-modules “by hand.” Show
that if F is the sheaf of sections of F' then ¢*F really is the sheaf of sections of ¢*F'.
(It is probably a good idea to first consider the simple case of a covering map, say
21)

Exercise 6

(For those who like counterexamples.) One might have tried to define the sheafification
F* of apresheaf F by taking F*(U) to be the space of “discontinuous sections” s € [], . Fa,
subject to the condition that there exist a covering of U by open sets U; with f; € F(U,),
filv, = filu,. and (fi)z = s,. This doesn’t quite work if your presheaf is crazy enough:
since F is only a presheaf, F* may involve coverings by sections that agree on stalks but
don’t agree on intersections! Read and understand the counterexample described at

http://mathoverflow.net/questions/31372/

Naturally, this kind of thing won’t bother us in the rest of the course.




