Many problems in this course will simply be statements. In such a case the problem is always to prove it.

Problem 1. There is no integer solution to \(x^2 + y^2 = -73 \). (The math here is easy; the point is to practice writing it up as a formal proof. You may use elementary properties of arithmetic, if you clearly state what you are using.)

Problem 2. We showed in class that there is no integer solution to \(x^2 - 2y^2 = 0 \) other than \(x = y = 0 \). Generalize that result by proving that there is no rational solution except \(x = y = 0 \). (Hint: this problem is meant to give you practice writing a proof by contradiction. Try to follow the proof structure of my model. You can use standard properties of rational numbers.)

Problem 3. Find all integer solutions to \(x^2 + y^2 + z^2 = 51 \). (Hint: this is meant to provide practice using “without loss of generality”. There are in fact several different levels of “w.l.o.g” that you can use.)

Problem 4. We saw in class that division doesn’t play well with congruences; this problem shows that division can sometimes be used. In this problem \(a, b, c \) and \(m \) are integers.

(a) Give an example, different from the one in class, that shows that \(c | a \) and \(c | b \) and \(a \equiv b \mod m \) does not necessarily imply that \(\frac{a}{c} \equiv \frac{b}{c} \mod m \).

(b) If \(c | a \) and \(c | b \) and \(c | m \), then \(a \equiv b \mod m \) **DOES** imply something slightly different, namely \(\frac{a}{c} \equiv \frac{b}{c} \mod \frac{m}{c} \). (This is something we will use repeatedly later on, so please remember it.)

Problem 5.

(a) Check that none of \(x = 0, 1, 2, 3, 4 \) satisfy the congruence \(x^2 \equiv 2 \mod 5 \).

(b) Deduce that there is no integer \(x \) satisfying that congruence.

(c) Deduce that there is no integer \(x \) satisfying \(x^2 = 137 \).

Problem 6.

(a) Check that no choice of \(x = 0, 1, 2, 3, 4 \) and \(y = 0, 1, 2, 3, 4 \) satisfies the congruence \(x^2 - 5y^2 \equiv 2 \mod 5 \). (This looks like it requires 25 cases, but it is nowhere near that bad.)

(b) Deduce that there are no integers \(x \) and \(y \) satisfying that congruence.

(c) Deduce that there are no integers \(x \) and \(y \) satisfying \(x^2 - 5y^2 = 137 \).

(You probably were not impressed by (c) in the previous problem, because the fact \(\sqrt{137} \notin \mathbb{Z} \) is not new to you. I hope you are more impressed by this (c). In particular, without the buildup of (a) and (b), it is surprising that one can prove something like this. This problem’s “mod 5 obstruction” to the existence of a solution is the best way to understand the lack of solutions to this particular equation. Note also that you can’t use the same argument I did with \(x^2 - y^2 = 2 \) on day 1 in class, since you can’t factor \(x^2 - 5y^2 \).)