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1 Introductory motivation

1.1 Linear equations

Suppose we are interested in studying the topology of smooth manifolds X. One
powerful tool for this purpose is to introduce an ingredient which at first seems alien to
the problem: namely we fix a Riemannian metric g on X. This allows us to define the form
Laplacian (A.32) and consider the space of harmonic forms

Hk(X) = {ω ∈ Ωk(X)|∆ω = 0}. (1.1)

The equation
∆ω = 0 (1.2)

is a linear equation over R. Thus Hk(X) is a vector space. If X is compact, then Hk(X) is
moreover finite-dimensional (a consequence of the fact that ∆ is an elliptic operator). Thus
we can define positive integers by

bk(X) = dimRHk(X). (1.3)

There is a remarkable fact about these integers:

Fact 1.1. The integers bk do not depend on the choice of Riemannian metric or smooth
structure on X; instead they are invariants of the underlying topological manifold (the
Betti numbers).

Exercise 1.1. Work out explicitly the spaces Hk(X) and Betti numbers bk(X) for some of
the following: X = S1, T2, S2. (In each case choose a convenient Riemannian metric; of
course the bk are independent of which metric you choose, though theHk(X) naively are
not.)

Fact 1.1 is a consequence of a stronger, “categorified” statement:

Fact 1.2. There is a canonical isomorphism

Hk(X) ' Hk(X, R) (1.4)

(where Hk means de Rham or singular cohomology).

If X is an oriented Riemannian 4n-manifold then there is a small refinement of the
middle Betti number b2n: we have the “Hodge star” operator

? : Ω2n(X)→ Ω2n(X) (1.5)

which has the crucial properties

• ?2 = 1,

• [?, ∆] = 0.
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The first property says we can decompose into the ±1-eigenspaces for ?:1

Ω2n(X) = Ω2n,+(X)⊕Ω2n,−(X). (1.6)

Combining this with the second property one sees that the harmonic forms also decom-
pose:

H2n(X) = H+
2n(X)⊕H−2n(X), b2n(X) = b+2n(X) + b−2n(X). (1.7)

Exercise 1.2. Suppose instead that X is an oriented (4n + 2)-manifold. Here the story is a
bit different, because in dimension k = 2n + 1 we have ?2 = −1. Show that in this case
the Betti number b2n+1(X) is even. (Is this still true if X is not orientable?)

1.2 Nonlinear equations

Now we will replace the linear equation (1.2) by a nonlinear equation.
Unlike linear equations — which in some sense behave uniformly in the dimension —

nonlinear equations tend to behave very differently in different dimensions. With this in
mind we now specialize to the case dim X = 4. In this case, a new source of topological
(or more precisely smooth) invariants was discovered by Donaldson in the 1980s. For an
excellent reference see [1].

Fix a compact Lie group G and let P denote a principal G-bundle over X. Then we
consider connections in P.2 A connection in P may be locally represented by a 1-form3

A ∈ Ω1(g), (1.8)

and has a curvature 2-form F ∈ Ω2(gP),4 locally written5

F = dA + A ∧ A ∈ Ω2(g). (1.9)

Now, since F is a 2-form and we are in 4 dimensions, we can decompose F under ? as

F = F+ + F−. (1.10)

The anti-self-dual Yang-Mills equation is

F+ = 0. (1.11)

1concretely ω = 1
2 (1 + ?)ω + 1

2 (1− ?)ω
2For background on connections in principal bundles I like [2] or [3], or for a briefer and to-the-point

account [4].
3By “locally” here I mean “on a patch U ⊂ X where we have chosen a trivialization of the bundle P|U .”
4gP means the associated bundle to P using the adjoint action of G on g, sometimes written P×G g; again

see [2] for this notion. gP locally looks like g but is globally twisted by the transition functions of P. Some
people would call this bundle ad P. gP is canonically globally trivial when g is abelian, i.e. gP = X × g, so
in that case we really have globally F ∈ Ω2(g).

5To spell out the notation here: suppose A = Aa
µTadxµ, with Ta a basis for g, and define the structure

constants f c
ab by [Ta, Tb] = f c

abTc; then A∧ A = 1
2 f c

abTc Aa
µ Ab

νdxµ ∧dxν. Some people prefer to write this term
as 1

2 [A, A], which makes it more obviously sensible for arbitrary Lie groups as opposed to matrix groups.
It vanishes when g is abelian, so then we just have F = dA.
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We view this as a condition on the connection. For G abelian (e.g. for G = U(1)) the
equation (1.11) is linear in A. For G nonabelian (e.g. for G = SU(2)) this equation is
nonlinear in A, because of the quadratic part in (1.9).

Exercise 1.3. Write out (1.11) in detail in components, in two cases:

• For G = U(1): in this case you should get a system of 3 linear equations for 4
functions Aµ (µ ∈ {1, 2, 3, 4}).

• For G = SU(2): in this case you should get a system of 9 coupled nonlinear equa-
tions for 12 functions Aa

µ (µ ∈ {1, 2, 3, 4}, a ∈ {1, 2, 3}).

We consider the instanton moduli space

M = {connections on P obeying (1.11)}/G (1.12)

where G is the infinite-dimensional group of gauge transformations ie sections of Aut(P),
acting on connections. Locally, a gauge transformation is represented by a map g : U →
G, and then this action is given by

A→ g−1Ag + g−1dg. (1.13)

Exercise 1.4. Write out the action of G on connections explicitly in components, when
G = U(1) or G = SU(2). (It may be convenient to consider the case where g is given as
the exponential of a Lie algebra element, e.g. for G = U(1) the formulas will be simplest
if you write g = exp(χT) with χ the generator of u(1), and χ : U → R an ordinary
function.)

Exercise 1.5. Show that when G = U(1), the structure of M depends on the image of
c1(P)/2π ∈ H2(X, Z) under the map p : H2(X, Z)→ H2(X, R); namely, if p(c1(P)/2π) ∈
H2
− thenM is H1(X, R)/H1(X, Z), and otherwiseM is empty. [warning: needs Hodge

theory] [warning: I got this wrong twice already, hopefully it’s right now]

When G is nonabelian, the situation is much more difficult. Nevertheless M can be
studied and moreover it turns out to have a reasonable geometric structure, as follows.

From now on let us specialize to the case G = SU(2). In this case P is classified by the
integer

k =
∫

X
c2(P). (1.14)

Fact 1.3. If k > 0 and the metric g on X is generic (in a suitable sense), thenM is a finite-
dimensional manifold.

(For non-generic g,M is still close to being a manifold, but may develop singularities
corresponding to reducible solutions of (1.11).)

5
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1.3 Donaldson invariants

Donaldson’s idea was to extract information about X from the study ofM. The direct
nonlinear analogue of the Betti numbers is the dimension ofM: it turns out to be (for X
connected)

dimM = 8k− 3(1− b1(X) + b+2 (X)). (1.15)

But because M is nonlinear there is more to it than just its dimension. Donaldson in-
troduced an orientation on M and a family of canonically defined closed differential
forms τα ∈ Ω∗(M), labeled by classes α ∈ H∗(X, Z). Then he defined new invariants
〈Oα1 · · · Oα`〉 by, schematically,

〈Oα1 · · · Oα`〉 =
∫
M

τα1 ∧ · · · ∧ τα` , (1.16)

and proved that they are independent of the Riemannian metric g (under the technical
assumption b+2 (X) > 1.)

These invariants proved very powerful: they could detect phenomena invisible to the
standard differential-topology methods [explain something proved using them?] How-
ever, they were also very technically difficult to control, particularly becauseM is typi-
cally noncompact, so that integration overM is a delicate operation.

1.4 QFT and Donaldson invariants

In 1988, following some provocative suggestions of Atiyah, Witten found a remark-
able new way of thinking about the Donaldson invariants [5]: he interpreted them in
terms of a certain quantum field theory (QFT), topologically twisted N = 2 supersymmetric
Yang-Mills theory. Very roughly, Witten imagined X to be the “spacetime” in some hypo-
thetical universe, where the laws of physics are governed by topologically twistedN = 2
supersymmetric Yang-Mills theory, and then imagined making some “experimental mea-
surements” in that universe — captured in QFT language by correlation functions.

According to the rules of Lagrangian QFT6 correlation functions are supposed to be
integrals over an infinite-dimensional space C, of the form

〈Oα〉 =
∫
C

dµ Φαe−S, (1.17)

where S : C → R is the “action” of the theory, dµ is some measure of integration, and
Φα : C → R are the “classical observables.” C is sometimes called the “space of fields”; in
a general Lagrangian QFT, it is something like the space of all7 functions on X (or maybe
differential forms on X, connections on bundles over X, sections of bundles over X, etc;
different theories involve different notions of fields.)

6Lagrangian QFTs are an important and widely studied class of QFTs, which feature prominently (for
good reason) in one’s early QFT education. Nevertheless, not all QFTs are of this sort; for QFTs which are
not Lagrangian, one needs other tools for computing the correlation functions. Many of the most interesting
mathematical and physical applications of QFT involve non-Lagrangian QFTs.

7The meaning of “all” will hopefully become clearer as we go on.
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In general, correlation functions (1.17) are difficult to calculate. In topologically twisted
N = 2 supersymmetric Yang-Mills theory, however, there is a remarkable localization
phenomenon which reduces the desired integrals (1.17) to the simpler finite-dimensional
integrals (1.16) above.

Impressive as this discovery was, it did not lead to an immediate breakthrough in
Donaldson theory: the formulas one could directly derive from the QFT perspective were
just the same formulas already written down by Donaldson. In 1994 Witten pushed for-
ward somewhat further, using QFT to compute Donaldson invariants in the special case
where X is a Kähler manifold [6]. But the next major development had to wait for progress
in physics: what was needed was a better understanding of the physics of N = 2 super-
symmetric Yang-Mills theory.

1.5 The action

For aficionados, here is the standard way that a physicist would define N = 2 super-
symmetric Yang-Mills theory, in Euclidean signature, on the spacetime X = R4.

First, we need to fix a compact Lie group G and two couplings: g ∈ R+ and ϑ ∈
R/2πZ. The QFT we want to describe depends on these data.

We fix also an auxiliary 2-dimensional complex vector space R, carrying Hermitian
structure δ : R⊗ R → C and volume form ε ∈ ∧2(R). (Concretely, you may as well pick
R = C2 with its standard Hermitian structure and volume form. The main reason for
calling it R now is that later we will replace it by a rank 2 Hermitian vector bundle over
X.)

Then we let C be the space of fields:

• (P,∇) a principal G-bundle with connection (with curvature F),

• φ ∈ Γ(gC,P),

• λ± ∈ ΠΓ(S± ⊗ gC,P ⊗ R),

• D ∈ Γ(gC,P ⊗ Sym2 R),

where S± are the spin representations of Spin(4). The symbol Π here means “parity
change” which means λ± are Grassmann-odd fields: we will explain this (or at least get
used to it) later.

The action is: [explain notation v, w and inner product 〈, 〉, and double-check factors]

S =
1
g2

∫
X

Tr
(
−1

4
F ∧ ?F +∇µφ̄∇µφ− iδvw〈λ−v , /∇λ+

w 〉+
1
4

δvv′δww′DvwDv′w′ −
1
2
[φ, φ̄]2

−i
√

2εvw〈λ−v , [φ̄, λ−w ]〉+ i
√

2εvw〈λ+
v , [φ, λ+

w ]〉
)

+
iϑ

4π2

∫
X

Tr(F ∧ F). (1.18)

As described here, the theory only makes sense on X = R4. Later we will describe
Witten’s modification of the theory (topological twisting) which we will use when we put
it on a general Riemannian 4-manifold X.

7



2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

1.6 Effective field theory: an analogy

The real breakthrough came with the work of Seiberg and Witten in 1995 [7]. In this
work Seiberg and Witten answered a fundamental question aboutN = 2 supersymmetric
Yang-Mills theory: how does the theory behave at low energies?

To understand how important this question is, let us make a quick analogy. Suppose
that we want to study a pond full of water and how it will respond to, say, a gentle breeze,
or a small toy boat. One approach to this problem which we could imagine would be to
say to ourselves: well, the pond is made of about 1030 protons, neutrons and electrons;
let’s write down equations governing those objects, put them on the biggest supercom-
puter we can find, make a model for the perturbation we want to study, and then have
the computer solve the equations and tell us what will happen. This (if it could be done)
would be in some sense the most direct method. Of course it is also completely hopeless.

In practice, we know that the relevant physical laws governing a pond full of water
are the Navier-Stokes equations. These describe the dynamics of new “effective” vari-
ables (velocity, pressure, density, viscosity), whose relation to the underlying 1030 parti-
cles would be complicated to describe directly. Nevertheless Navier-Stokes is really the
description we want, for our practical purpose of studying boats interacting with a pond.
(It is probably not the relevant description if we want to know what will happen if we
shoot the pond with a high-intensity laser!)

The really hard and important problem is to go from the high-energy description (el-
ementary particles) to the low-energy description (Navier-Stokes equations). Once this
problem has been solved once, we can then use the low-energy description to answer the
questions we care about.

1.7 Seiberg-Witten equations

Seiberg and Witten in [7] solved the analogous problem for N = 2 supersymmetric
Yang-Mills theory. Beginning with the action (1.18) (high-energy description) for G =
SU(2), they completely determined the low-energy description. It turned out that this
description is also in terms of gauge theory, but this time gauge theory for the group
G′ = U(1) (coupled to matter): the nonabelian group SU(2), with all its attendant nonlin-
earities, is gone!

Then one can try to compute the results of experiments, now using this effective low-
energy description. As before, the answer turns out to localize on some simple equations;
but now instead of (1.11) the equations are the Seiberg-Witten equations8

F+ = q(ψ, ψ̄), (1.19a)
/Dψ = 0, (1.19b)

where the fields are:
8Some authors, including Witten in [8], call (1.19) the monopole equations. I think it is a good idea to avoid

this name in order not to confuse (1.19) with the Bogomolny equations whose solutions are monopoles: the
relation between the field ψ and the monopoles described by Bogomolny equations is rather subtle. We will
explore it later in the course.

8
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• D is a connection in a U(1)-bundle E (more precisely E is the determinant line of a
Spinc-structure on X),

• ψ is a section of S+, with S+ the spinor bundle attached to the Spinc-structure,

and q is a certain quadratic map S+ ⊗ S+ → ∧2
+(T∗X). For an economical explanation of

these equations see [9].
In our analogy to the physics of a pond, (1.19) is the moral analogue of the Navier-

Stokes equations. What all this suggests is that (1.19) should be just as powerful in 4-
manifold topology as was (1.11), but in some sense easier to work with, since in passing to
(1.19) we have gotten rid of some irrelevant complexity. This point of view was advocated
by Witten in the paper [8] and it turned out to be correct. This was the beginning of a
revolution in 4-manifold topology which continues to the present day.

One preliminary indication that the effective (Seiberg-Witten) description may be more
convenient than the high-energy (Donaldson) description is:

Fact 1.4. If the metric g on X is generic, then the moduli space

M̃ = {pairs (D, ψ) obeying (1.19)}/G′ (1.20)

is smooth and compact.

This is very different from the spaceM which is definitely not compact for k > 0.

1.8 Our goals

In this course we are going to explore various geometric applications of quantum field
theory, emphasizing the two really nontrivial ingredients which have appeared above:

• Localization: the mechanism by which the formal integrals over infinite-dimensional
spaces which appear in quantum field theory get related to finite-dimensional in-
tegrals which can be defined and computed. One derives (in the physicist’s sense)
nontrivial facts about the finite-dimensional integrals, using the infinite-dimensional
integrals (i.e. the QFT) at some intermediate stages.

• Effective field theory: the reduction from a complicated “high-energy” description to
a simple “low-energy” description of a physical system (say, a QFT).

Very roughly speaking, QFTs get more complicated as the dimension of spacetime in-
creases. Dimension 0 and 1 are relatively tractable — even mathematically rigorous, with
some effort. In dimension 2 there are still many rigorous things that can be said, but al-
ready we begin facing difficulties, and these become more serious in dimensions 3 and
4.

I expect that we will study dimension 0, dimension 1, maybe a short stop in dimension
2, then jump to dimension 4. The level of rigor will be inversely correlated with the
dimension.

9
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2 QFT in 0 dimensions

2.1 The partition function and expectation values

As we have explained above, Lagrangian QFT on a spacetime X generally involves
performing integrals over some space C of (perhaps generalized) functions on X. Thus C
is almost always infinite-dimensional, but there is one key exception: the case where X is
0-dimensional. Let’s explore that case. We take X to be just a point, and C to be the space
of real-valued functions on a point, i.e.

C = R. (2.1)

Then, let’s define the action
S : C → R (2.2)

by

S(x) =
m
2

x2 +
λ

4!
x4, λ ≥ 0, m > 0. (2.3)

Now we can define the partition function,9

Z =
∫ ∞

−∞
dx e−S(x). (2.5)

More generally, let’s define an observable to be any polynomial function f : C → R, and
then define its (unnormalized) expectation value

〈 f 〉 =
∫ ∞

−∞
dx f (x)e−S(x). (2.6)

Thus, we have
Z = 〈1〉. (2.7)

Both (2.5) and (2.6) are functions of λ and m.

2.2 The perturbation series

Now, how do we compute these functions? Let’s start with Z, given by (2.5). At λ = 0,
the integral (2.5) is easy to do:

Z0 = Z(m, λ = 0) =

√
2π

m
. (2.8)

9Incidentally, it turns out that in this particular theory Z(m, λ) actually has a name: e.g. Mathematica
gives it as

Z(m, λ) =

√
3m
λ

e3m2/4λK 1
4

(
3m2

λ

)
. (2.4)

This should increase your confidence that we are dealing here with an absolutely concrete and well-defined
function.

10
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For other λ, what to do? Computing for arbitrary λ looks hard, but since λ = 0 was easy,
let’s try to get the expansion around λ = 0. We begin by expanding the exponential under
the integral sign:

Z(m, λ) =
∫ ∞

−∞

∞

∑
n=0

(
−λ

4!

)n x4n

n!
e−

m
2 x2

(2.9)

Next we make a dubious step: we exchange the orders of summation and integration.

Z(m, λ) ”=”
∞

∑
n=0

(
−λ

4!

)n ∫ ∞

−∞

x4n

n!
e−

m
2 x2

(2.10)

Next we use a fundamental integral identity:∫ ∞

−∞
dx x2ke−

m
2 x2

=

√
2π

m
1

mk
(2k)!
k!2k . (2.11)

Exercise 2.1. Prove the formula (2.11).

Using (2.11) the integrals in (2.10) can be done term by term, yielding

Z(m, λ) ”=”

√
2π

m

∞

∑
n=0

(
− 1

96

)n (4n)!
n!(2n)!

λ̃n, λ̃ =
λ

m2 , (2.12)

”=”

√
2π

m

(
1− 1

8
λ̃ +

35
384

λ̃2 + · · ·+ (1390.1 . . . )λ̃10 + · · ·
)

. (2.13)

2.3 Meaning of the perturbation series

Looking at the coefficients, we see at once that (2.12) diverges for all λ 6= 0, despite
the fact that the function Z(m, λ), defined by the integral (2.5), really does exist whenever
Re(λ) ≥ 0. In particular it follows that the interchange of summation and integration
leading to (2.10) was not justified (if you try to justify it by the usual methods you will
fail because of lack of uniform convergence [I think]).

Nevertheless, the series (2.12) is still useful:

Definition 2.1 (Asymptotic series). Given a function f : R+ → C, the formal series
∑∞

n=0 cntn is an asymptotic series for f as t→ 0+ if, for all N ≥ 0,

lim
t→0+

t−N

∣∣∣∣∣ f (t)−
(

N

∑
n=0

cntn

)∣∣∣∣∣ = 0. (2.14)

In this situation we write f (t) ∼ ∑∞
n=0 cntn.

This means

lim
t→0+
| f (t)− c0| = 0, (2.15)

lim
t→0+

t−1| f (t)− (c0 + tc1)| = 0, (2.16)

and so on.

11
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Proposition 2.2 (Perturbation series is an asymptotic series). The series (2.12) is an asymp-
totic series for Z(m, λ) as λ→ 0+ for fixed m.

Exercise 2.2. Prove Proposition 2.2. (This amounts to showing that the dubious step (2.10),
while not justified at the level of convergent series, is justified at the level of asymptotic
series. This is a very commonly-occurring situation.)

So the precise meaning of the ”=” in (2.10) and (2.12) above is actually ∼.
One way to get a vivid illustration of what this asymptotic series expansion means is

to do the next exercise:

Exercise 2.3. Make a plot of Z(m = 1, λ) and the first few truncations of its asymptotic
series around λ→ 0+.

One might wonder whether there could be some other series expansion for Z(m, λ).
But this is impossible, as the next exercise shows.

Exercise 2.4. Do the following:

1. Show that if f has a convergent Taylor series expansion around t = 0 then this
expansion is also an asymptotic expansion as t→ 0+.

2. Show that any f can have at most one asymptotic series expansion.

In particular, since Z(m, λ) has the divergent asymptotic expansion (2.12) it cannot
also have a convergent one. For fun, we can diagnose a bit more precisely the problem
with Z: it has an essential singularity at λ = 0, in the sense of the next exercise.

Exercise 2.5. Do the following things.

1. Show that Z(m, λ) = 1√
m f (λ̃) for some f .

2. Show that Z(m, λ) obeys the differential equation (2∂m)2Z = −(4!∂λ)Z.

3. Show that f (λ̃) obeys an ordinary differential equation in λ̃, with an irregular sin-
gularity at λ̃ = 0.

4. Show that, for fixed m, Z(m, λ) admits analytic continuation to a branched cover of
C \ {0} and this continuation has an essential singularity at λ = 0.

5. Conclude (again) that Z(m, λ) cannot have a convergent Taylor expansion around
λ = 0.

What we have seen here is that even in 0-dimensional quantum field theory the per-
turbation series is “only” asymptotic. In higher-dimensional theories, we will meet very
similar series, and there too we expect that these series are usually “only” asymptotic.

Exercise 2.6. Read the famous paper [10] of Freeman Dyson, in which he gives a heuris-
tic physical argument that the perturbation series in quantum electrodynamics is only
asymptotic.

12
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2.4 Feynman diagrams

Now we revisit (2.12) and rewrite it one more time, as

Z(m, λ) ∼
√

2π

m

∞

∑
n=0

(4n)!
(2n)!22n

(−λ̃)n

(4!)nn!
, λ̃ =

λ

m2 . (2.17)

This formula has a neat combinatorial interpretation, in terms of Feynman diagrams, as
follows.

Our basic object is a vertex with 4 half-edges attached.

To construct all Feynman diagrams with n vertices, we begin by fixing n vertices, and
then considering all ways to pair up the 4n half-edges. All Feynman diagrams with one
vertex, and some with two vertices, are shown below.

Let Dn be the set of all diagrams with n vertices.

Proposition 2.3 (Counting pairings of 2k objects). The number of ways to pair up 2k
objects, i.e. to divide them into k 2-element subsets, is (2k)!

k!2k .

Exercise 2.7. Prove Proposition 2.3.

Thus we have

|Dn| =
(4n)!

(2n)!22n . (2.18)

On the other hand, Dn is naturally acted on by the finite group

Gn = (S4)
n o Sn (2.19)

(permuting edges attached to a given vertex and also permuting vertices) which has

|Gn| = (4!)nn!. (2.20)

Thus (2.17) can be rewritten as

Z(m, λ) ∼
√

2π

m

∞

∑
n=0

(−λ̃)n |Dn|
|Gn|

. (2.21)

By the orbit-stabilizer theorem this becomes

Z(m, λ) ∼
√

2π

m

∞

∑
n=0

(−λ̃)n ∑
[Γ]∈Dn/Gn

1
|Aut Γ| (2.22)

which we could also rewrite as

Z(m, λ) ∼
√

2π

m ∑
[Γ]∈tnDn/Gn

(−λ)|vertices(Γ)|

m|edges(Γ)|
1

|Aut Γ| . (2.23)

Thus we have proven a diagrammatic rule:

13
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Proposition 2.4 (Feynman diagram expansion for the partition function (2.5)). To com-
pute the perturbation expansion of the partition function (2.5) we can follow the following
algorithm. Draw one representative Γ in each equivalence class. Define a weight wΓ as a
product of factors: one factor (−λ) for each vertex, one factor 1

m for each edge,

and an overall “symmetry factor” 1
|Aut Γ| . Then

Z(m, λ)

Z(m, 0)
∼∑

Γ
wΓ. (2.24)

The first few orders in the diagram expansion of Z(m, λ) are:

This reproduces (2.12) as it should.
This basic mechanism can be extended in many ways:

1. In Proposition 2.4 we sum over both connected and disconnected Γ. But the contri-
bution from disconnected diagrams is easily determined:

Proposition 2.5 (Exponentiation of the connected diagrams). The sum over con-
nected diagrams is related to the sum over all diagrams by:

∑
Γ

wΓ = exp

(
∑

Γ connected nonempty
wΓ

)
. (2.25)

(e.g. look at the first disconnected term above to get an inkling of why.) Said other-
wise,

log
(

Z(m, λ)

Z(m, 0)

)
∼ ∑

Γ connected nonempty
wΓ. (2.26)

2. Suppose we want to compute the correlation function 〈xn〉, as defined in (2.6) (gen-
eralizing Z which is the case n = 0). This is given by a similar sum over Feynman
diagrams, except that now we introduce a new type of 1-valent vertex, and require
that the diagram contains exactly n of these. The automorphisms of Γ are required
to fix these vertices.

To compute the normalized expectation value 〈xn〉/Z, we compute similarly, with
the additional rule that every connected component of each diagram must contain
at least one of the 1-valent vertices.

14
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Exercise 2.8. Do the following:

• Compute the perturbative expansion of 〈x2〉/Z up to order λ3, using Feynman
diagrams. You should find 〈x2〉/Z = 1

m (1− 1
2 λ̃ + 2

3 λ̃2 − 11
8 λ̃3 + · · · ). (I drew

the diagrams up to order λ̃2 above.)

• Compute the perturbative expansion of 〈x4〉/Z up to order λ2, using Feynman
diagrams. You should find 〈x4〉/Z = 1

m2 (3− 4λ̃ + 33
4 λ̃2 + · · · ).

3. Instead of the action (2.3) we could take more generally

S(x) =
m
2

x2 +
∞

∑
k=3

λk
k!

xk. (2.27)

The Feynman diagram expansion then involves vertices of arbitrary valences, with
each k-valent vertex contributing a factor −λk:

Here are some diagrams in the expansion of Z/Z0:

4. Generalizing in a different direction, we could take C = RN instead of R (“multiple
fields”), with coordinates x1, . . . , xN, and generalize the action to10

S =
1
2

xi Mijxj +
1
4!

Cijklxixjxkxl, (2.28)

10Here and in many future equations we are using the “Einstein summation convention”: any index
which appears both up and down should be summed over. So the first term in (2.28) should be read
1
2 ∑N

i=1 ∑N
j=1 xi Mijxj and similarly the second term involves four sums.
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where M and C are both totally symmetric in their indices. Then we have

Z0 =
∫
C

d~x e−
1
2 xi Mijxj

=
(2π)N/2
√

det M
. (2.29)

The diagrams Γ are just as before, with edges and quartic vertices. However, in the
Feynman rules we attach additional labels i ∈ {1, . . . , N} on the half-edges:

To compute the weight wΓ we sum over all possible labels for the half-edges (so
for a diagram with k edges we sum N2k terms), and divide by the usual symmetry
factor |Aut Γ| for the unlabeled diagram Γ. (In higher-dimensional QFT, these sorts
of labels would have an interpretation like labeling species of particle which could
propagate along the edges.)

A basis-free description of this situation is as follows. Let C be a finite-dimensional
real vector space V, with a density dµ, and two elements

M ∈ Sym2(V∗), C ∈ Sym4(V∗). (2.30)

Then consider the action

S(x) =
1
2

M(x, x) +
1
4!

C(x, x, x, x). (2.31)

M determines a density
√

det M on V:

Exercise 2.9. Verify that a positive definite bilinear form M ∈ Sym2(V∗) determines
a density on V, which deserves to be called

√
det M in the sense that given a basis

{e1, . . . , en} on V, with M(ei, ej) = Mij,
√

det M =
√

det(Mij)|e∗1 · · · e∗n|.

When C = 0 the partition function is

Z0 =
∫

V
dµ e−

1
2 M(x,x) = (2π)

1
2 dim V dµ√

det M
. (2.32)

The Feynman rules assign a vector in (V∗)⊗4 to each vertex and V⊗2 to each edge,
contracted in the obvious way:

16
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2.5 A coupled system

Now suppose C = R2 and

S(x, y) =
m
2

x2 +
M
2

y2 +
µ

4
x2y2. (2.33)

We think of this as two independent systems, one involving the field x and one involving
the field y, which are “coupled” by the quartic interaction term µ

4 x2y2. You can see this
point of view vividly in the Feynman rules for this theory, shown below:

Exercise 2.10. Explain how these Feynman rules arise as a special case of the multiple-
field rules given above.

A few sample computations are:

But the job of computing by Feynman diagrams in this theory gets complicated fast.
For example:

17
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How can we avoid this enormous profusion of diagrams every time we want to compute
a correlation function? Suppose that we are only interested in computing correlations
involving x. Then to simplify our task, we could use Fubini’s theorem to integrate over y
“once and for all”: define Seff(x) by the equation∫

dy e−S(x,y) = e−Seff(x) (2.34)

and then use Seff(x) as our action for subsequent computations.
In this particular theory we can compute the perturbation series of Seff(x) explicitly:

it is of the form
Seff(x) ∼ meff

2
x2 + ∑

k≥3

λk
k!

xk (2.35)

with

meff = m +
µ

2M
, λk =

{
0 for k odd,

−
(
− µ

2M
)k/2

(k− 1)! for k even.
(2.36)

Some qualitative remarks about Seff(x):

• Even though the original action S(x, y) had only a quartic interaction, the effective
action Seff(x) involves interactions of all even orders. Diagrammatically speaking,
integrating out the field y to pass from S to Seff amounts to “collapsing” parts of the
Feynman diagrams involving only the dashed y lines; these parts get absorbed into
the new effective vertices.

18
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• The fact that in the effective theory we only get interaction vertices of even valence
is related to the fact that the original action S(x, y) has the symmetry x → −x, which
implies that Seff(x) must have the same symmetry.

• We could approximate Seff(x) by the simpler procedure of setting y = 0 in S(x, y).
This would not give the exact answer, because the fields are coupled: it would give
meff = m and all λk = 0. Thus the shift meff − m and the nonzero values of the λk
could be thought of as “quantum corrections” which are some vestige of the field y.
Note these corrections go to zero in the limit µ→ 0 (decoupling) and also go to zero
in the limit M→ ∞.

• The series (2.35) for Seff(x) actually is convergent, not only asymptotic.

Exercise 2.11. Use the effective action Seff(x) to compute 〈x
4〉

Z up to order µ2. Note that it
is a lot easier than using the original action S(x, y), but it indeed agrees with the result of
the computation done above.

Exercise 2.12. Derive the formula (2.36).

There is also a Feynman-diagram expansion for the computation of the effective action
Seff. The rules here turn out to be as follows: we introduce a new 1-valent vertex and sum
over connected diagrams where all x lines are required to terminate on a 1-valent vertex.
In counting the symmetry factor we do not require that these 1-valent vertices are fixed
by the automorphisms. The Feynman rules are:

Exercise 2.13. Use these Feynman rules to derive (2.36). (Hint: the first few diagrams
contributing are shown below.)

2.6 Symmetries

Let us return to the original theory with action (2.3). In this theory we have

〈xn〉 = 0 for n odd (2.37)

One direct way of seeing this is to make the change of variables x → −x in the integral
(2.5). Since S(x) = S(−x) this change of variables gives

〈xn〉 = 〈(−x)n〉 = (−1)n〈xn〉 (2.38)
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from which (2.37) follows.
The Feynman-diagrammatic expression of (2.37) is that there simply are no possible

diagrams with an odd number of 1-valent vertices, since the number of half-edges would
then be odd, no matter how many 4-valent vertices we add. The same wouldn’t be true
if we allow vertices of odd valence; of course such vertices arise only when there are
odd-degree terms in S, which violate the symmetry x → −x.

More generally,

Proposition 2.6 (Symmetries and correlation functions). Whenever S : C → R and the
measure on C are both invariant under the action of a group G, then we have

〈Og〉 = 〈O〉 (2.39)

where O : C → R is any observable, and Og = g∗O.

Exercise 2.14. Prove Proposition 2.6.

Exercise 2.15. Suppose the space Obs of all observables O is decomposed into isotypical
components, Obs =

⊕
R ObsR, where R runs over irreducible representations of G. Show

that if O ∈ ObsR and R is nontrivial then 〈O〉 = 0.

If G is a Lie group, we can differentiate (2.39) to get

Proposition 2.7 (Infinitesimal symmetries and correlation functions). Whenever S : C →
R and the measure on C are both invariant under the action of a Lie group G, then we
have

〈XO〉 = 0 (2.40)

where O : C → R is any observable, and X ∈ g.

Exercise 2.16. Take C = R2 and S(x, y) = 1
2 mx2 + 1

2 my2. Alternatively, letting z = x + iy,
we can say C = C and S(z) = 1

2 m|z|2. Consider the complex observables On : C → C

given by On(z) = zn. Use Proposition 2.6 to show that the correlation function 〈On〉
vanishes for all n 6= 0. Is the same true if S(z) = V(|z|) for more general V? What about
if S(z) is an arbitrary function of z?

2.7 Fermions

So far, the results of our QFT computations have been very far from “topological”: Z
and all the expectation values 〈xn〉 are nontrivial functions of the parameters (m, λ) with
no kind of deformation invariance in sight.

In the applications of QFT toward which we are headed, we will do things that are
more deformation invariant. But to get there, we need one more key ingredient: fermions.

We will replace the field space C, which so far has been a manifold (in fact a vector
space), by a supermanifold (in fact super vector space).

Our treatment of supergeometry will be extremely superficial. Some references I have
found useful are [11, 12, 13, 14].
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Definition 2.8 (Super vector space). A super vector space is a Z/2Z-graded vector space,

V = V0 ⊕V1. (2.41)

We let Π be the operation of parity reversal, i.e.

ΠV = V1 ⊕V0. (2.42)

Example 2.9. The basic example is the super vector space V with V0 = Rp, V1 = Rq; call
this Rp|q. Then ΠRp|q = Rq|p.

Definition 2.10 (Even and odd maps). An even map of super vector spaces V → W is a
pair of maps V0 → W0 and V1 → W1. An odd map V → W is a pair of maps V0 → W1

and V1 →W0.

Definition 2.11 (Symmetric monoidal category of super vector spaces). The symmetric
monoidal category of super vector spaces is the category of super vector spaces, with mor-
phisms the even maps, and equipped with an unusual choice of symmetry isomorphism

s : V ⊗W →W ⊗V, (2.43)

namely, for homogeneous elements v, w of degrees |v|, |w| we take

s(v⊗ w) = (−1)|v||w|w⊗ v. (2.44)

This turns out to be a very useful category!
Some standard constructions in linear algebra take on a different character when ap-

plied to super vector spaces. For example, if V is a super vector space then we define the
symmetric algebra Sym∗ V to be the quotient of T∗V by the two-sided ideal generated by
(v ⊗ w − s(v ⊗ w)). If V = V0 then Sym∗ V is (forgetting its super structure) the usual
Sym∗ V0, but if V = V1 then Sym∗ V is the exterior algebra ∧∗(ΠV1).

Definition 2.12 (Polynomial functions on a super vector space). Given a super vector
space V, we define the algebra of polynomial functions O(V) on V by

O(V) = Sym∗(V∗). (2.45)

O(V) is itself a super vector space,

O(V) = O0(V)⊕O1(V), (2.46)

and even a (super)commutative algebra.
In quantum field theory we want to consider a space C with an action S which is some

kind of “function on C”. For C a super vector space, our model of “function on C” will be
an element

S ∈ O0(V). (2.47)
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2.8 A fermionic theory

The simplest example we can consider is to take

C = R0|2. (2.48)

C has two “coordinate functions”

ψ1, ψ2 ∈ O1(C) = (V1)∗ (2.49)

but these coordinates have “odd statistics”

ψ1ψ2 = −ψ2ψ1, (ψ1)2 = 0, (ψ2)2 = 0. (2.50)

Note that ψ1ψ2 ∈ O0(C) is a nice even function, but (2.50) implies it is nilpotent,

(ψ1ψ2)2 = 0. (2.51)

(In fact dimO(C) = 2|2 as we expect from the identification with the exterior algebra on
R2; the even part O0(C) has basis {1, ψ1ψ2}, the odd part O1(C) has basis {ψ1, ψ2}.)

Now let us take the action functional

S =
1
2

Mψ1ψ2. (2.52)

(Unlike in the bosonic case, here this is all we can do — there is no way of introducing an
interaction term!)

We would like to make sense of the partition function in this setting,

Z =
∫
C

dµ e−S. (2.53)

Expanding the exponential, the fact that S2 = 0 means it truncates to a polynomial:

Z =
∫
C

dµ

(
1− 1

2
Mψ1ψ2

)
. (2.54)

What will we mean by such an integral? Integration over a purely odd vector space is
defined to mean taking the “top order part” of the function. More exactly:

Definition 2.13. A translation invariant measure dµ on a purely odd super vector space
V = V1 is

dµ ∈ ∧top(ΠV1). (2.55)

For any f ∈ O(V) ' ∧∗((ΠV1)∗), let f top ∈ ∧top((ΠV1)∗) be the top component of f ;
then we define the integral by ∫

V
dµ f = dµ · f top. (2.56)
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Exercise 2.17. Suppose V = R0|1 with odd coordinate ψ. Show that there exists a transla-
tion invariant measure dµ on V with the property that∫

V
dµ (aψ + b) = a. (2.57)

We call this measure dψ.

Exercise 2.18. Again take V = R0|1, and c ∈ R. Show that there exist translation invariant
measures cdψ and d(cψ) on V, obeying the formulas∫

V
(cdψ) f (ψ) = c

∫
V

dψ f (ψ),
∫

V
d(cψ) f (cψ) =

∫
V

dψ f (ψ), (2.58)

where f (cψ) is defined in the obvious way — explicitly, if f (ψ) = aψ + b then f (cψ) =
acψ + b. Then prove the change of variables formula in one odd variable:

d(cψ) =
1
c

dψ. (2.59)

Similarly on R0|q we choose once and for all the measure dµ = d~ψ, characterized by∫
d~ψ ψqψq−1 · · ·ψ1 = 1. (2.60)

Now we can evaluate the odd Gaussian integral (2.54), obtaining

Z =
1
2

M. (2.61)

Note a key difference between this and the usual even Gaussian integrals: here the M
appears in the numerator, not the denominator as we had in (2.8).

2.9 More fermions

More generally suppose we take C to be any purely odd super vector space, C = V =
V1, equipped with a measure in the sense of (2.55), and elements

M ∈ Sym2(V∗) = ∧2((ΠV1)∗), C ∈ Sym4(V∗) = ∧4((ΠV1)∗). (2.62)

Then we can take for the action

S =
1
2

M +
1
4!

C ∈ O(C), (2.63)

which we also write in parallel with (2.31) as

S(ψ) =
1
2

M(ψ, ψ) +
1
4!

C(ψ, ψ, ψ, ψ), (2.64)
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or after choosing a basis for ΠV1,

S(ψ) =
1
2

MI Jψ
IψJ +

1
4!

CI JKLψIψJψKψL (2.65)

with M and C totally antisymmetric in their indices.
The partition function is an odd integral

Z =
∫
C

dµ e−S (2.66)

which can again be evaluated in a purely algebraic fashion, by expanding out the expo-
nential.

Exercise 2.19. Suppose C = R0|4 and S = mψ1ψ2 + mψ3ψ4 + λψ1ψ2ψ3ψ4. Show that
Z = m2 − λ.

2.10 Perturbation theory with fermions

Integrals over finite-dimensional odd vector spaces always give polynomials in the cou-
plings; thus a development of “perturbation theory” for them might seem unnecessary.
Nevertheless, with an eye toward the future, it is interesting to develop a Feynman dia-
gram expansion for these integrals.

First let us see what happens when C = 0. Then the odd Gaussian integral gives the
Pfaffian of M, generalizing (2.61) (compare (2.29)):

Z0 =
∫
C

d~ψ e−
1
2 ψI MI JψJ

= Pf(M). (2.67)

(Recall that the Pfaffian is a polynomial in the entries of M, defined only for skew-symmetric

M, with the property that (Pf M)2 = det M. For example, Pf
(

0 a
−a 0

)
= a. Note that for

a general 2× 2 matrix the determinant is not the square of any polynomial.)

Exercise 2.20. Prove (2.67). One way that presumably works is to expand directly and
compare with the combinatorial expression for the Pfaffian, namely if rank M = 2n then

Pf(M) =
1

2nn! ∑
σ∈S2n

(sgn σ)
n

∏
i=1

Mσ(2i−1),σ(2i). (2.68)

The coordinate-independent version of this is:

Exercise 2.21. Suppose V = V1 is an odd vector space with a quadratic element M ∈
Sym2(V). Show that there is a canonical element Pf(M) ∈ ∧top(Π(V1)∗), and that if we
choose an element dµ ∈ ∧top(ΠV1), then∫

V
dµ e−M = dµ · Pf(M). (2.69)
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When C 6= 0 we compute Z/Z0 by Feynman diagrams. The rules are just as they were
in the even case, except that we have to be careful about signs. [...]

Exercise 2.22. Suppose again C = R0|4 and S = mψ1ψ2 + mψ3ψ4 + λψ1ψ2ψ3ψ4. Show that
Z = m2 − λ by the Feynman diagram expansion. (There is only one nonempty diagram
which contributes.)

2.11 Bosons and fermions together

Now suppose C = V = V0 ⊕V1 is a super vector space which has nontrivial odd and
even parts. We want to extend our integration theory to this situation. The strategy will
be to integrate first over the odd directions, then over the even directions.

To get anything convergent, we need to extend the class of functions we consider: we
let

C∞(V) = C∞(V0)⊗O(V1). (2.70)

To define measures we need the super analogue of the determinant line:

Definition 2.14 (Berezinian line). The Berezinian line of a super vector space V is

Ber V = ∧topV0 ⊗∧top(ΠV1)∗. (2.71)

An element dµ ∈ Ber V∗ plays the role of a volume measure on V. By an orientation of
V we mean an orientation of V0. Then:

Definition 2.15 (Integration over super vector space). If V is an oriented super vector
space, dµ = ω0 ⊗ω1 ∈ Ber V∗, and f = f 0 ⊗ f 1 ∈ C∞(V), then∫

V
dµ f =

∫
V0

(
ω0 f 0

) ∫
V1

(
ω1 f 1

)
. (2.72)

On Rp|q we have the canonical element

dµ = d~x d~ψ = (dx1 ∧ · · · ∧ dxp)⊗ (d~ψ) ∈ Ber V∗. (2.73)

2.12 A supersymmetric example

Let us now consider the example C = R1|2, and write an action of the form

S(x, ψ1, ψ2) = S1(x) + S2(x)ψ1ψ2. (2.74)

The partition function is

Z =
∫

dxd~ψ e−S (2.75)

=
∫

dx S2(x)e−S1(x). (2.76)
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For generic S1(x) and S2(x) we could compute this in perturbation theory: indeed it just
reduces to a computation of the correlation function 〈S2(x)〉 in the pure bosonic theory
with action S1(x). The answer has no particularly good property.

There is a special case where we can do much better. (This example is more or less
lifted from [15].) This is the case where for some h : R→ R, with |h(x)| → ∞ as |x| → ∞,
we have

S1(x) =
1
2

h(x)2, S2(x) = h′(x), (2.77)

so that the action (2.74) becomes

S(x, ψ1, ψ2) =
1
2

h(x)2 + h′(x)ψ1ψ2. (2.78)

The basic reason why this case is better is that the action (2.78) is invariant under a certain
odd vector field or supersymmetry.

Definition 2.16 (Graded derivations). If A is a commutative superalgebra, then a map
D : A → A (either even or odd) is a derivation of A if it obeys

D(aa′) = (Da)a′ + (−1)|a||D|a(Da′). (2.79)

Definition 2.17 (Super vector fields on a super vector space). If V is a super vector space,
let Vect(V) denote the space of all graded derivations on C∞(V).

In particular, on Rp|q, in addition to the usual even vector fields ∂xi we also have odd
vector fields ∂ψI , defined by

∂ψI xi = 0, ∂ψI ψJ = δJ
I . (2.80)

Together with the derivation property this implies e.g.

∂ψ1ψ1ψ2 = ψ2, ∂ψ2ψ1ψ2 = −ψ1. (2.81)

The ∂xi and ∂ψI together generate Vect(V) as a module over C∞(V).

Definition 2.18 (Super Lie algebra). A super Lie algebra is a super vector space g = g0⊕ g1

with a bracket obeying
[X, Y] = −(−1)|X||Y|[Y, X] (2.82)

and

[X, [Y, Z]] + (−1)|X|(|Y|+|Z|)[Y, [Z, X]] + (−1)|Z|(|X|+|Y|)[Z, [X, Y]] = 0. (2.83)

Exercise 2.23. Verify that Vect(V) is a super Lie algebra under supercommutator: [X, Y] f =

X(Y f )− (−1)|X||Y|Y(X f ).

Now in our example of R1|2 we consider the odd vector fields

Q1 = ψ1∂x + h(x)∂ψ2 , (2.84)

Q2 = ψ2∂x − h(x)∂ψ1 . (2.85)

26



2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

These are both symmetries of the action (2.78), in the sense that

Q1S = Q2S = 0. (2.86)

Exercise 2.24. [Q1, Q1] is a nontrivial even vector field on V. Compute it, and verify di-
rectly that it is a symmetry of S.

The vector fields Q1, Q2 are also divergence-free, i.e. they preserve the integration
measure dµ = dx d~ψ, in the following sense. For any super vector space F we can con-
sider the super vector space

C∞(V, F) = C∞(V)⊗R F (2.87)

which we could think of as a space of “sections of the trivial super vector bundle with
fiber F over the super vector space V.” Then,

Definition 2.19 (Lie derivative of section of Ber V∗ along super vector field). If X is a
vector field on V, the Lie derivative11

LX : C∞(V, Ber V∗)→ C∞(V, Ber V∗) (2.88)

is characterized by
LX( f dµ) = (X f )dµ + (−1)| f ||X| fLXdµ (2.89)

and if X = hi∂xi + gI∂ψI relative to a basis of V, then

LX(d~x d~ψ) =
(

∂xi hi + (−1)|Q|∂ψI gI
)

dµ. (2.90)

Exercise 2.25. Verify that LQ1dµ = 0 and similarly for Q2.

The existence of the supersymmetries Q1 and Q2 will give us a powerful tool for ana-
lyzing the partition function. First we need a preliminary:

Lemma 2.20. Suppose Q is a divergence-free vector field (even or odd) on a super vector
space V with translation invariant measure dµ, and f ∈ C∞

c (V). Then∫
V

dµ Q f = 0. (2.91)

Proof. By direct computation: if Q = hi∂xi + gI∂ψI and dµ = d~xd~ψ, then∫
V

dµ Q f =
∫

d~x (Q f )top (2.92)

=
∫

d~x (hi∂xi f + gI∂ψI f )top (2.93)

=
∫

d~x (hi∂xi f + (−1)|g|∂ψI gI) f )top (2.94)

=
∫

d~x ((−∂xi hi + (−1)|g|∂ψI gI) f )top (2.95)

= 0 (2.96)

11 For a coordinate-free description of LX , more in keeping with the notion of the infinitesimal variation
along a flow which one has in ordinary geometry, see e.g. [14].
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where in the second line we used the fact that (∂ψI (gI f ))top = 0, and in the third line we
integrated by parts, using the compact support of f .

This permits us to make the following fundamental construction:

Proposition 2.21 (Invariance of partition function under Q-exact deformations). Sup-
pose V is a super vector space with measure dµ. Let {St} be a family of actions, invariant
under a family of divergence-free odd symmetries Qt, i.e. QtSt = 0. Finally, suppose

∂tSt = QtΨt (2.97)

with Ψt ∈ C∞
c (C). Then the partition function Zt computed with action St is independent

of t.

Proof. After this deformation the partition function is

Zt =
∫
C

dµ e−St (2.98)

and thus

∂tZt = −
∫
C

dµ (QtΨt)e−St (2.99)

= −
∫
C

dµ Qt

(
Ψte−St

)
(2.100)

= 0. (2.101)

At the first step, to justify the differentiation under the integral sign, we use the fact that
Ψt is compactly supported.

One often considers the special case where Qt = Q is independent of t and has Q2 = 0,
in which case it is natural to consider the homology of Q acting on C∞(C); in particular S
is a Q-closed element, and Proposition 2.21 says roughly that Z only depends on the
homology class of S.

We will apply Proposition 2.21 in our example. We consider deforming the action S
in (2.78) to a family of actions St, by deforming h(x) to a family ht(x). Using dots for
derivatives with respect to t, we have

Ṡ = h(x)ḣ(x) + ḣ′(x)ψ1ψ2. (2.102)

But this is actually Q1-exact: indeed

Ṡ = Q1Ψ, Ψ = ḣ(x)ψ2. (2.103)

Thus, applying Proposition 2.21, we conclude:

Proposition 2.22 (Weak deformation invariance of partition function). For the action
(2.78), Z is unchanged by compactly supported variations of h.

Making deformations with larger and larger compact support [L,−L] and using an
a priori estimate of the contribution to Z from the region |x| > L, we can bootstrap to
something slightly stronger:
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Proposition 2.23 (Strong deformation invariance of partition function). For the action
(2.78), Z depends only on the asymptotic signs ε+, ε− of h(x), defined by limx→±∞ h(x) =
ε±∞.

Exercise 2.26. Prove Proposition 2.23.

As we will see below, one cannot improve this further: Z really does depend on the
asymptotic signs ε±. Crudely speaking, the point is that so long as h(x)2 → ∞ for large
|x|, it suppresses the contribution to Z from large |x|, making the field space C effectively
compact. If we try to change the sign ε+ (say) by interpolating through a family of func-
tions ht(x), there will be some critical t where we lose this compactness, and so we lose
the deformation invariance. This is a prototype for “wall-crossing” phenomena which
recur frequently in topological QFT. In particular, the failure of Donaldson invariants on
X to be fully independent of the metric on X when b+2 (X) = 1 has a similar origin.

2.13 Localization

We continue with the 0-dimensional supersymmetric theory of the last section. We
want to use the deformation invariance to compute Z.

The strategy we follow is roughly to deform h(x) → λh(x) and take λ → ∞. In this
limit, the bosonic term h(x)2 in the action becomes extremely large away from the zeroes
of h(x); thus one might expect that the contribution to Z becomes concentrated near the
zeroes, and can be computed locally there.

Let us recall how the analogous phenomenon plays out for a purely bosonic integral
in one dimension: consider a family of actions Sλ(x) = λS(x), with all critical points
nondegenerate. Then the λ → ∞ asymptotics are governed by the method of steepest
descent. See [16] for a very clear account of this method.

Proposition 2.24 (Steepest descent in one dimension). As λ→ ∞ we have

∫ ∞

−∞
dx e−λS(x) ∼ ∑

xc :S′(xc)=0

√
2π

λS′′(xc)
e−λS(xc) (2.104)

(Of course this expansion is dominated by the critical point(s) where S(xc) takes its
minimum value: the others are exponentially suppressed, and could be dropped.) The
proof goes by replacing the original integral by

∑
xc :S′(xc)=0

∫ ∞

−∞
dx e−λ(S(xc)+

1
2 S′′(xc)(x−xc)2), (2.105)

a replacement which (maybe surprisingly) involves only an exponentially small error.
Making the same kind of replacement in our supersymmetric theory leads to

Z(λ) ∼ ∑
xc :h(xc)=0

∫
dxd~ψ e−

1
2 λh′(xc)2(x−xc)2−λh′(xc)ψ1ψ2

(2.106)
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and now performing the Gaussian integrals over fermions and bosons gives

Z(λ) ∼
√

2π ∑
xc :h(xc)=0

h′(xc)

|h′(xc)|
=
√

2π ∑
xc :h(xc)=0

sgn(h′(xc)) (2.107)

Note the cancellation between the fermions which contribute in the numerator and the
bosons in the denominator. Since we already know Z(λ) is independent of λ, this proves:

Proposition 2.25. In our supersymmetric theory with action (2.78), the partition function
can be evaluated exactly:

Z(λ)√
2π

= ∑
xc :h(xc)=0

sgn(h′(xc)) =
1
2
(ε+ − ε−). (2.108)

This is such a toy example that we could have gotten this answer more directly:

Exercise 2.27. Prove Proposition 2.25 directly by integrating out the fermionic directions
and then making the formal change of variables y = h(x).

[study the cancellation in perturbation theory?]
In contrast, expectation values like 〈 f (x)〉 in this theory cannot be evaluated exactly

by localization: the reason is that functions f (x) are not Q-invariant.

2.14 Localization in a zero-dimensional sigma model

Now we consider a less trivial and more geometric example of supersymmetric local-
ization. Suppose (M, ω) is a compact symplectic manifold with dim M = 2n, with a U(1)
action generated by a Hamiltonian vector field

Y = ω−1(dH). (2.109)

Suppose moreover that all fixed points of Y are isolated. Fix some α ∈ R. Our interest is
in the integral ∫

M

ωn

n!
eiαH. (2.110)
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Example 2.26. The fundamental example is the case M = S2 with ω the standard volume
form ω = sin θ dθ ∧ dϕ, and the U(1) action rotating ϕ. This action is generated by the
function

H = z = cos θ (2.111)

and thus ∫
M

ωn

n!
eiαH = 2π

∫ π

0
eiα cos θ sin θ dθ (2.112)

= −2π
∫ −1

1
eiαzdz (2.113)

=
2π

iα
(eiα − e−iα) (2.114)

= 4π
sin α

α
. (2.115)

This answer exhibits another localization phenomenon: it is a sum of contributions

(±)2π

iα
eiαH(xc) (2.116)

from the two fixed points xc of the U(1) action.
We would like to explain this localization as an instance of the supersymmetric local-

ization we have been discussing. For this, we need a generalization of what we have done
so far: we take our field space C to be a supermanifold

C = ΠTM (2.117)

i.e. the total space of the tangent bundle to M, with the parity of the fibers reversed.
Everything we have done for super vector spaces has a supermanifold version, obtained
by appropriate patching. I will be vague about this, again referring to the references [11,
12, 13, 14] for a more detailed treatment.
C has local charts induced from the charts on M. In each such chart, we identify C

with a patch of R2n|2n, with base coordinates xi (even) and fiber coordinates ψi (odd). The
latter generate an exterior algebra. Thinking of ψi as dxi, this suggests that globally we
should have

C∞(C) = Ω∗(M) (2.118)

and this is indeed true. (More generally, for any C = ΠE with E→ M some vector bundle
we would have C∞(C) = C∞(M,∧∗E∗).)

Now we take for our action the function

S = −iα(H + ω) = −iα(H + ωijψ
iψj). (2.119)

The partition function is

Z =
∫
C

d~xd~ψ e−S. (2.120)
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Here d~xd~ψ denotes the canonical measure on C; this measure exists roughly because the
dxi and dψi transform oppositely under change of coordinates; more precisely, we have
an extension

0→ Ππ∗TM→ TC → TM→ 0 (2.121)

from which it follows that Ber TC = Ber TM ⊗ Ber ΠTM which is canonically trivial.
(The existence of this measure is the parity-changed analogue of the fact that T∗M has
a canonical volume form.) Thus, provided that M itself is oriented, we get a canonical
measure of integration on C.

Since our supermanifold C comes to us as an odd vector bundle, the rule for integra-
tion is a straightforward generalization of what we have done before: namely we first
integrate over the odd directions fiber by fiber, thus reducing to an integral over the base,

Z = (iα)n
∫

M

ωn

n!
eiαH. (2.122)

Exercise 2.28. Verify (2.122), by computing in a local coordinate patch. (It might be easiest
to use local Darboux coordinates for ω.)

Now we want to compute Z by localization. Begin by noting that the action S is
invariant under the odd vector field

Q = d + ιY = ψi∂xi + Y j∂ψj (2.123)

which has (Cartan’s formula)

1
2
[Q, Q] = LY = ψi∂xiY j∂ψj + Yi∂xi . (2.124)

As before, we want to get a localization to some small subset of C by making a perturba-
tion S → S + QΨ. For this we fix a U(1)-invariant metric g on M and then take the odd
function

Ψ = g(ψ, Y) = gijψ
iY j = ψiYi (2.125)

where in the last line we defined Yi = gijY j. Then we have

QΨ = g(Y, Y) + d(gY) = YiYi − ψiψk∂xkYi (2.126)

and
Q2Ψ = 0 (2.127)

(using the fact that g is U(1)-invariant).

Exercise 2.29. Verify (2.127) by direct computation using the coordinate expressions of Q
and Ψ.

Now we make the deformation S→ S+ λQΨ. Because of (2.127), the deformed action
is still Q-invariant, for all values of λ. Then, by Proposition 2.21, Z is independent of the
deformation parameter λ. Taking λ very large, we can as usual reduce to a neighborhood
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of the zero locus of g(Y, Y), i.e. to the fixed locus of Y. Then the steepest-descent method
gives

Z ∼ ∑
xc∈M:Y(xc)=0

eiαH(xc) × (2π)n (d(gY)(xc))n/n!√
det(g(Y, Y))′′(xc)

(2.128)

Here both the numerator (d(gY)(xc))n/n! and the denominator
√

det(g(Y, Y))′′(xc) are
valued in ∧topT∗xc M. [it would be nicer to be careful about twists by orientation bundle
here; we always use the standard orientation to avoid having to worry about it] What
remains is to compute their ratio.

One convenient way to do this is to consider a local model: M = R2 with its standard
metric and symplectic form,

g = dr2 + r2dθ2, ω = r dr ∧ dθ, (2.129)

with U(1) acting in the charge-k representation, generated by

Y = k∂θ, H =
1
2

kr2. (2.130)

Then we compute

d(gY) = 2kr dr ∧ dθ,
√

det g(Y, Y)′′(0) = 2k2r dr ∧ dθ (2.131)

and thus the ratio comes to

(d(gY)(xc))√
det(g(Y, Y))′′(xc)

=
1
k

. (2.132)

For an isolated fixed point we can decompose Txc M as a U(1) representation into a
direct sum of n 2-dimensional pieces, with U(1) weights k1, . . . , kn, and put each piece in
standard form as above. Thus (2.128) becomes

Z = (2π)n ∑
xc∈M:Y(xc)=0

eiαH(xc)

∏n
i=1 ki(xc)

. (2.133)

Comparing this with (2.122) proves:

Theorem 2.27 (Duistermaat-Heckman localization formula [17]).∫
M

ωn

n!
eiαH =

(
2π

iα

)n

∑
xc

eiαH(xc)

∏n
i=1 ki(xc)

(2.134)

where the ki(xc) ∈ Z are the weights of the U(1) action on the normal bundle to xc.

In the case of S2 which we considered above, the weights at the two fixed points were
k = +1 and k = −1, the sign determined by whether the local orientation induced by the
U(1) action agreed or disagreed with the orientation induced by ω.

A fancy way of interpreting the factor ∏n
i=1 ki(xc) is:
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Exercise 2.30. Suppose V is a vector space with SO(2n)-structure. Then define a canonical
1-dimensional vector space Pf V (the “Pfaffian line”) with the property (Pf V)2 = det V.
If U(1) acts on V preserving the SO(2n)-structure, show that the induced action on Pf V
is multiplication by ∏n

i=1 ki where ki are the weights of the U(1) action.

The next simplest example of Theorem 2.27 beyond M = S2 is:

Exercise 2.31. Work out the concrete statement of Theorem 2.27 in the case where M =
CP2, with ω the Fubini-Study Kähler form, and the U(1) action given in homogeneous
coordinates by (z1, z2, z3)→ (eib1θz1, eib2θz2, eib3θz3) for b1, b2, b3 ∈ Z, with all bi distinct.

Incidentally, there is another way of thinking about the localization formula Theo-
rem 2.27. The contributions from the fixed points match what one would get by making a
quadratic approximation to the original integrand ωneiαH around the critical points xc of
H. Such an approximation generally gives the leading α→ ∞ asymptotics of the integral
(this is called the stationary phase method, similar to the steepest descent method which
we have been using). So, Theorem 2.27 can be rephrased as the statement that, for this
particular integral, the stationary phase approximation is exact.

Since there are a few tricky points here, let us explain in a bit more detail how one
computes the local contributions in the stationary phase method. (See also the very nice
reference [18].) A key difference between the stationary phase method and the steepest-
descent expansion is that in the stationary phase method we have the i in the exponent,
hence no exponential suppression. One deals with this by rotating the contour of integra-
tion over each real variable by an angle ±π/4 into complex space, so that the integrand
becomes exponentially suppressed again. This produces a factor

e−
πi
4 (n+−n−) (2.135)

where (n+, n−) is the signature of the bilinear form H′′(xc). Then, making the quadratic
approximation and performing the Gaussian integral leads to the local contribution

e−
πi
4 (n+−n−)

(
2π

α

)n ωn/n!√
|det H′′(xc)|

eiαH(xc). (2.136)

Looking again at the local models one sees that this is

e−
πi
4 (n+−n−)

(
2π

α

)n eiαH(xc)

∏n
i=1|ki(xc)|

. (2.137)

and since 1
2 n− is the number of ki(xc) which are negative, this matches the contribution

we found in Theorem 2.27.
I do not really know the significance of the fact that the stationary phase approxima-

tion to
∫

ωneiαH is exact. As we have seen above, this is not the same method one uses in
the supersymmetric localization proof of Theorem 2.27, despite the obvious resemblance.

2.15 Some generalizations

The proof of Theorem 2.27 which we have given naturally generalizes: we could have
replaced the action S by any Q-invariant S ∈ C∞(C). Under the identification C∞(C) '
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Ω∗(M), such an S would be called an equivariantly closed form in the Cartan model for the
U(1)-equivariant cohomology of M, where Q becomes the equivariant differential d + LY.
Then Theorem 2.27 generalizes to

Theorem 2.28 (Atiyah-Bott-Berline-Vergne localization for isolated fixed points [18,
19]). Suppose M is a compact manifold with a U(1)-action, with isolated fixed points.
Also suppose β ∈ Ω∗(M) is an equivariantly closed form. Then

∫
M

eβ = (−2πi)n ∑
xc

eβbot(xc)

∏n
i=1 ki(xc)

(2.138)

where βbot means the bottom (0-form) component of β.

Exercise 2.32. Generalize the proof of Theorem 2.27 to a proof of Theorem 2.28.

Finally we can consider a further generalization: let us imagine trying to repeat the
proof in the case where the fixed points are not isolated. In this situation, the leading term
in the asymptotics produced by the steepest-descent method is an integral over the fixed
locus F ⊂ M. Thus the supersymmetric localization must reduce

∫
M eβ to an integral over

F. The integrand turns out to be determined by the local structure around F, as follows.
The codimension of F is always even, say 2n, since it has a nontrivial U(1)-action.

Then the normal bundle NF has an SO(2n)-structure and connection induced by our
choice of metric g on M, and a compatible U(1)-action induced by the U(1)-action on M.
[worry about orientations]

Definition 2.29 (Equivariant Euler form). Suppose X is a manifold, with a U(1)-equivariant
SO(2n)-bundle E, carrying a U(1)-equivariant connection. The equivariant Euler form of E
is [check signs]

Euler(E) = Pf
(

1
2π

(Y + F)
)
∈ Ω∗(X) (2.139)

where Y ∈ Ω0(so(E)) is the generator of the U(1) action and F ∈ Ω2(so(E)) is the curva-
ture of the equivariant connection on E.

So Euler(E) is a form concentrated in even degrees. For example, in the case n = 1,
using the standard trivialization of so(2), we have simply

Euler(E) =
1

2π
(ik + F), (2.140)

the sum of a 0-form and a 2-form. More generally, the bottom component of Euler(E) is
∏n

i=1
iki
2π where the ki are the weights of the U(1)-action. In particular, if no ki = 0 then

Euler(E) has nowhere-vanishing bottom component. This means Euler(E) is invertible
in Ω∗(X), i.e. there is a form

1
Euler(E)

∈ Ω∗(X). (2.141)

Exercise 2.33. Write the form 1
Euler(E) explicitly in the case n = 1.
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We use this in the statement of the next theorem:

Theorem 2.30 (Atiyah-Bott-Berline-Vergne localization in general [18, 19]). Suppose M
is a compact manifold with a U(1)-action, with fixed locus F. Also suppose β ∈ Ω∗(M)
is an equivariantly closed form. Choose a U(1)-invariant metric g on M. Then

∫
M

eβ =
∫

F

eβ

Euler(NF)
. (2.142)

Exercise 2.34. Show that Theorem 2.30 reduces to Theorem 2.28 when the fixed points of
the U(1)-action are isolated.

Exercise 2.35. Use Theorem 2.30 to generalize Exercise 2.31 to the case where the bi need
not be distinct.

Exercise 2.36. Generalize the proof of Theorem 2.28 to a proof of Theorem 2.30. [hard? at
least needs more delicacy with the steepest descent expansion]

3 QFT in 1 dimension

Now we move to 1-dimensional quantum field theory. This involves a choice of Rie-
mannian 1-manifold (X, η). We will take X to be compact: either

X = [0, T] or X = S1(T) (3.1)

(where by S1(T) we mean the circle with circumference T). We parameterize X by t which
we sometimes think of as “time.”

Our configuration space CX, over which we want to integrate, will now be some kind
of space of “generalized functions on X.”

3.1 The 1-dimensional sigma model

Fix the data:

• A Riemannian manifold (Y, g),

• A function V : Y → R (“potential”).

We are going to define a 1-dimensional quantum field theory which will be equivalent to
the usual nonrelativistic quantum mechanics describing a single particle propagating on Y.

In this quantum field theory, when X = S1, the field space is the space of continuous
maps

CS1 = {φ : S1 → Y}. (3.2)
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When X is the interval, we will include a bit more data: use the notation X = [0, T]y1
y0 to

mean the interval decorated by boundary conditions at the two ends, and define

C
[0,T]

y1
y0
= {φ : [0, T]→ Y | φ(0) = y0, φ(T) = y1}. (3.3)

The action is, for differentiable φ,

S(φ) =
∫

X
dvolX

(
1
2

g(φ̇, φ̇) + V(φ)− 1
6

R(φ)
)

(3.4)

=
∫

X
dt
√

ηtt

(
1
2

gij(φ)φ̇
iφ̇jηtt + V(φ)− 1

6
R(φ)

)
(3.5)

where R : Y → R is the scalar curvature.
If we choose the parameter t on X to be the arc-length, then the action reduces to

S(φ) =
∫

X
dt
(

1
2

gij(φ)φ̇
iφ̇j + V(φ)− 1

6
R(φ)

)
. (3.6)

We can think of various φ ∈ CX as various possible trajectories that the particle could take
on Y.

Formally we would like to consider the partition function on X = S1,

ZS1(T) ”=”
∫
CS1(T)

dφ e−S. (3.7)

or the analogue on the interval,

Z
[0,T]

y1
y0

”=”
∫
C
[0,T]

y1
y0

dφ e−S (3.8)

So (3.7) is a sum over all closed trajectories in Y, and (3.8) is a sum over all possible paths
a particle can take from y0 to y1.

More generally, given any functionalO : CX → R we can contemplate the (unnormalized)
expectation value

〈O〉 ”=”
∫
CX

dφO(φ) e−S. (3.9)

How are we to make sense of (3.9)? As it stands, it has (at least) two difficulties. First,
there is no reasonable notion of translation-invariant Lebesgue measure on an infinite-
dimensional space,12 so it is not clear what we could mean by dφ. Second, the action
S is not defined for arbitrary continuous paths, only for differentiable ones. For non-
differentiable paths it looks like we should have S(φ) = ∞ in some sense. As we will
discuss momentarily, these difficulties actually “cancel” one another in some sense.

12The basic problem is that in an infinite-dimensional Banach space a ball of radius 1 contains infinitely
many disjoint balls of radius ε.
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3.2 Discretization

Let us start with the case X = [0, T]y1
y0 . One natural approach to defining (3.8) is to try

discretization i.e. replacing X by a lattice of N + 1 points, with spacing ∆t = T
N . Then we

define a discretized field space
CX;N, (3.10)

the space of geodesic polygons i.e. piecewise-smooth paths, with each segment the unique
minimizing geodesic between its endpoints.

CX;N is an open dense subset13 in YN+1. Restricting S to these paths gives S : CX;N → R.
CX;N also has a natural measure induced from the volume measure on Y, up to a tricky
constant:

dµN =
1

(2π∆t)
dim Y

2 ×N

N−1

∏
n=1

dvolY(φ(tn)). (3.11)

Thus we can define the discretized partition function

ZN =
∫
CX;N

dµN e−S (3.12)

and then try to make sense of the limit as N → ∞. The limit does indeed exist (in “good”
situations, e.g. Y compact or Y = Rn), which I think has been known for a long time
when Y = Rn, but is apparently much more recent for more general Y, e.g. see [20, 21]
for the case of Y compact. To describe what the limit is, we need a digression on the heat
kernel.

3.3 Heat kernel

We continue with a Riemannian manifold Y and a function V : Y → R. Then we have
an operator acting on C∞(Y),

H = −1
2

∆ + V. (3.13)

The heat equation defined by these data is an equation for functions of two variables, f :
R×Y → R. We view such an f as a family of functions ft : Y → R; then the heat equation
is

∂t ft(x) + H ft(x) = 0. (3.14)
13The restriction to an open dense subset is a technicality, brought on by the fact that some pairs of points

are connected by more than one length-minimizing geodesic.
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Proposition 3.1 (Heat kernel). Suppose Y is compact or Y = R.14 For any t ∈ R+, the
heat kernel (deformed by V) is a smooth function kt on Y × Y, obeying the heat equation
in the first variable,15

∂tkt(x, y) + Hxkt(x, y) = 0 (3.15)

and such that as t→ 0+ this solution “concentrates” at the point y,

lim
t→0+

kt(x, y) = δ(x, y). (3.16)

These properties characterize kt.

Exercise 3.1. Show that on Y = Rn, when V = 0, the heat kernel is16

kt(x, y) =
(

1
2πt

) n
2

exp
(
− 1

2t
‖x− y‖2

)
. (3.17)

The heat kernel is really a kernel in the following sense. Given a smooth function
f : Y → R, one can extend it to a family of smooth functions ft : Y → R for t ∈ R≥0 by
solving the heat equation (3.14). In particular, this defines a map Ut : C∞(Y) → C∞(Y),
taking f 7→ ft, which we might call “evolving the heat equation for time t.”

A convenient notation is to write

Ut = e−tH. (3.18)

The justification for this notation is that Ut obeys the differential equation

d
dt

Ut = −HUt (3.19)

which is really just a rephrasing of the heat equation (3.14), and U0 = 1.

Exercise 3.2. Prove (3.19).

Proposition 3.2. kt(x, y) is the integral kernel for Ut, in the sense that

(Ut f )(x) =
∫

M
dvoly kt(x, y) f (y). (3.20)

Ut is an extremely nice operator, with the “smoothing” property: for any t > 0 it maps
distributions to C∞ functions. In particular it gives a linear operator on L2(Y). This is not
a unitary operator.17

14I don’t know the precise class of manifolds where the heat kernel is known to exist.
15Our convention is that ∆ is the usual Laplacian, i.e. ∆ = ∑ ∂2

i on Rn. This has the inconvenient
consequence that ∆ is a negative definite operator on L2(Y). Thus we will often find ourselves considering
−∆.

16The usual formulas for the heat kernel differ from this by the replacement t → 2t, because they omit
the factor 1

2 in the definition of H. The same replacement is needed in comparing the formulas we write
below on a Riemannian manifold to those in the literature, e.g. [22].

17One could have instead considered the analytic continuation t → it which would have been the time
evolution for the Schrödinger equation; in that case it really would be unitary.
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3.4 Path integral and heat kernel

Now we can state the main fact about the 1-dimensional sigma model: its path integral
actually exists and the result is the heat kernel!

Proposition 3.3 (Lattice approximations to 1-dimensional sigma model converge to the
heat kernel). If X = [0, T]y1

y0 , then the discretized path integrals converge, so we can define

Z
[0,T]

y1
y0
= lim

N→∞
ZN. (3.21)

Moreover,
Z
[0,T]

y1
y0
= kT(y0, y1). (3.22)

In the stochastic-process community this would be rephrased as the statement that, in
the case V = 0, limN→∞ dµNe−S is the (conditional) Wiener measure. Indeed the defining
property of Wiener measure is its relation to the heat kernel. Note that although dµNe−S

has a well defined limit, the measure dµN by itself does not.
If we take X = S1(T) then we can make a similar discretization of the path integral:

the only difference is that we require y0 and yN to be equal and then we integrate over
their common value. Thus for the partition function we get

ZS1(T) =
∫

Y
dvolY kt(y, y). (3.23)

This integral has another interpretation: it is the trace of the integral operator UT acting
on L2(Y). Stated formally,

Proposition 3.4 (Lattice approximations to 1-dimensional sigma model on S1 converge
to the trace of the heat flow). If X = S1(T), then the discretized path integrals converge,

ZS1(T) = lim
N→∞

ZN, (3.24)

and then
ZS1(T) = TrL2(Y) e−TH. (3.25)

3.5 A discretization computation

Here is a rough computation which gives some motivation for Proposition 3.3. (See
[21] for an actual proof along these lines.) We consider the special case V = 0. First, the
property UT = UN

∆t gives a relation between the integral kernels,

kT(yN, y0) =
∫

YN−1

N−1

∏
n=1

dvolyn

N−1

∏
n=0

k∆t(yn+1, yn). (3.26)

Next we use the short time asymptotics of the heat kernel. As ∆t→ 0, there is a sort of
complicated expansion described in [23]. Fortunately we need only the leading behavior
of kt(x, y) as ∆t → 0 and x → y, plus the first-order correction in ∆t, plus the first-order
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correction in d(x, y); all the higher-order terms will not contribute in (3.26) after we take
the large N limit.

The leading behavior as ∆t → 0 and x → y is not hard to guess: it is the same as on
Rn, namely

k∆t(x, y) ∼
(

1
2π∆t

) dim Y
2

exp
(
− 1

2∆t
d(x, y)2

)
. (3.27)

The first-order correction in d(x, y) can be extracted from [23]: it is of the form

k∆t(x, y) ∼
(

1
2π∆t

) dim Y
2

exp
(
− 1

2∆t
d(x, y)2

)(
1 +

1
12

Ricx(x− y, x− y) + · · ·
)

.

(3.28)
To get the first-order correction in ∆t we can restrict to the diagonal, and then look in [22]
which says that as ∆t→ 0 we have

k∆t(x, x) ∼
(

1
2π∆t

) dim Y
2

exp
(
− 1

2∆t
d(x, x)2

)(
1 +

1
12

R(x)∆t + · · ·
)

(3.29)

Substituting these in (3.26) we get

kT(yN, y0) ∼
∫

YN−1

N−1

∏
n=1

dvolyn

N−1

∏
n=0

(
1

2π∆t

) dim Y
2

×

exp
(
− 1

2∆t
d(yn+1, yn)

2
)(

1 +
1
12

R(yn)∆t +
1

12
Ricyn(yn+1 − yn, yn+1 − yn) + · · ·

)
(3.30)

The last term is a bit tricky to deal with, but under the integral it can be replaced by
1
12 R(yn)∆t. [explain how] Thus altogether we get

kT(yN, y0) ∼
∫

YN−1
dµN exp

[
N−1

∑
n=0

∆t

(
−1

2

(
d(yn+1, yn)

∆t

)2

+
1
6

R(yn)

)
+ · · ·

]
. (3.31)

Finally, this last expression agrees with the restriction of S to polygonal paths, up to terms
which vanish in the limit ∆t → 0. This completes our formal “proof” of Proposition 3.3
when V = 0.

When V 6= 0 we can make a similar formal argument to motivate Proposition 3.3.
One technical point is that we need to be able to separate the pieces involving ∆ from the
pieces involving V. This is done using the following, applied to A = −1

2 T∆, B = TV:

Proposition 3.5 (Trotter product formula). For operators A, B obeying appropriate functional-
analytic hypotheses,

eA+B = lim
N→∞

(
e

A
N e

B
N

)N
. (3.32)

Exercise 3.3. Use Proposition 3.5 to extend the formal argument we gave for Proposi-
tion 3.3 to the case V 6= 0.
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3.6 Local observables

There is a similar interpretation for the path integral with a “local observable” in-
serted. By this we mean an observable O : CX → R whose value only depends on some
finite-order jet of φ ∈ CX at some fixed t: the “locality” is along X, in the t coordinate. The
simplest example would be to take some function F : Y → R and then define

OF(t) : CX → R (3.33)

by
(OF(t))(φ) = F(φ(t)). (3.34)

Then we can define correlation functions

〈OF(t)〉X ”=”
∫
CX

dφ F(φ(t)) e−S (3.35)

by the same kind of discretization we discussed above (except that we should take subin-
tervals of irregular lengths, so that t can be on the boundary between two of them). The
result is [ref?]

Proposition 3.6. 〈OF(t)〉[0,T]
y1
y0

is the integral kernel representing the operator

e−H(T−t) F̂e−Ht (3.36)

on L2(Y), where F̂ means the operator of multiplication by F.

One pictures this as an instruction: “propagate for time t, then do F, then propagate
for another time T − t.”

Exercise 3.4. Bootstrap Proposition 3.6 into a similar formula for 〈OF1(t1)OF2(t2) · · · OFk(tk)〉.

Exercise 3.5. Give a heuristic proof of Proposition 3.6 along the lines of what we did above
for Proposition 3.3.

Proposition 3.6 says that the path integral converts the observableOF associated to the
function F : Y → R into an operator F̂ on L2(Y), albeit a rather obvious one. This process
is sometimes called path-integral quantization of the function F.

We could also consider observables depending on, say, the 1-jet of φ instead of the
0-jet. This would amount to considering a function F : TY → R, defining

(OF(t))(φ) = F(φ′(t)), (3.37)

and constructing 〈OF(t)〉 again by discretization. Then it is an interesting question to
identify the corresponding operator on L2(Y).

At least when Y = R we can answer this question: [though strictly speaking Y = R

was not allowed in our previous discussion]
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Proposition 3.7. When Y = R, use the standard metric to identify TY = TR with T∗Y =
T∗R coordinatized by (x, p). Then the function F = p induces (in the above sense) the
operator

p̂ = −∂x (3.38)

on L2(R).

Exercise 3.6. Give a heuristic proof of Proposition 3.7.

3.7 Noncommutativity and discretization

Thus the path-integral quantization converts the functions p, q on T∗R to operators
p̂, q̂ on L2(R). Of course p̂ and q̂ do not commute with one another, which might at first
seem puzzling: where does the noncommutativity come from? Consider the decorated
intervals below:

Naively we would have (where↔means “is the heat kernel for,” and T = t1 + t2 + t3)

e−t3H p̂e−t2H x̂e−t1H ↔
∫
C
[0,T]

y1
y0

dφ φ′(t1 + t2)φ(t1)e−S(φ), (3.39)

e−t3H x̂e−t2H p̂e−t1H ↔
∫
C
[0,T]

y1
y0

dφ φ(t1 + t2)φ
′(t1)e−S(φ). (3.40)

In the limit t2 → 0 these two path integrals both formally limit to the same object,∫
C
[0,T]

y1
y0

dφ φ(t1)φ
′(t1)e−S(φ) (3.41)

but we want to say that actually the two limits are not quite the same: one is e−t3H p̂x̂e−t1H

and the other is e−t3H x̂ p̂e−t1H. How can this be?
To understand this issue let us think a bit more carefully about how we defined the

path integral by discretization. When we discretize the interval [0, T] we will put one of
the discretization points at t1, in order to have a clean definition of the operator φ(t1). But
what do we do about φ′(t1)? Let us set

y1 = φ(t1 − ∆t), y2 = φ(t1), y3 = φ(t1 + ∆t). (3.42)

The two limits we are considering would lead to the two definitions

φ′(t1) = (x2 − x1)/∆t, φ′(t1) = (x3 − x2)/∆t. (3.43)
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In the discretized path integrals with these two insertions the x2-dependent part is re-
spectively

1
∆t

∫
dx2 (x2 − x1)x2 e−F(x),

1
∆t

∫
dx2 (x3 − x2)x2 e−F(x) (3.44)

where
F(x) = [(x1 − x2)

2 + (x3 − x2)
2]/(2∆t). (3.45)

These two integrals are not quite the same: indeed, since
∫

dx2 ∂x2(x2e−F(x)) = 0 we get
for their difference

1
∆t

∫
dx2 x2((x2 − x1)− (x3 − x2)) e−F(x) = −

∫
dx2 e−F(x). (3.46)

Note this difference survives in the limit ∆t → 0! Now, (3.46) says the difference x̂ p̂− p̂x̂
behaves the same in the path integral as the operator −1. Thus it is what we expected
from the commutation relation

[ p̂, x̂] = −1. (3.47)

3.8 Symmetries

Recall from the 0-dimensional case that symmetries of S — i.e. vector fields on C which
annihilate S — lead to constraints on correlation functions.

In the 1-dimensional theory we are considering here, with action (3.4), we have two
different sources of symmetries:

• isometries of X,

• isometries of Y.

For X = S1(T), the group of isometries of X is Isom(X) ' U(1), acting by shifts t→ t+ c.
The immediate consequence of this U(1) symmetry is that for any c we have

〈O1(t1)O2(t2) · · · On(tn)〉S1(T) = 〈O1(t1 + c)O2(t2 + c) · · · On(tn + c)〉S1(T). (3.48)

Similarly for any g ∈ G = Isom(Y) we have

〈O1(t1)O2(t2) · · · On(tn)〉S1(T) = 〈O
g
1(t1)O

g
2(t2) · · · O

g
n(tn)〉S1(T). (3.49)

The facts (3.48), (3.49) can also be understood from the Hamiltonian point of view, i.e.
using the fact that (if T > tn > tn−1 > · · · > t1 > 0)

〈On(tn)On−1(tn−1) · · · O1(t1)〉S1(T) = TrH e−(T−tn)HÔne−(tn−tn−1)HÔn−1 · · · Ô1e−t1H.
(3.50)

Exercise 3.7. Prove (3.48) and (3.49) using (3.50).
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In the proof of (3.49), we use the fact that G acts onH = L2(Y), and Ôg = gÔg−1.
[the conserved charge]
[coupling to “background field”: connection on the circle]
Finally let us introduce a piece of notation which will be useful later. Each of the

symmetry groups we considered above is a connected Lie group, so we can describe its
action on C by giving the action of the Lie algebra. For example, the infinitesimal shift
t→ t + ε acts by φ(t)→ φ(t) + εφ̇(t), which we represent by writing

δφ = εφ̇, (3.51)

or relative to any coordinate system on Y,

δφI = εφ̇I . (3.52)

Similarly an element X ∈ g = Lie(Isom(Y)) acts by

δφ = εX(φ), (3.53)

or in coordinates
δφI = εX I(φ), (3.54)

where X I∂I is the coordinate expression of the vector field by which X acts on Y.

3.9 Simple examples

Example 3.8 (Harmonic oscillator). A fundamental example is the case

Y = R, V =
1
2

ω2x2, ω ∈ R. (3.55)

Then we have
H = −1

2
∂2

x +
1
2

x2ω2 (3.56)

acting onH = L2(R). There is a nice explicit basis of eigenfunctions,

ψ0 = e−ωx2/2, (3.57)

ψ1 = xe−ωx2/2, (3.58)

ψ2 =

(
x2 − 1

2ω

)
e−ωx2/2, (3.59)

ψn = Hn(x
√

ω)e−ωx2/2 (3.60)

where Hn is the n-th Hermite polynomial. They obey

Hψn =

(
1
2
+ n

)
ωψn, (3.61)
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so the eigenvalues of H are (
1
2
+ n

)
ω for n ≥ 0. (3.62)

Thus the partition function on X = S1(T) is

ZS1(T) = Tr e−TH =
∞

∑
n=0

exp
(
−ωT

(
n +

1
2

))
=

1
2 sinh(ωT/2)

. (3.63)

Example 3.9 (Sigma model into S1). Another basic example is

Y = S1
R, V = 0. (3.64)

Here we have
H = −1

2
∂2

x (3.65)

acting onH = L2(S1
R). A simple basis of eigenfunctions is

ψ0(x) = 1, ψ2n−1(x) = sin
(

2πnx
R

)
, ψ2n(x) = cos

(
2πnx

R

)
(3.66)

and so the eigenvalues are

0,
2π2n2

R2 (with multiplicity 2) for n > 0. (3.67)

Thus the partition function on X = S1(T) is

ZS1(T) = Tr e−TH = 1 + 2
∞

∑
n=1

exp
(
−2π2n2T

R2

)
=

∞

∑
n=−∞

exp
(
−2π2n2T

R2

)
, (3.68)

also known as the Jacobi theta function,

ZS1(T) = ϑ

(
τ =

2πiT
R2 , z = 0

)
. (3.69)

Exercise 3.8. For α ∈ R, let Sα : H → H be the operation of shifting by α, ψ(x) 7→
ψ(x + α). Compute TrH e−THSα. (You should find a theta function with the argument z
nonzero, generalizing (3.69).)

3.10 Infinite-dimensional determinants

In the examples of subsection 3.9 the discretized path integrals involve only Gaussian
integrals, albeit Gaussian integrals over unbounded numbers of variables. Recall from
(2.32) that for finite-dimensional Gaussian integrals we have

(2πc)−
1
2 dim V

∫
V

dµ e−
1
2 M(x,x) =

dµ√
det(cM)

. (3.70)
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The discretized versions of the path integrals in subsection 3.9 have the form of the LHS,
if we take c = ∆t = T/N. Now, we have seen that the N → ∞ limit of the discretized
path integral exists. Thus the limit of the RHS also exists. We would like to interpret it as
some kind of infinite-dimensional determinant.

One obstacle is that in the infinite-dimensional case the measure dµ does not exist. So,
we need to get rid of that. For this note that in the finite-dimensional case, we can identify
the bilinear pairing M∆t with a linear operator A on V, by choosing an identification
V ' V∗ coming from a metric on V. If we choose our metric on V such that ‖dµ‖ = 1
then we have the simple relation

dµ√
det M∆t

=
1√

det A
. (3.71)

Exercise 3.9. Show that the N × N matrix A which appears in the discretization of the
path integral of Example 3.8 is

Aij =

(
2 +

ω2T2

N2

)
δi,j − δi,j−1 − δi,j+1. (3.72)

Check (at least numerically) that 1/
√

det A indeed approaches the value (3.63) as N → ∞.
(Explicitly the eigenvalues of A are: ω2T2

N2 , 4 sin2(πn/N) + ω2T2

N2 (with multiplicity 2) for

1 ≤ n ≤ N
2 − 1, and 4 + ω2T2

N2 if N is even.)

Exercise 3.10. Do similarly for Example 3.9.

We would like to make sense of the limit of the operator A, and its determinant, as
N → ∞. One interpretation is as follows. Let V denote the space of loops S1 → R

for which the total energy is finite. This is an infinite-dimensional vector space (even a
Hilbert space) carrying the quadratic function

S(φ) =
1
2

∫ T

0
dt
(
‖φ̇(t)‖2 + ω2φ(t)2

)
. (3.73)

We expand

φ(t) = c
√

T +
∞

∑
n=1

√
2T

2πn

(
an sin

(
2πn

T
t
)
+ bn cos

(
2πn

T
t
))

. (3.74)

Now, we choose the norm
‖φ‖2 = c2 + ∑

n
a2

n + b2
n. (3.75)

Then we have

S(φ) =
1
2

(
ω2T2c2 +

∞

∑
n=1

(
1 +

ω2T2

4π2n2

)
(a2

n + b2
n)

)
(3.76)
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Thus the eigenvalues of the operator A corresponding to the quadratic function M = 2S
are

ω2T2, 1 +
ω2T2

4π2n2 (with multiplicity 2) for all n > 0, (3.77)

which gives18

√
det A = (ωT)

∞

∏
n=1

(
1 +

ω2T2

4π2n2

)
= 2 sinh(ωT/2) (3.79)

as desired.
What is puzzling about this is that it is not clear a priori why the norm (3.75) is the right

one to choose. One encouraging sign: the paper [24] proves a similar statement in the
case of an arbitrary Riemannian Y with V = 0 (under some nondegeneracy conditions);
there it says the correct norm to take is a Sobolev H1 norm, which is indeed what we did
above. [we can verify more directly that the two correspond by making the appropriate
rescalings in the discretization]

Exercise 3.11. Carry out a similar analysis for Example 3.9, relating the partition function
ZS1(T) we found there to determinants of operators on infinite-dimensional spaces. (In
this case the field space CS1(T) is actually disconnected, because maps S1 → S1 have a
discrete invariant, the winding number. Nevertheless each connected component is an
infinite-dimensional vector space, which we can analyze as above. In each component
you meet the same infinite-dimensional determinant, multiplied by a prefactor depending
on the component; so even without computing this determinant, you can get the answer
up to a single undetermined constant. To see that it agrees with (3.69) you will need to
use the Poisson summation formula, aka the modular property of the theta function.)

3.11 Perturbation theory in quantum mechanics

Now how about path integrals for actions which are not quadratic but are close to
quadratic, in the same sense as subsection 2.4 above?

For example, let’s consider the quartic oscillator, which is the case Y = R,

V(x) =
1
2

ω2x2 +
λ

4!
x4. (3.80)

We will treat the case X = S1(T). Following the same pattern as subsection 2.4, we
can write down Feynman rules for the asymptotic expansion of the partition function, or
correlation functions, in powers of λ. In fact our action is an infinite-dimensional version
of (2.31), and so we use exactly the same rules we used in that case, just adapted to the
case where C is an infinite-dimensional vector space.

18We use the product formula

sinh x = x
∞

∏
n=1

(
1 +

x2

π2n2

)
. (3.78)
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Thus to compute Z/Z0 we sum over “bubble” diagrams with only 4-valent vertices.
The role of M−1 ∈ V⊗2 is now played by the Green’s function for the quadratic part of the
action. Namely, let

M(x, x) =
∫ T

0
dt
(

1
2
‖ẋ(t)‖2 +

1
2

ω2x(t)2
)

(3.81)

Then the function
G(t, t′) = G(t− t′) =

1
2ω ∑

n∈Z

e−ω|(t−t′)+nT| (3.82)

inverts M in the sense that it obeys19

M
(
G(t, t′), f (t)

)
= f (t′). (3.83)

Then, in parallel with the story of the 0-dimensional theory with quartic potential in sub-
section 2.4, the Feynman diagrams with ≤ 2 vertices give

log
Z
Z0
∼ −λ

8

∫
dt G(0)2 +

λ2

48

∫
dt dt′ G(t− t′)4 +

λ2

16

∫
dt dt′ G(t− t′)2G(0)2 + O(λ3)

(3.84)

= − λT
32ω2

(
coth

(
ωT
2

))2

+ O(λ2). (3.85)

Here is one concrete consequence of this formula. In the limit of large T, ωT � 1, we
have log Z ∼ −TE where E is the ground state energy, i.e. the smallest eigenvalue of H.
Then (3.85) gives the first-order correction to E as

E− E0 ∼
λ

32ω2 + O(λ2). (3.86)

More generally, (3.85) contains the first-order perturbations of all the energy eigenvalues,
not only the lowest one.

Exercise 3.12. Verify that (3.86) agrees with the usual result of first-order perturbation
theory, which says that if we perturb the Hamiltonian by H → H + δH, the resulting
perturbation of the energy is δE = 〈ψ0, (δH)ψ0〉, where ψ0 is the lowest eigenstate of the
unperturbed Hamiltonian H, normalized by 〈ψ0, ψ0〉 = 1.

Exercise 3.13. Evaluate explicitly the O(λ2) terms in (3.84). Use them to compute the
O(λ2) correction to the ground state energy.

Exercise 3.14. Work out the prediction of first-order perturbation theory for the “sextic
oscillator” with potential

V(x) =
1
2

ω2x2 +
λ

6!
x6. (3.87)

19When V is a finite-dimensional vector space, for a map M : V ⊗ V → R, M−1 : V∗ ⊗ V∗ → R can
be characterized by the equation M(M−1(η, ·), v) = η(v). (3.83) is an infinite-dimensional version of that
equation, where we take V to be the space of functions on S1.
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Exercise 3.15. Extract from (3.85) a prediction for the first-order perturbation of the second-
lowest energy eigenvalue of the quartic oscillator.

[perturbation theory for heat kernel?]

3.12 Quantum mechanics coupled to a vector bundle

Suppose Y is a Riemannian manifold, carrying a metric vector bundle E with connec-
tion ∇, and a Laplace-type operator ∆ : C∞(Y, E)→ C∞(Y, E),

∆ = ∇∗∇+ V. (3.88)

Then we can define a heat equation coupled to E, just like (3.14) except that we use the
operator H = −1

2 ∆ on L2(Y, E). The heat kernel kt(x, y) in this case is a section of E � E∗

over Y×Y: thus integrating it against a section of E gives another section of E.
Much like (3.17), this heat kernel arises from a 1-dimensional quantum field theory,

with one new coupling added giving the parallel transport in E. Namely we write path
integrals in the form

ZX =
∫

dφ Holφ e−S(φ) (3.89)

where

• S(φ) is defined just as in (3.6).

• In case X = S1, Holφ means the trace of the holonomy of φ∗E.

• In case X = [0, 1]y1
y0 , Holφ means the holonomy itself, so that ZX is not a number but

a map Ey0 → Ey1 .

Then we have:

Proposition 3.10 (Partition function of 1-d QFT coupled to a vector bundle on the tar-
get). ZS1(T) = TrL2(E) e−TH.

3.13 Supersymmetric quantum mechanics

We’ve seen that given a Riemannian manifold Y there is a corresponding 1-dimensional
QFT of maps X → Y, formally involving integrals over the path space

CX = Map(X, Y), (3.90)

which has to do with the heat flow on Y. In particular, its partition function on X = S1(T)
is

ZS1(T) = Tr e−HT (3.91)

which contains the whole spectrum of H = −∆. This is very far from being deformation
invariant: morally it depends on every little detail of the metric on Y.
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To get something more topological we repeat the strategy we used in subsection 2.12
and subsection 2.14: add fermions! Concretely, we will make a new QFT whose configu-
ration space is formally

CX = ΠT Map(X, Y). (3.92)

One immediate observation is that if Map(X, Y) is oriented (whatever this means!)
then we expect to have (at least formally) a canonical measure of integration d~xd~ψ, like
what we had in subsection 2.14 where we took C = ΠTM. Thus we may expect that
the constructions will be more canonical than they were in the non-supersymmetric case,
where our choice of measure was somewhat arbitrary.

A point of CX = ΠT Map(X, Y) concretely means a pair of:

• φ : X → Y,

• ψ ∈ ΠΓ(φ∗TY).

Now we write the action S ∈ C∞(CX):

S(ϕ, ψ) =
∫

dt
1
2
(g(φ̇, φ̇) + g(ψ,∇tψ)) (3.93)

where ∇t is the pullback of the Levi-Civita connection from Y, acting on sections of TY.
The fermion bilinear term g(ψ,∇tψ) should as usual be understood in a purely alge-
braic way: it defines an element of ∧2(Γ(φ∗TY)), which by definition gives a function on
ΠΓ(φ∗TY) as needed.

Exercise 3.16. Check that
∫

dt g(·,∇t·) is indeed a skew-symmetric pairing on Γ(φ∗TY).
(Thus it would vanish if we inserted an ordinary even field in both slots; this is why we
don’t write such first-order terms in the ordinary bosonic 1-d QFT.)

As before, this action is invariant under the symmetry of time translations, which we
represent by its infinitesimal action H ∈ Vect0(CX),20

δφ = εφ̇, δψ = εψ̇. (3.94)

But now it is also invariant under an odd symmetry Q ∈ Vect1(CX), whose infinitesimal
action is

δφ = εψ, δψ = −εφ̇. (3.95)

Let us verify this invariance in the special case Y = Rn: then we have

S =
∫

dt
1
2
(φ̇I φ̇I + ψIψ̇I) (3.96)

and thus
δS =

∫
dt

1
2
(2εψ̇I φ̇I − εφ̇Iψ̇I − ψIεφ̈I) (3.97)

20It’s possible to get confused about the invariant meaning of this formula, so let’s spell it out: it means
that relative to any local coordinate system on Y, we have δφI(t) = εφ̇I(t) and δψI(t) = εψ̇I(t).
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which indeed vanishes (using integration by parts in the last term, and keeping track of
the fact that ε and ψI anticommute to get the signs right.)

For a more general Riemannian manifold Y the verification is somewhat trickier, but
the outcome is the same:

Exercise 3.17. Verify that S is invariant under Q.

The two symmetries Q and H are not unrelated:

Exercise 3.18. Verify that Q and H obey the 1-dimensional supersymmetry algebra

1
2
[Q, Q] = −H. (3.98)

Thus, in this theory Q provides a “square root of time translations.”
Moreover, variations of the metric g on Y are Q-exact:

Exercise 3.19. Show that under a variation g → g + δg, the action S changes by S →
S + QΨ, where Ψ = −1

2

∫ T
0 dt (δg)I J φ̇

IψJ . [check]

Thus, if we were dealing with finite-dimensional integrals, Proposition 2.21 would
show that the partition function in this theory is independent of the metric on Y. In our
infinite-dimensional setting we will see that this metric-independence still holds. The
infinite-dimensional setting does bring a surprising twist, discussed in subsection 3.14: in
order for ZS1(T) to be well defined, Y needs to be a spinnable manifold.

3.14 Integrating out fermions

[warning, doing this by discretization seems to be subtle, because of fermion doubling
problem! need to give some explicit way of understanding the result here]

Suppose Y is even-dimensional, say dim Y = 2n.
For fixed φ : S1(T)→ Y, the integral over the fermions is formally

W(φ) =
∫

ΠΓ(φ∗TY)
d~ψ e−

1
2
∫ T

0 g(ψ,∇tψ) (3.99)

We claim that here an important topological subtlety appears: in order to regulate the
theory, i.e. to actually define this integral, we will need to fix an orthonormal trivialization
Fφ of φ∗TY, and the path integral W(φ) will actually depend on this choice (so it is more
accurately written W(φ, Fφ).) For each fixed φ, the space of possible Fφ is a torsor for the
loop group L SO(2n). In particular, it divides up into connected components, which are
a torsor for π1(SO(2n)); this group is Z for n = 1 and Z/2Z for n > 1. Let τ denote
the generator. Naively W(φ, Fφ) would be independent of Fφ, but instead we have the
following:

Proposition 3.11. W(φ, Fφ) is invariant under small deformations of Fφ, but W(φ, Fφ) =
−W(φ, τFφ).

For general Y this sign ambiguity would prevent us from defining the path integral, at
least in the ordinary sense. To get rid of the problem we assume Y is spinnable, and then
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fix a spin structure on Y. This picks out a restricted class of orthonormal trivializations
Fφ, namely those which lift to trivializations of the Spin(2n)-bundle covering φ∗TY. If we
use only these trivializations in defining our discretized fermion path integral, then the
troubling sign ambiguity does not occur.

Now let us see how to study W(φ, Fφ) explicitly, roughly following a calculation given
in [25, 26].

Recall the discussion in subsection 3.10: given a bilinear pairing and a metric on a vec-
tor space V, we can extract a number, which in finite dimensions is naturally the result of
a Gaussian integral, and which we use to define Gaussian integrals in infinite dimensions.

Proposition 3.12. Relative to the Sobolev H1 norm in Γ(φ∗TY), the determinant of the
skew bilinear pairing 〈ψ,∇tψ〉 is (up to an overall constant) det(1−Holφ), where Holφ is
the holonomy of φ∗TY.

Proof. The eigenvalues of the operator ∇t are 2πi
T (k ± αi

2π ), k ∈ Z, where e±iαi are the
eigenvalues of Holφ. (To see this just diagonalize ∇t acting on complex sections: then
its diagonal entries look like ∂t ± iαi/T, with eigenfunctions e2πikt/T.) Thus formally the
determinant of this operator would be the infinite product

∏
k∈Z

n

∏
i=1
−4π2

T2

(
k +

αi

2π

) (
k− αi

2π

)
. (3.100)

This infinite product has a double zero at αi = 2πk, for any k.
Now, we take the Sobolev H1 norm in Γ(φ∗TY); then the eigenfunctions are orthog-

onal but not orthonormal: for large k, the k-th eigenfunction has squared-norm ∼ k2T2.
Thus the determinant relative to this norm will be a product of factors which for large k
go like

∏
k

n

∏
i=1

(
1 +

αi

2πk

) (
1− αi

2πk

)
. (3.101)

In particular it is now convergent, and must converge to an honest function of the αi,
with zeroes at αi = 2πk, which moreover is periodic as αi → αi + 2π. This [plus some
condition on asymptotic growth] determines it up to a constant as ∏n

i=1(2 sin αi
2 )

2. The
next lemma then finishes the proof.

Lemma 3.13. If A ∈ SO(2n) has eigenvalues e±iαi then

det(1− A) =
n

∏
i=1

(
2 sin

αi

2

)2
. (3.102)

[comment on zeta reg?]
What we are really after is the Pfaffian of the pairing 〈ψ,∇tψ〉, not the determinant;

so we need to take a square root of det(1−Holφ). Since (3.102) represents this quantity
as a square, it gives a natural-looking choice of square root, namely ∏(2 sin αi

2 ). We claim
that this is indeed the correct square root to take. Note that this requires us to lift Holφ to
Spin(2n), since it changes by a sign under αi → αi + 2π.21

21We might also have decided to just always take the positive square root. Then there would be no sign
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For later purposes it will be convenient to have another interpretation of this answer
which brings in the spin representation:

Proposition 3.14. If A ∈ Spin(2n) then

detV(1− A) = (−1)n(STrS A)2, (3.103)

where V denotes the vector representation.

Here STr means the supertrace, i.e.

STrS A = TrS0 A− TrS1 A. (3.104)

Proof. When n = 1, from our description of S in subsection A.1, we see immediately that
STrS A is simply (eiα/2 − e−iα/2) = 2i sin α

2 . More generally we can block-diagonalize to
reduce to the case where A ∈ SO(2)n ⊂ SO(2n) and use the fact that, as a representation
of SO(2)n ⊂ SO(2n), S is the tensor product of 2-dimensional representations, and the
grading on S is the induced grading.

Motivated by Proposition 3.12 and Proposition 3.14, we propose that the integral over
the fermions should be interpreted as [watch the (−1)n]

W(φ, Fφ) = STrS Holφ . (3.105)

3.15 Supersymmetric path integral and heat kernel

What we have just seen is that integrating out the fermions in our supersymmetric
quantum mechanics has the effect of creating an insertion of STrS Holφ. This means that
the effective theory we get is an ordinary bosonic quantum mechanics, but one coupled
to the vector bundle S = S0 ⊕ S1, with an unconventional sign rule; said differently, the
partition function of the supersymmetric theory is a difference

ZS1(T) = ZS1(T);S0 − ZS1(T);S1 (3.106)

where ZS1(T);E means the partition function of the bosonic theory coupled to the vector
bundle E, in the sense of subsection 3.12. Using Proposition 3.10, we then have

Proposition 3.15 (Partition function of supersymmetric quantum mechanics is the su-
pertrace of spinor heat flow).

ZS1(T) = STrH e−TH, (3.107)

where H = −1
2 ∆ acting on H = L2(Y, SY). [should be careful about which Laplacian we

use here: scalar curvature terms could intervene, but somehow they don’t]

This function is remarkably simple to analyze:

Proposition 3.16 (Supertrace of spinor heat flow is the index). STr e−TH = ind /∂0.

ambiguity, but some lack of smoothness as a function of φ; it’s not clear that this is fatal, but it does seem a
little off-putting, at least.
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Proof. This just uses the fact thatH = L2(Y, SY) is a unitary graded representation of the
1|1-dimensional superalgebra spanned by /∂ and ∆, with /∂† = /∂ and ∆† = ∆.

First we show that ker ∆ = ker /∂. Indeed, obviously ker /∂ ⊂ ker ∆. Conversely, if
ψ ∈ ker ∆ then we have

‖/∂ψ‖2 = 〈/∂ψ, /∂ψ〉 = 〈ψ, /∂2ψ〉 = 〈ψ,−∆ψ〉 = 0 (3.108)

and thus ψ ∈ ker /∂.
Since [/∂, ∆] = 0, ∆ is central, and thus it acts as a multiple of the identity in each

graded irreducible representation. So, consider a graded irreducible representation V in
which −∆ = E. Then it is straightforward to see there are only three possibilities:

• dim V = 1|1, E > 0,

• dim V = 1|0, E = 0,

• dim V = 0|1, E = 0.

Each representation of dimension 1|1 contributes e−TE − e−TE = 0 to STrH e−TH. The
representations of dimension 1|0 contribute in total dim ker /∂0, and those of dimension
0|1 give −dim ker /∂1.

The upshot of this section is that supersymmetric quantum mechanics computes the
index of the Dirac operator:

ZS1(T) = ind /∂0. (3.109)

3.16 Quantization of local operators

The next proposition makes it a bit clearer why spinors are involved in the story. Fix
a section γ of TY. Then for any t ∈ X there is a corresponding odd function Oγ(t) ∈
C∞(C) which gives a local observable. Just as we “quantized” the local observables in
[...], relating them to operators on L2(Y), now we can ask what is the quantization of
these odd functions. The answer is that they map to operators γ̂, which just act by the
Clifford action of γ on L2(Y, S):

Proposition 3.17. 〈Oγ1(t1)Oγ2(t2)〉S1(T) = STr(e−t1Hγ̂1e−t2Hγ̂2e−(T−t1−t2)H), and simi-
larly for products of more Oγ(t).

[give some sketch proof? discretization?]
[supercurrent which maps to the Dirac operator]

3.17 Localization and the index theorem

In this section we are going to “prove” the index theorem, Theorem A.22, using our
supersymmetric quantum mechanics. Of course, because we have been rather cavalier
about infinite-dimensional determinants, this is not a rigorous proof as it stands. The
original references for this proof are [27, 26, 25].
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Now we want to compute the partition function ZS1(T) by localization, similar to
what we did in subsection 2.14. Indeed, the path integral we want to do is an infinite-
dimensional version of the one given there, where:

• M is the loop space M = LY,

• the U(1) action on M is by rotation of the loops,

• H is the bosonic part of the action (3.93), 1
2

∫
g(φ̇, φ̇),

• ω is the fermionic part of (3.93), 1
2

∫
g(ψ,∇tψ).

Exercise 3.20. Verify that H is indeed a generating function for the U(1) action, i.e. that
ιYω = dH. [watch out for factor of 2 here]

Exercise 3.21. Verify that the odd symmetry Q corresponds to d + ιY.

[notation problem: used Y for the vector field earlier, now using it for target]
We are as usual free to choose any U(1)-invariant metric on M; we choose the one

induced from the metric on Y.
Now, formally applying Theorem 2.30 would lead to

ZS1(T) =
∫

F

eH+ω

Euler(NF)
(3.110)

where F ⊂ LY is the fixed locus of the U(1) action. But this is just the space of constant
loops, which make up a copy of Y inside LY, i.e. F ' Y. Restricted to F, we have
H = ω = 0. It just remains to evaluate the form Euler(NF).

First, what is NF? A tangent vector to the constant loop φ(t) = y is just a map S1 →
TyY. Fourier expanding, the space of these maps is TyY ⊕⊕k>0(TyY ⊗R2); using our
metric on LY to project off the tangent bundle TF, we get NF =

⊕
k>0(TyY ⊗R2). The

induced metric on NF is orthogonal and, in each summand, restricts to that of TY; in
particular its curvature is R⊗ 1, with R ∈ so(TY) the Riemann curvature 2-form, which

we block-diagonalize with weight 2-forms Ri, R =
⊕n

i=1 Ri

(
0 1
−1 0

)
. Meanwhile the

U(1) generator acts as 1⊗⊕k>0 k
(

0 1
−1 0

)
. So altogether

Euler(NF) = Pf

([
1⊗

⊕
k>0

k
(

0 1
−1 0

)]
+

[
n⊕

i=1

Ri

(
0 1
−1 0

)
⊗ 1

])
. (3.111)

Now, we have

Exercise 3.22. Show that Pf
(

a
(

0 1
−1 0

)
⊗ 1 + b1⊗

(
0 1
−1 0

))
= a2 − b2. [check signs]
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From this we compute the equivariant Euler form, formally, as an infinite product:

Euler(NF) =
n

∏
i=1

∏
k>0

(k + Ri)(k− Ri). (3.112)

Our arguments have been too heuristic to determine how this product is to be regu-
lated: in principle such a prescription should be part of the infinite-dimensional version
of Theorem 2.30. Still, we notice that this product is just the same as one we encountered
earlier [...] so we try regulating it the same way:

Euler(NF) =
n

∏
i=1

sin πRi

πRi
(3.113)

This almost matches Â(Y)−1 defined in Definition A.21, but not quite: its k-form part
differs by a rescaling by (4π2)k. A more precise treatment of the regularization should
allow us to fix this constant (in particular I think zeta function regularization works).
Alternatively we could fix it by computing one example in each dimension.

Thus the formal (3.110) becomes

ZS1(T) =
∫

Y
Â(Y), (3.114)

and combining this with (3.109) we obtain the index theorem Theorem A.22. Needless to
say, this is not a rigorous proof of Theorem A.22 as it stands!

3.18 The twisted case

One extension of the physical proof of the index theorem is worth mentioning. It was
given first in [28].

Suppose we fix a vector bundle E over Y with metric and compatible connection.22

Then we can define a variant of our 1-d supersymmetric QFT, similar to what we did in
the bosonic version in subsection 3.12: we define path integrals in the form

ZX =
∫

dφdψ H̃olφ e−S(φ,ψ) (3.115)

One important caveat is that in order for the full theory to be Q-invariant we need to use a
“supersymmetrized” holonomy H̃olφ, which includes some dependence on the fermions

and is engineered to have Q(H̃olφ) = 0.
Let us specialize to the case where E has rank 1 and X = S1(T). Then it is easy enough

to write the supersymmetrized holonomy explicitly: in components, it is

H̃olφ = exp
∮

S1(T)
AI(φ)φ̇I +

1
2

FI J(φ)ψIψJ (3.116)

where F is the curvature of the connection in E.
22E can even be a super vector bundle [...]
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Exercise 3.23. Verify that (3.116) is Q-invariant.

Exercise 3.24. Describe the generalization of (3.116) to bundles E of higher rank. [hard?]

After integrating out the fermions we obtain the bosonic theory coupled to the bundle
S⊗ E, and in parallel to (3.109) we get

ZS1(T) = ind /∂0
E (3.117)

where now /∂0
E is the Dirac operator coupled to E as in subsection A.4.

The localization computation of ZS1(T) in this case goes just as in subsection 3.17, ex-
cept that now on the fixed locus we no longer have ω = 0; rather, because of the fermionic
part in (3.116), we get ω = F, with F the curvature of the connection in E. Thus in the
localization formula we obtain an extra factor of eF. The result is the index theorem for
twisted Dirac operators, Theorem A.25.

[case of higher rank E]
The index theorem for the Dirac operator is part of a much broader story. I do not

know how much of this story can be understood in the supersymmetric-quantum-mechanics
framework we consider here. (For example, what should we say about the families index
theorem? Can we think of it as a formula for the Berry connection which one normally has
on the space of ground states of a family of quantum-mechanical systems? One relevant
reference here appears to be [29].)

4 Some QFT generalities

[Hilbert spaces associated to spatial slices] [canonical quantization]

5 QFT in 2 dimensions

Now we move on to two-dimensional theories, i.e. theories defined on a Riemannian
2-manifold X.

5.1 The free boson

A simple case to start with is the theory of a single scalar field. This theory has

CX = Map(X, R) (5.1)

and the action
S(φ) =

1
2

∫
X
‖dφ‖2dvolX =

1
2

∫
X

dφ ∧ ?dφ. (5.2)

Exercise 5.1. Verify that S(φ) is conformally invariant, i.e. it depends only on the conformal
class of the metric on X.
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In principle this theory should be defined by some kind of discretization, cutoff or the
like. For a while, let us try to work formally, without being careful about precisely how
the theory is defined.

We consider the special case X = S1(T)× S1(L). In this case we will see that the theory
essentially decomposes into an infinite number of copies of the 1-dimensional “harmonic
oscillator” we considered in Example 3.8. Indeed, we can decompose the field23

φ(x, t) =
1√
2L

∑
n

an(t)e2πinx/L (5.3)

where an(t) = a−n(t), and then the action (5.2) is

S(φ) =
1
4 ∑

n∈Z

∫ T

0
dt

4π2n2

L2 |an(t)|2 + |ȧn(t)|2. (5.4)

Alternatively, writing an(t) = bn(t) + icn(t) with bn(t) and cn(t) real, this is

S(φ) = ∑
n>0

[∫ T

0
dt

2π2n2

L2 (bn(t)2 + cn(t)2) +
1
2
(ḃn(t)2 + ċn(t)2)

]
+

1
4

∫ T

0
dt ȧ0(t)2. (5.5)

Thus the action is a sum of terms, each involving just one of the fields a0(t), bn(t), cn(t).
Each of the bn(t) and cn(t) has an action like the field x(t) of Example 3.8, with the fre-
quency

ωn = 2π
n
L

. (5.6)

We have already computed the contribution to the partition function from such a field:
it is given by (3.63). Thus formally the fields bn(t) and cn(t) contribute to the partition
function a factor

∞

∏
n=1

1
(2 sinh(πnT/L))2 =

∞

∏
n=1

(
qn/2

1− qn

)2

, q = e−2πT/L. (5.7)

As it stands, this product diverges to 0 for any q, because of the factor ∏∞
n=1 qn. So our

strategy of working formally has not worked out well. On the other hand, if we define
the path integral by discretization, the situation should be better. [explain regulation of
the zero point energy] So the regulated version of (5.7) is

q−1/12
∞

∏
n=1

1
(1− qn)2 (5.8)

This function has another name: it is η(q)−2, where η(q) = q1/24 ∏∞
n=1(1 − qn) is the

Dedekind eta function.
We also have the remaining field a0(t), which has to be treated differently. [it’s an IR

divergence, regulate it] Finally we get

ZX =
V

2π
√

T/L
η(q)−2 (5.9)

23We use x as the coordinate on “space” S1(L) and t on “time” S1(T).
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More generally, if we consider a tilted torus X = C/(Z ⊕Zτ) with τ in the upper
half-plane, then we get

ZX =
V

2π
√

Im τ
|η(τ)|−2. (5.10)

Exercise 5.2. Check directly that ZX given in Equation 5.10 is modular invariant, i.e. in-
variant under τ → τ + 1 and τ → −1/τ. [comment on this]

[comment on Polyakov formula: if we transform the metric from ρ1|dz|2 to ρ2|dz|2,
det ∆ changes by exp

[
1

3π

∫
X log ρ2

ρ1
∂2

zz̄ log(ρ2ρ1)|dz|
]

(cite Fay)]

5.2 Compactified free boson

Now let us generalize slightly: instead of the target R let us take Y = S1(R), with the
same action (5.2). The previous analysis now has to be modified in two ways. First, the
expansion (5.3) gets replaced by

φ(x, t) =
1√
2L

∑
n

an(t)e2πinx/L + wxR/L (5.11)

where w ∈ Z is an integer, the winding number. Second, the field a0(t) appearing here is
now a map to S1(R) rather than to R. (All the other fields an(t) are still maps to R.)

The spectrum is correspondingly modified. First, the winding term contributes [...]
[T-duality]

6 Four-dimensional field theory

6.1 Abelian gauge theory

[abelian gauge theory]
[summing over bundles]
[electric/magnetic duality]
[exercise: modular property of partition function on a Riemannian manifold, ref Wit-

ten]
[coupling to background currents: Wilson line]
[coupling to dynamical currents]
[nonperturbative sectors]

6.2 Interactions

Now we come to an important point. The action [...] is not purely quadratic: it in-
volves cubic and quartic interaction terms. Thus, for any computation we do in this the-
ory, we will need to deal with the interactions. We have done a few such computations
before, in 0-dimensional and 1-dimensional theories [...], without any major difficulties
arising.
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Now let’s consider an analogous computation in a 4-dimensional theory: we take a
scalar field theory,

CX = Map(X, R), (6.1)

with the action

S =
∫

X

1
2
‖dφ‖2 +

m2

2
φ2 +

λ

4!
φ4 (6.2)

This is completely parallel to the anharmonic oscillator which we considered in [...], ex-
cept for the crucial difference that X has dimension 4 instead of 1.

Suppose we try to compute the simplest nontrivial observable in this theory, the 2-
point function. Following the rules of perturbation theory as we have developed them to
this point, we would get the formal expression

〈φ(x1)φ(x2)〉
Z

= D(x1, x2) +
λ

2

∫
X

dx′ D(x1, x′)D(x2, x′)D(x′, x′) + · · · (6.3)

where D(x, y) is the Green’s function for the deformed Laplace operator, obeying

(−∆x + m2)D(x, y) = δ(x, y) (6.4)

and D(x, y) → 0 as ‖x − y‖ → ∞. Recall [...] that for X = R and m = 0 this would be
D(x, y) = 1

2 |x − y|. For X = R4 and m = 0 on the other hand it is D(x, y) = 1
‖x−y‖2 .

[constant?] In particular, there is an evident difficulty with (6.3): the quantity D(x′, x′)
appearing there is infinite.

This infinity might seem like a disaster, but it isn’t: it is just a symptom of the fact
that we have not been particularly careful about how the theory is really defined. Were
we more careful, we might try to define the theory by first defining a lattice version of it
and then taking the lattice spacing to zero, as we did in [...]. One important effect of such
a discretization is to provide a “UV cutoff”: roughly speaking, the Fourier transform φ̂
cannot be supported at values larger than the inverse lattice spacing. In the case X = R4,
we can model this effect by defining a new field space,

CΛ = {φ : R4 → R, φ̂(p) = 0 for ‖p‖ > Λ}. (6.5)

Now, suppose that we perform our path integrals over the cutoff field space CΛ instead
of the original CR4 . Repeating the formal development of perturbation theory, we would
find that the only change [check] is that D(x, y) gets replaced by a cutoff version DΛ(x, y),
defined as follows.

Recall that the original D(x, y) can be written conveniently in Fourier space, as [factors
of 2π?]

D(x, y) =
∫
(R4)∗

dp
eip·(x−y)

‖p‖2 + m2 . (6.6)

Exercise 6.1. Check (6.6). (Hint: the Fourier transform of −∆ + m2 is the operator of
multiplication by ‖p‖2 + m2, and the Fourier transform of the delta-function δ(0) is a
constant function.)

61



2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

In particular this gives

D(x, x) =
∫
(R4)∗

dp
1

‖p‖2 + m2 (6.7)

which makes it obvious that it indeed diverges, with the divergence coming from the
region of large ‖p‖, i.e. from the high-frequency modes of the field φ. In the cutoff theory
we get instead

DΛ(x, y) =
∫
‖p‖<Λ

dp
eip·(x−y)

‖p‖2 + m2 (6.8)

and in particular DΛ(x, x) is now finite. So, by introducing the cutoff, we have at least
made the individual terms in our perturbation expansion (6.3) well defined. However,
as a practical tool, this expansion still suffers from some drawbacks. In particular, let us
consider the behavior for large Λ. Then we can expand [fix the constants]

DΛ(x, y) ∼
{

Λ2 + · · · if x = y,
1

‖x−y‖2 + · · · if x 6= y
(6.9)

Using this expansion we can study the large Λ behavior of the individual terms in the
expansion (6.3). The leading term behaves as ‖x1 − x2‖−2 while the next term behaves as
λΛ2. In particular, if Λ� ‖x1− x2‖−1, then this expansion seems to be rather ill behaved.
[...]

A Background

Here I collect a little background material for convenience.

A.1 Spinors

Good references for this are [30, 9].

Definition A.1 (Free graded tensor algebra). Fix a real vector space V. The free graded
tensor algebra T(V) is

T(V) =
∞⊕

n=0
V⊗n (A.1)

equipped with the concatenation product

(v1 ⊗ · · · ⊗ vn)(w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm (A.2)

and the obvious Z-grading.

Definition A.2 (Clifford algebra). Fix a real vector space V with a positive definite quadratic
form 〈·, ·〉. The Clifford algebra Cliff(V) is the quotient of T(V) by the two-sided ideal gen-
erated by the relation

v⊗ v = −〈v, v〉, v ∈ V. (A.3)

62



2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

More informally we could say Cliff(V) is the free algebra on V subject to the single
relation (A.3). This relation violates the Z-grading but preserves a residual Z/2Z. Thus
Cliff(V) is a Z/2Z-graded algebra:

Cliff(V) = Cliff0(V)⊕Cliff1(V). (A.4)

By polarization (A.3) implies that for any v, w ∈ V we have

[v, w] = vw− wv = −2〈v, w〉. (A.5)

If we allow 〈·, ·〉 to be the zero quadratic form then Cliff(V) becomes the exterior al-
gebra ∧∗(V); more generally Cliff(V) is a deformation of ∧∗(V), or, it is a Z-filtered algebra
whose associated Z-graded algebra is ∧∗(V).

Exercise A.1. Show that dimR Cliff(V) = 2dim V .

Definition A.3 (Pin group). Pin(V) is the group of all elements

v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ Cliff(V) (A.6)

where all vi have 〈vi, vi〉 = 1.

Exercise A.2. Show that Pin(V) is indeed a group.

Definition A.4 (Spin group). Spin(V) = Pin(V) ∩Cliff0(V).

Now any v ∈ V ⊂ Pin(V) acts on V ⊂ Cliff(V) by conjugation:

Exercise A.3. Show that this action is just the reflection in v.

More generally,

Exercise A.4. Show that Pin(V) acts on V ⊂ Cliff(V) by conjugation, and that this action
gives a map Spin(V)→ SO(V) which is a double cover.

As a convenient notation we let Cliff(n) mean the Clifford algebra on the vector space
Rn with its standard positive definite quadratic form. Cliff(n) is generated by odd ele-
ments ei, i = 1, . . . , n, with

1
2
[ei, ej] = −δij. (A.7)

Similarly we define Spin(n), Pin(n) etc.
When n > 2, Spin(n) is simply connected, and the double-covering map above iden-

tifies Spin(n) as the universal covering of SO(n). When n = 2, both Spin(2) and SO(2)
are the circle group, and this map is just the double-covering map θ → 2θ.

Exercise A.5. Show that:

• Cliff(1) ' C, Cliff0(1) ' R, Spin(1) ' Z/2Z.

• Cliff(2) 'H, Cliff0(2) ' C, Spin(2) ' U(1).

63



2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

• Cliff(3) 'H⊕H, Cliff0(3) 'H, Spin(3) ' SU(2).

Definition A.5 (Spin structures). Fix an oriented Riemannian manifold X, and let P be
its principal SO(n)-bundle of orthonormal frames. A spin structure on X is a lift of P to a
Spin(n)-bundle. A spinnable manifold is a Riemannian oriented manifold X which admits
a spin structure. A spin manifold is a Riemannian oriented manifold X equipped with a
choice of spin structure.

Example A.6 (Spin structures on the circle). When X = S1 with a fixed metric and orien-
tation, the bundle P of oriented frames is just X itself, so a spin structure is just a double
cover of S1. Up to equivalence there are two double covers of S1 (one connected and one
disconnected), thus two spin structures.

Exercise A.6. For any Riemannian oriented X which admits a spin structure, show that the
spin structures on X up to equivalence form a torsor for the group H1(X, Z/2Z). (Hint:
H1(X, Z/2Z) classifies double covers of X up to equivalence, and given a spin structure
on X and a double cover of X, one can twist the spin structure by the double cover, to get
another spin structure.)

Proposition A.7. Every manifold of dimension 1, 2 or 3 is spinnable.

Proposition A.8. CP2 is not spinnable.

Proof. Let H denote a hyperplane in CP2, i.e. an embedded CP1. Then, TCP2, restricted
to H, is O(1)⊕O(2): O(2) is TCP1 and O(1) is the normal bundle.24

CP1 has two charts, so we can explicitly write down transition functions for O(1)⊕
O(2), which are maps S1 → U(1)×U(1) ⊂ SO(4). Explicitly, let Rθ ∈ SO(2) denote the
matrix which acts through rotation by θ; then one of the transition functions is

θ 7→
(

Rθ

R2θ

)
. (A.8)

A spin structure is a lift of this map to Spin(4), the universal cover of SO(4). But the loop
defined by (A.8) is the nontrivial element of π1(SO(4)), and therefore this map cannot lift
to Spin(4).

From now on we specialize to even dimensions, since this is what we will use in the
main text.

Proposition A.9 (Spin representations). Cliff(2n) admits a Z/2Z-graded irreducible com-
plex representation, S = S0 ⊕ S1. Each of S0 and S1 has complex dimension 2n−1. S car-
ries a natural Hermitian metric, with respect to which S0 and S1 are orthogonal, V acts by
skew-adjoint endomorphisms, and Spin(V) acts unitarily. Up to equivalence and reversal
of grading, S is the unique graded irreducible representation of Cliff(2n).

24A generic section of the normal bundle intersects itself at one point, which is the reason why the normal
bundle is O(1); a similar argument gets you O(2) for the tangent bundle.

64



2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

Example A.10 (Spin representation in dimension 2). The spin representation S of Cliff(2)
is 2-dimensional. The generators e1 and e2 act by

e1 7→
(

0 1
−1 0

)
, e2 7→

(
0 i
i 0

)
. (A.9)

Thus e1e2 acts by
(

i 0
0 −i

)
.

Definition A.11 (Complex spinor bundles). Fix a spin manifold X. The spin structure is
a principal Spin(n)-bundle Q over X. The associated bundle SX = Q ×Spin(n) S is the
complex spinor bundle over X.

SX carries several nice structures:

• Since Q has a canonical connection induced by the Levi-Civita connection, SX also
has a canonical connection.

• Because the action of Rn ⊂ Cliff(n) on S, ρ : Rn → End(S), is equivariant for the
action of Spin(n) on both sides, it transfers to an action ρ : TX → End(SX).

A.2 Dirac operator

Definition A.12 (Dirac operator). Fix a spin manifold X. The Dirac operator is the operator
/∂ : C∞(SX)→ C∞(SX) given by

/∂ =
n

∑
i=1

ρ(ei) ◦ ∇ei (A.10)

where {ei} form an orthonormal basis for TX.

Example A.13 (Dirac operator on R2). If X = R2, then SX is the 2-dimensional complex
trivial bundle, and

/∂ = e1∂1 + e2∂2 =

(
0 ∂1 + i∂2

−∂1 + i∂2 0

)
. (A.11)

Proposition A.14. /∂ is a symmetric operator with respect to the Hermitian L2 pairing on
SX, i.e.

〈ψ, /∂ψ′〉 = 〈/∂ψ, ψ′〉 (A.12)

Definition A.15 (Spinor Laplacian). The spinor Laplacian is the operator ∆ : C∞(SX) →
C∞(SX) given by

∆ = −/∂2. (A.13)

Note that on X = R2, relative to the trivialization of SX we gave above, ∆ is just
the identity matrix times the usual Laplacian on C∞(R2). What is interesting is that /∂
provides a square root of −∆. This is one of the nice features of spinors: in contrast, for or-
dinary functions, the square root of −∆ cannot be realized as a local differential operator.
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A.3 Index of the Dirac operator

Proposition A.16. If X is a compact spin manifold, then /∂ : C∞(SX) → C∞(SX) is an
elliptic operator.

In particular, if we decompose /∂ with respect to the grading of S,

/∂ =

(
0 /∂1

/∂0 0

)
, (A.14)

then each of /∂0, /∂1 is also elliptic. Since /∂ is symmetric, these two elliptic operators are
formally adjoint to one another. Now we consider the index

ind /∂0 = dim ker /∂0 − dim coker /∂0 = dim ker /∂0 − dim ker /∂1. (A.15)

We are going to give a formula for ind /∂0 in terms of characteristic classes. Recall
that given a symmetric function C({yi}) where the yi are formal variables, we can de-
fine a corresponding characteristic class of SO(n)-bundles over X: to construct it, we lo-

cally block-diagonalize the curvature F =
⊕

i

(
0 Fi
−Fi 0

)
∈ so(n) and then take the form

C({ Fi
2πi}) ∈ Ω∗(X).25

Definition A.17. If X is a compact Riemannian manifold, p(X) ∈ Ω∗(X) is the character-
istic class of TX associated to the symmetric function

∏
i
(1 + y2

i ). (A.16)

It is a sum
p(X) = 1 + p1(X) + p2(X) + · · · , pk(X) ∈ Ω4k(X). (A.17)

Example A.18. We have p1(X) = − 1
4π2 Tr R ∧ R, where R ∈ Ω2(so(TX)) is the Riemann

curvature, and Tr denotes the usual trace, thinking of elements of so(n) as n× n matrices.

The forms pk(X) are actually de Rham representatives of classes in H4k(X, Z); thus
integrating them, or their products, gives integers. But as we will see momentarily, they
have considerably stronger divisibility properties than mere integrality!

Example A.19. The first nontrivial examples of Pontryagin classes arise in dimension 4,
where we have:∫

S4
p1(S4) = 0,

∫
CP2

p1(CP2) = 3,
∫

K3
p1(K3) = −48. (A.18)

These integers have a simple interpretation:

Theorem A.20. If X is a 4-manifold then
∫

X p1(X) = 3 sign(X).

25We will only use functions invariant under yi → −yi, so we actually get characteristic classes of O(n)-
bundles.
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Exercise A.7. Use (A.18) to show that there is no orientation-reversing diffeomorphism of
CP2 or K3: these manifolds are, in some essential way, chiral — in contrast to S4 for which
the antipodal map is orientation-reversing.

Definition A.21. If X is a compact Riemannian manifold, Â(X) ∈ Ω∗(X) is the character-
istic class of TX associated to the symmetric function

∏
i

yi/2
sinh(yi/2)

= ∏
i

(
1−

y2
i

24
+

7y4
i

5760
+ · · ·

)
(A.19)

So Â(X) is a sum of forms in degrees 4k. We can expand Â(X) in terms of Pontryagin
classes:

Â(X) = 1− 1
24

p1(X) +
7p1(X)2 − 4p2(X)

5760
+ · · · (A.20)

Theorem A.22 (Atiyah-Singer index theorem for the Dirac operator on complex spinors).
We have

ind /∂0 =
∫

X
Â(X). (A.21)

This implies in particular that
∫

X Â(X) is actually an integer, so e.g. for a spinnable
4-manifold,

∫
X p1(X) is a multiple of 24.26

A.4 Dirac operator coupled to a vector bundle

[characteristic classes for U(n)-bundles]

Definition A.23 (Chern character). ch(E) is the characteristic class of a U(n)-bundle E
associated to the function [check factors]

∑
i

ezi . (A.22)

It is concentrated in even degrees, expanding as

ch(E) = rank(E) + c1(E) +
1
2
(c1(E)2 − 2c2(E)) + · · · (A.23)

Definition A.24 (Twisted Dirac operator). The Dirac operator twisted by E is the operator
/∂E : C∞(SX⊗ E)→ C∞(SX⊗ E) given by

/∂E =
n

∑
i=1

ρ(ei) ◦ ∇ei (A.24)

where {ei} form an orthonormal basis for TX, and ∇ denotes the induced connection on
SX⊗ E.

26Even more is true: if X is a spinnable manifold of dimension 8n + 4,
∫

X Â(X) is an even integer, because
in these dimensions /∂ commutes with an additional conjugate-linear symmetry j : SX → SX with j2 = −1,
i.e. /∂ is H-linear rather than merely C-linear.
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Theorem A.25 (Atiyah-Singer index theorem for twisted Dirac operator on complex
spinors). We have

ind /∂0
E =

∫
X

Â(X) ch(E). (A.25)

The simplest example of Theorem A.25 arises when dim X = 2. In this case the theo-
rem becomes

ind /∂0
E =

∫
X

c1(E) = deg E. (A.26)

If we choose E to be V ⊗ (C⊕ T∗X) [... explain relation to Riemann-Roch]

A.5 Hodge theory

Definition A.26 (Formal adjoint of d). If X is a Riemannian manifold of dimension n, the
formal adjoint of d is the operator

d∗ : Ωk(X)→ Ωk−1(X) (A.27)

given by
d∗ = (−1)n(k+1)+1 ? d ? . (A.28)

If X is a compact Riemannian manifold, we have the L2 pairing on Ω∗(X) given by

〈α, β〉 =
∫

X
〈α(x), β(x)〉dvolX =

∫
X

α ∧ ?β. (A.29)

Lemma A.27 (Formal adjoint is actual adjoint on compact manifold). If X is a compact
Riemannian manifold, d∗ is the actual adjoint with respect to the L2 pairing, i.e.

〈d∗α, β〉 = 〈α, dβ〉. (A.30)

Definition A.28 (Laplace operator on Riemannian manifold). If X is a Riemannian man-
ifold, we define the form Laplacian

∆ : Ωk(X)→ Ωk(X) (A.31)

by
∆ = dd∗ + d∗d. (A.32)

[...]

A.6 Symplectic manifolds

Definition A.29 (Nondegenerate skew pairing). Suppose V is a vector space over R or
C. We say ω ∈ ∧2(V) is nondegenerate if the map

V → V∗ (A.33)
v 7→ ιvω = ω(v, ·) (A.34)

is an isomorphism.
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Proposition A.30 (Standard basis for a nondegenerate skew pairing). If V is a finite-
dimensional vector space over R or C, and ω ∈ ∧2(V) is nondegenerate, then V has
dimension 2n for some n, and there exists a basis {e1, . . . , en, f1, . . . , fn} for V such that

ω(ei, f j) = δij, (A.35)

ω(ei, ej) = 0, (A.36)

ω( fi, f j) = 0. (A.37)

Definition A.31 (Symplectic manifold). A symplectic manifold is a pair (X, ω) where X is
a manifold and ω ∈ Ω2(X), such that

dω = 0 (A.38)

and ω(x) is nondegenerate for every x ∈ X.

Definition A.32 (Exact symplectic manifold). An exact symplectic manifold is a tuple (X, ω, λ)
where (X, ω) is a symplectic manifold and λ ∈ Ω1(X) has dλ = ω.

Example A.33 (Cotangent bundle is an exact symplectic manifold). If X is any manifold
and Y = T∗X, then Y carries a canonical 1-form (“Liouville form”), λ ∈ Ω1(Y), defined
as follows:

λ(x, p) · v = p · π∗v x ∈ X, p ∈ T∗x X, v ∈ TY. (A.39)

Then there is a canonical symplectic form on Y given by

ω = dλ. (A.40)

Exercise A.8. Show that, in the canonical coordinate system (pi, qi) on T∗X induced by a
coordinate system (qi) on X, we have λ = ∑n

i=1 pidqi, and ω = ∑n
i=1 dpi ∧ dqi.

Definition A.34 (Moment map). Suppose X is a symplectic manifold, with symplectic
form ω, acted on by a real Lie group G. Let g = Lie G and let

ρ : g→ Vect(X) (A.41)

be the infinitesimal action. Suppose given a function

µ : X → g∗ (A.42)

and for Z ∈ g write µZ = µ · Z. We say µ is a moment map for the G-action if for all Z ∈ g
we have

ιρ(Z)ω = dµZ, (A.43)

and in addition the map (A.42) is G-equivariant (for the G-action on X and the coadjoint
G-action on g∗).

In particular, the moment map µ determines the G-action.
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Note that moment maps do not always exist. At the very least, the existence of a
moment map requires that ιρ(Z)ω is closed for all Z ∈ g, by (A.43). Using Cartan’s “magic
formula”

Lvω = d(ιvω) + ιv(dω) (A.44)

and the fact that dω = 0, this is equivalent to requiring Lρ(Z)ω = 0, i.e. the G-action
preserves ω infinitesimally. But even if the G-action preserves ω, a moment map still
may not exist.27

Conversely, if a moment map µ does exist and g has nontrivial center, we can get
another moment map by taking µ′ = µ + c, where c is fixed by the coadjoint action of G,
i.e. c ∈ [g, g]⊥ ⊂ g∗.

Exercise A.9. Suppose X = R2 with ω = dx1 ∧ dx2, and G = SO(2) = U(1) = {eiα : α ∈
R}. Then u(1) is 1-dimensional, spanned by ∂α. Show that the counterclockwise rotation
action of U(1) on X, given by the matrices(

cos α − sin α
sin α cos α

)
, (A.45)

has a moment map µ : R2 → u(1)∗, given by

µ(x1, x2) · ∂α = −1
2
(x2

1 + x2
2). (A.46)

Thus if we identify u(1) ' R using the generator ∂α, we can think of µ just as an
R-valued function on X,

µ(x1, x2) = −
1
2
(x2

1 + x2
2). (A.47)

Exercise A.10. Suppose X is any manifold, with a compact group G acting. Then T∗X is a
symplectic manifold which also has a canonical action of G. Verify that

µZ(x, p) = −p · (ρ(Z)(x)) x ∈ X, p ∈ T∗x X (A.48)

gives a moment map for this action.
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actéristiques équivariantes. Duke Math. J. 50(2), 539–549.

20. Lars Andersson and Bruce K. Driver (1999). Finite-dimensional approximations to Wiener
measure and path integral formulas on manifolds. J. Funct. Anal. 165(2), 430–498.

71

http://arxiv.org/abs/hep-th/9206021v1
hep-th/9403195
hep-th/9407087
hep-th/9411102
https://ocw.mit.edu
http://arxiv.org/abs/1209.2199v3
http://arxiv.org/abs/1701.01183v1
http://dx.doi.org/10.1007/978-1-4757-3069-2
http://dx.doi.org/10.1007/978-1-4757-3069-2


2018-01-30 21:59:42 -0600 Applications of QFT to Geometry, preliminary and incomplete draft ef4738d

21. Christian Baer and Frank Pfaeffle (2007). Path integrals on manifolds by finite dimensional
approximation. Journal für die reine und angewandte Mathematik (Crelles Journal) 625, 29-57
(2008). arXiv: math/0703272v1 [math.AP].

22. John Roe (1988). Elliptic operators, topology and asymptotic methods. Vol. 179. Pitman Research
Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the
United States with John Wiley & Sons, Inc., New York, pp. x+184. ISBN: 0-582-01858-7.
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