
International Journal of Game Theory
https://doi.org/10.1007/s00182-020-00730-4

ORIG INAL PAPER

Best play in Dots and Boxes endgames

Daniel Allcock1

Accepted: 13 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
We give very simple algorithms for best play in the simplest kind of Dots and Boxes
endgames: those that consist entirely of loops and long chains. In every such endgame
we compute the margin of victory, assuming both players maximize the numbers of
boxes they capture, and specify a move that leads to that result. We improve on results
by Buzzard and Ciere on the same problem: our algorithms examine only the current
position and do not need to consider the game tree at all.

Keywords Dots and Boxes · Nimstring · Control strategy

Mathematics Subject Classification 91A46

1 Introduction

Dots and Boxes is one of the few over-the-table games that has a rich mathematical
theory and is also played at a high level by many people without any special interest
in mathematics. There are several websites where one can play online against other
people, such as littlegolem.net and yourturnmyturn.com.

We assume familiarity with the game, but give a quick statement of the rules. See
Sect. 2 for some elements of good play, like loops and long chains, the hard-hearted
handout, and the long chain rule. For further background we recommend Berlekamp
(2000) or Berlekamp et al. (1982, Chapter 16).

The game begins with a grid of dots. When it is your turn, you draw an edge joining
two (horizontally or vertically) adjacent dots that are not yet joined. If you complete
at least one box this way, then you move again immediately. You continue in this way
until you move without completing a box (when play passes to your opponent) or you
complete the last box (when the game ends). Whoever completes more boxes wins.

B Daniel Allcock
allcock@math.utexas.edu
http://www.math.utexas.edu/~allcock

1 Department of Mathematics, University of Texas, Austin, USA

123

Author's personal copy

D. Allcock

The board size is typically 5× 5, meaning 5 boxes by 5 boxes. Odd× odd boards are
best because they make ties impossible.

The first contribution of mathematics to Dots and Boxes is the idea of moving as
though playing a simpler game called Nimstring. This is sometimes called Nimdots
when applied to Dots and Boxes. The rules are the same except for who wins: in
Nimstring, the loser is whoever completes the last box. This sounds like a radical
change, but good Nimstring moves are often good Dots and Boxes moves. As the
name suggests, Nimstring is amenable to the Sprague-Grundy theory for Nim-like
games (Berlekamp et al. 1982, Ch.16). This leads to a trick called the long chain
rule. If neither player knows it, then the game proceeds mostly randomly. If only one
knows it, then she will win. If both know it, then the game becomes challenging and
interesting. The interest and challenge come from understanding the positions where
there is a winning move, even when the Nimstring perspective suggests the game is
lost.

An expert player who expects to lose the Nimstring game will try to steer the game
toward such a position. Typically she does this by aiming for an endgame with many
3-chains and 4- and 6-loops. Therefore high-level play requires an understanding of
such positions. This paper gives a complete analysis of endgames that consist entirely
of loops and long chains. We restrict attention to such positions unless otherwise
indicated. We were inspired by the study of these endgames by Buzzard and Ciere
(2013). While their algorithms for determining the value of a game and an optimal
move require only linear time, they involve trees of cases and subcases, and also a
limited formof recursion.Our algorithms have very simple decision trees, and examine
only the current position.

If it is your turn and you must choose a loop or long chain to open (play in), then we
call you the opener. Once you choose this componentC , it does not matter where inC
you play. Your opponent will either take all those boxes, or reply with the hard-hearted
handout (see below and Sect. 2). Where you play inC has no effect on these options.

Nimstring suggests that you have lost.Wewill see that you cannot win the endgame,
in the sense that you cannot capture more of the remaining boxes than a skilled oppo-
nent. But if you captured more boxes than she did, before reaching the endgame, and
you lose the endgame by only a little, then you may still be able to win. The strategy
expressed in Theorem1.1 is guaranteed to lose the endgame by as little as possible, and
therefore gives your best chance of winning. Your opponent is called the controller,
for reasons explained below.

A chain or loop of length N is called an N -chain or N -loop, and often indicated
by simply writing N , attaching a subscript ! to indicate a loop. We use additive and
exponential notation in the obvious way, for example G = 3+ 4! + 82! means that G
consists of a 3-chain, a 4-loop, two 8-loops and possibly some already-claimed boxes:

123

Author's personal copy

Best play in Dots and Boxes endgames

In actual play the claimed boxes (shaded here) would be marked with the players’
initials. We ignore such boxes when discussing G because they do not affect play.

The value v(G) of any endgameG means the margin by which the controller will
beat the opener, assuming that they enter the endgame with a tie score and then play
optimally. So v(3 + 4! + 82!) = 1 means that the opener can win if and only if she
earned at least a 2-box advantage during whatever play led to this endgame. To lose
this endgame by only one box, open the 4-loop first and then the 8-loops.

The size size(G) of G means the number of (unclaimed) boxes inG.
Berlekamp introduced a variation on v(G) called the controlled value (Berlekamp

2000, p. 84). He wrote cv(G), but we will write c(G). It is easy to compute in your
head, and (non-obviously) carries a lot of information about v(G). The definition is

c(G) = size(G) − 4(# long chains) − 8(# loops)+ tb(G), (1)

where tb(G) is called the terminal bonus of G and defined by

tb(G) =

0 if G is empty
8 if G = (one or more loops)
6 if G = (one or more loops)+ (one or more 3-chains)
4 otherwise.

(2)

See Sect. 2 for why c(G) is called the controlled value.
The standard move means to open a 3-chain if one is present, otherwise a shortest

loop if a loop is present, and otherwise a shortest chain. We will prove the following
result in Sect. 3.

Theorem 1.1 (Opener strategy) Suppose G is a nonempty Dots and Boxes position
that consists of loops and long chains. In each of the following cases, opening the
shortest loop is optimal:

(i) c(G) ≥ 2 and G = 3+ (one or more loops);
(ii) c(G) ∈ {0,±1} and G = 4! + (anything except 3+ 3+ 3);
(iii) c(G) ≤ −2 and G = 4! + 3+ H, where 4| size(H) and H has no 3-chains.

In all other cases the standard move is optimal.

The “phase transition” when c(G) changes from 1 to 2 was discovered by
Berlekamp and Scott (2002) and Scott (2000). The transition from − 2 to − 1 appears
to be new.

Example 1.2 Suppose G consists of five 3-chains, a 4-loop and an 8-loop. We have
c(G) = 27− 4 · 5− 8 · 2+ 6 = − 3. The theorem says that opening the components
in the order 3, 3, 4!, 3, 3, 8!, 3 is optimal. We used a computer to check this, and also
that the only other optimal line of play is 3, 4!, 3, 3, 3, 8!, 3. This shows that there is
a certain subtlety to the order in which one must open the components, and suggests
that Theorem1.1 may be the simplest strategy possible.

123

Author's personal copy

D. Allcock

If you are the controller, and the opener has just opened a loop or long chain, then
the decision you face is whether to keep control or give it up.Giving up control means
that you take all of the boxes in the just-opened component. Unless that ends the game
you must move again, so you become the opener and your opponent the controller. As
the new opener, you can use Theorem1.1 to choosewhich component to open.Keeping
controlmeans that you take all but a few of the boxes in the opened component (4 for a
loop or 2 for a long chain). This is called the hard-hearted handout: a handout because
you are giving your opponent those boxes, and hard-hearted because after she takes
them she must open the next component. In this case she remains the opener and you
remain the controller.

Now we consider the situation where the opener has just opened component C of a
positionG. It is easy to see that the controller should keep control if v(G−C) is larger
than the number of boxes (2 or 4) given away in the hard-hearted handout, and give
up control if v(G − C) is smaller. She may choose either option in case of equality.
We use subtractive notation in the obvious way: G − C means the position got from
G by removingC . So the following well-known result gives an optimal strategy for
the controller [4, Section 5].

Theorem 1.3 (Controller strategy) If the opener has just opened a component C of G,
then the following gives an optimal move for the controller. Keep control if C is a loop
and v(G − C) > 4, or if C is chain and v(G − C) > 2; otherwise give up control. &'

To use this strategy the controller must be able to recognize when v(G − C) > 4
or 2. The following theorems enable this. They are corollaries of Theorem4.1, which
gives all values explicitly.

Theorem 1.4 (Values > 4) We have v(G) > 4 if and only if c(G) > 4.

Theorem 1.5 (Values > 2) Suppose G is nonempty. Then v(G) > 2 if and only if:
either c(G) > 2, or else G satisfies one of the two alternatives

(1) G has exactly one 3-chain and size(G) ≡ 3 mod 4
(2) G has no 3-chains and size(G) ≡/ 2 mod 4,

and one of the two alternatives

(a) c(G)+ 4 f (G) > 2 and c(G) ≡ ±3 or 4 mod8
(b) c(G)+ 4 f (G) < 2 and f (G) is even,

where f (G) is the number of 4-loops inG.

In particular, if two or more 3-chains are present, then v(G) > 2 if and only if
c(G) > 2. The same holds if just one is present and size(G) ≡/ 3 mod 4. In the
remaining cases we prefer Theorem4.2(3) to the complicated second pair of alter-
natives. It gives v(G) as the result of a simple process applied to a simple starting
number, and is much easier to remember.

Section5 gives some consequences for mid-game strategy. For example, the player
who is opener when the endgame begins will probably lose if she has only a 1-box
advantage, but very likely win with a 2-box advantage. This assumes an odd × odd
board and that enough 3-chains and 4- and 6-loops are present to make c(G) < 2.

123

Author's personal copy

Best play in Dots and Boxes endgames

Players often sacrifice a box or two during the midgame to create the “right” number
of long chains. (The goal is to be controller in the endgame, because in Nimstring
the controller always wins. See the long chain rule in Sect. 2.) Our results show that
sacrificing one box is safe but sacrificing two is suicide, unless the resulting endgame
is quite special.

As a sanity check, we used a computer to verify Theorems1.1, 1.4, 1.5, 4.1, 4.2,
5.1 and 5.2. for all positions that consist of loops and long chains and have size at
most112. There are around 1.5 million positions, after taking into account loop- and
chain-amalgamation [4, Section7]. We computed their values recursively, using (3)–
(4), and then compared the results with the statements of our theorems.

In Nimstring, positions consisting of long loops and long chains are examples of
“loony” endgames, which roughlymeans that nomatter how the first player moves, the
second may choose to keep control or give it up. See Berlekamp (2000), Berlekamp
and Scott (2002) and Berlekamp et al. (1982) for a precise definition and for analyses
of many loony Nimstring endgames, such as vines, crosses, dippers, earmuffs and
bracelets. Sometimes these come up in actual Dots and Boxes play, so it would be nice
to generalize our algorithms.

We are grateful to Kevin Buzzard and Michael Burton for interesting and helpful
conversations. In particular, this paper would not exist without the prior work of
Buzzard and Ciere (2013). We are also grateful to both referees for their careful
reading and helpful suggestions.

2 Background

In the first part of this section we review some standard elements of good play. The
main references are Berlekamp et al. (1982, Ch.16) and Berlekamp (2000). In the
second part we discuss some more-technical material that we will need.

Because a player moves again immediately if she completes at least one box, her
turn may consist of more than one move. It often happens that the segment completing
a box also forms the third edge of another box. In this case the extra move earned by
completing the first box enables her to complete the second box, which in turn might
allow her to complete a third box, and so on. In this way she might capture an entire
chain of boxes in a single turn.

A sample position appears in Fig. 1. During earlier play the author completed three
boxes and placed his initial inside them to mark them as his. This makes it looks like
he is winning, but it is his turn and no good move is available. Any move in the loop
on the right lets his opponent C (for “controller”) capture all 10 boxes there. Similarly,
any move in the chain on the left lets her capture all 12 of its boxes. When a child,
the author would have moved in the loop, expecting her to capture those 10 boxes and
then open the 12-chain for him to capture. He would win, 15–10.

Unfortunately for the author, C knows the hard-hearted handout: when he offers
her the 10 boxes, she takes all but 4, for example as shown in the top line of play.
Dotted lines indicate her moves. Note the 2 × 1 and 1 × 2 rectangles that she could
have claimed but chose not to. Your poor author wins those 4 boxes but then must
move again, opening the 12-chain for her to capture entire. Therefore C wins, 18-7. If

123

Author's personal copy

D. Allcock

Fig. 1 ADots andBoxes position consisting of a 12-chain and a 10-loop, and two lines of play demonstrating
the hard-hearted handout

Fig. 2 Opening a 2-chain in one of the “bad” ways allows the opponent to choose between capturing both
boxes and then moving again, or replying with the hard-hearted handout. Bisecting the 2-chain as shown
on the right removes the opponent’s second option

the author opens the chain instead of the loop, then C takes all but two of its boxes, as
shown in the bottom line of play. This is the chain version of the hard-hearted handout.
In this case the author would lose 20-5. (A few people play with a rule that forbids the
hard-hearted handout: if one can complete a box, then one must. But forced greedy
strategies make games dull.)

A chain of length2 does not present the same problem, because if you split it into
two single boxes, then your opponent has no choice but to open the next component.
Two examples appear in Fig. 2. The “long” in “long chain” restricts attention to chains
of length 3 or more. In this paper we are restricting attention to positions consisting
of loops and long chains, so chains of length2 will not appear. So henceforth we will
write “chain” for long chain, sometimes saying “long chain” just for emphasis.

If C always used the hard-hearted handout, except in the last component, then she
would capture all but 2 from each chain and all but 4 from each loop, except that she
would capture all of the last component. If the loops and chains are not too small, then
this leads to very lopsided scores, with the loser being whoever opens the first loop or
long chain. This is the connection between Dots and Boxes and nimstring, and leads
to the long chain rule (Berlekamp et al. 1982, Ch.16). This rule predicts that the first
resp. second player will win if there are an even resp. odd number of long chains in

123

Author's personal copy

Best play in Dots and Boxes endgames

the endgame (assuming an odd×odd board). So in advanced play, the early game and
midgame are all about trying to create chains, or obstruct their creation, so that the
desired number (mod2) are formed.

As in the introduction, whichever player has no choice but to open some chain or
loop is the opener, and whoever replies to such a move is the controller. In Fig. 1
the author was the opener and his opponent the controller. The players sometimes
exchange roles during a game, because in some positions the controller should give
up control by taking all of an opened chain or loop. By doing this she becomes the
opener and her opponent becomes the controller.

For example, if the position consists of N > 1 chains of length3, one of which
was just opened, then a controller who keeps control except at the end will give her
opponent 2 boxes from each chain but the last. She scores (N−1)+3 to her opponent’s
2(N − 1). This is suboptimal if N > 3; indeed it leads to her losing if N > 4. It is
better to take all 3 boxes of the opened chain. Being forced to move again, she is now
the opener: she opens a chain and her opponent (now the controller) faces a similar
decision. In one line of optimal play, the players take turns giving up control, except
that whoever responds in the second-to-last chain keeps control, giving up 2 boxes
there but getting all 3 in the last chain. If N is even, then the original controller will be
the one to do this, and wins 3

2N + 1 to 3
2N − 1. When N is odd, she still wins 3

2N + 1
2

to 3
2N − 1

2 .
This article is about deciding what to open when you must open something, and

deciding whether to keep control when you have it.

The rest of this section is more technical. We have said that we will consider only
Dots and Boxes positions G consisting of loops and long chains, where long means
of length ≥ 3. This is not literally true in two cases. Immediately after the opener has
opened a component C , and whenever the controller keeps control, one or two opened
components are present. But we will be able to phrase all our analysis in terms of
G − C . So we adopt the convention that unless opened components are specifically
allowed, Dots and Boxes positions consist of unopened loops and long chains. We
also note that the length of a loop must be even and at least 4, by the geometry of the
grid.

If G is a Dots and Boxes position, then we define

size(G) number of boxes not yet claimed
θ(G) number of 3-chains
f (G) number of 4-loops
s(G) number of 6-loops
v(G) value—see Sect. 1 and below
c(G) controlled value—see (1) and below
tb(G) terminal bonus—see (2)

Recall that when discussing G we ignore any boxes captured earlier in the game, so
size(G) is not the total number of boxes in the grid, but rather the number of unclaimed
boxes. We call G even or odd according to whether size(G) is even or odd. Usually
the symbol G will represent whatever position is of central interest, so we will use the
abbreviations θ , f , s, v and c for θ(G), f (G), s(G), v(G) and c(G). We will still use
functional notation for other positions, for example θ(G + 3) = θ + 1.

123

Author's personal copy

D. Allcock

We recall the meaning of the value v(G) from Sect. 1: the opener will lose by v(G)

boxes if both players maximize the number of boxes they take. The trivial example
is that v(G) = size(G) when G consists of a single component. After the opener
opens it, the controller “gives up control” by claiming all the boxes and ending the
game. The next example is v(3+3) = 2. The opener opens a chain, and the controller
keeps control (replying with the hard-hearted handout). The opener accepts the 2
boxes in the handout and opens the other chain, all of which the controller claims. So
v(3+ 3) = 4 − 2 = 2.

Once the opener has opened a component C , the controller has really only two
choices. First, she may keep control and then play optimally, in which case she will
finish the game with

(size(C) − 4)+ v(G − C) if C is a chain

(size(C) − 8)+ v(G − C) if C is a loop

more boxes than her opponent. Second, she may give up control and then play opti-
mally, in which case she will win by size(C) − v(G − C). The minus sign appears
because when the controller gives up control, she enters the position G − C as the
opener, so her opponent is the one who will score v(G − C). We write v(G;C) for
the higher of these two margins of victory. One should think of this as the value of G,
given that the opener has just openedC .

Obviously the controller will choose the higher-scoring option, leading to

v(G;C) =
{
(size(C) − 2)+

∣∣v(G − C) − 2
∣∣ if C is a chain

(size(C) − 4)+
∣∣v(G − C) − 4

∣∣ if C is a loop.
(3)

We will use this repeatedly without specific reference. Another way to express this is
that if v(G − C) = 2 resp. 4 and C is a chain resp. loop, then keeping and giving up
control are equally good options. If v(G − C) is more than this, then the controller
should keep control. If it is less, then she should give up control.

Now we switch perspectives. Faced with a nonempty positionG, the opener will
obviously prefer to open whichever component C minimizes v(G;C). So

v(G) = min
C

v(G;C), (4)

where C varies over the components ofG. The previous paragraph shows that each
v(G;C) is nonnegative, which proves v(G) ≥ 0. This justifies our assertion that the
opener can never win the endgame. Also, combining (4) and the previous paragraph
gives a way to evaluate v(G) recursively. As an example we work out how to play the
position G = 3n , meaning that G consists of n many 3-chains. The opener has no real
choice about which component to open, so v(3n) = v(3n; 3) = 1 + |v(3n−1) − 2|
whenever n > 0. Induction gives v(3n) = 0, 3, 2, 1, 2, 1, 2, 1, . . . when n =
0, 1, 2, 3, 4, 5, 6, 7, So the controller must keep control if n = 2, and must give
up control if either n = 1 or n is even and larger than2. In all other cases the choice of

123

Author's personal copy

Best play in Dots and Boxes endgames

keeping or giving up control makes no difference. The simplest rule is to keep control
if and only if n = 2.

Now we can explain the controlled value c(G), defined in (1). Another useful
formula for it is

c(G) =
∑

i

(ci − 4)+
∑

j

(l j − 8)+ tb(G), (5)

where c1, c2, . . . are the lengths of the chains, l1, l2, . . . are the lengths of the loops, and
the terminal bonus was defined in (2). Berlekamp introduced the idea of a controller
who follows the control strategy of always keeping control, except in a few cases
when she obviously should not. There is disagreement in the literature about what
exactly the control strategy is. Berlekamp’s description in Berlekamp (2000, p. 84)
is: keep control until all unopened components are chains of length < 4 or loops of
length < 8, “and then play optimally”. He states that this guarantees a score of at least
c(G). Berlekamp and Scott (2002, p. 318) say: keep control until at least the last- or
second-to-last turn. But this strategy fails to score c(G) if G = 4! + 3+ 3. An opener
who opens the 4-loop will win by 2, even though c(G) = 0. Buzzard and Ciere [4,
Section 9] prove that their version guarantees a score of at least c(G). They say to
keep control until the last move, unless a loop has just been opened and only 3-chains
remain. In the latter case, give up control, and then play optimally (which is easy in a
union of 3-chains).

Our version is: when the opener opens a componentC , give up control if and only if
tb(G −C) < tb(G). We do not need to say what to open when not in control, because
only 3-chains will remain.

Theorem 2.1 (Controlled value) Suppose G is a Dots and Boxes position consisting
of loops and long chains. A controller who follows the control strategy will score at
least c(G). Against a skilled opponent who knows the controller is using this strategy,
the controller will score exactlyc(G).

Proof We induct on the number of components, the case of empty G being trivial. We
write K resp. O for the player who is initially the controller resp. opener. If O opens
componentC , and tb(G − C) ≥ tb(G), then K will keep control. By induction, she
will score at least c(G − C) in G − C . So the score inG will be at least

(
size(C) − 4 if C is a chain
size(C) − 8 if C is a loop

)
+ c(G − C)

= c(G)+ tb(G − C) − tb(G) ≥ c(G).

There are only two cases in which removingC can decrease the terminal bonus. In the
first case,C is the last component, and K will score size(C) = c(G). In the other case,
C is a loop and G − C consists of k ≥ 1 many 3-chains. So K will give up control
immediately, capturing all of C . Then O will keep control j many times, for some
0 ≤ j ≤ k. Thereafter, and only if j < k, O gives up control. Thereafter, and only if
j < k−1, K keeps control except for the last component. By examining the candidates

123

Author's personal copy

D. Allcock

for j one sees that K scores at least size(C) − 3 (if k = 1) or size(C) − 2 (if k = 2)
or size(C) − k + 2 (if k > 2). In every case this is at least c(G) = size(C) − k − 2.

Now we suppose O knows that K is using the control strategy. We give a strategy
forO that leads to a final score ofc(G). If G has a chain of length ≥ 4, or no chains
at all, or no loops at all, then O opens all loops and then all chains. This leads K to
keep control until the last component. Otherwise, G has at least one loop, at least one
3-chain, and no longer chains. In this case O opens all but one of the chains, then all
of the loops. When the last loop is opened, K will give up control, and O will capture
the remaining 3-chain. &'

We close this section with a few easy and useful relations between v(G), c(G)

and size(G). There are also two more relations that we will prove later. First, adding
the hypothesis that G is even to part (3) strengthens its conclusion to size(G) ≡
c(G) ≡ v(G) mod4. (See Theorem4.1.) Second, our Theorem3.2 contains the result
of Berlekamp and Scott that c(G) ≥ 2)⇒ c(G) = v(G).

Lemma 2.2 Suppose a Dots and Boxes position G consists of loops and long chains,
and C is a component ofG. Then

(1) v(G) ≥ c(G);
(2) size(G) ≡ c(G) ≡ v(G) ≡ v(G;C) mod 2;
(3) size(G) ≡ c(G) mod 4 if G has no 3-chains.

Proof (1) The controller may guarantee a score of at least c(G) by using the control
strategy.

(2) Both c(G) and v(G) have the same parity as size(G) because they are margins
of victory under certain lines of play. For the last congruence, it follows from Eq. (3)
(not part (3) of the lemma) that v(G;C) has the same or different parity as v(G −C)

according to whether size(C) is even or odd. Also, size(G) has the same or different
parity as size(G − C) under the same conditions. Since size(G − C) and v(G − C)

have the same parity, it follows that v(G;C) ≡ size(G) mod2.
(3) When no 3-chains are present the terminal bonus is divisible by4. So our claim

follows from the definition of c(G) in (1). &'

3 Opener strategy

Our goal in this section is to prove Theorem1.1, under the standing hypothesis that G
is a Dots and Boxes position consisting of unopened loops and long chains. Although
our proof is logically independent of the work of Buzzard and Ciere (2013), and
organized very differently, we would not have been able to formulate Theorem1.1 or
the lemmas below without reference to it. We regret that we do not use their lovely
chain- and loop-amalgamation arguments.

Lemma 3.1 (Very small positions) Suppose G has one component, or consists of a
3-chain and a loop. Then v(G) = c(G). In the second case, opening the loop is
optimal.

123

Author's personal copy

Best play in Dots and Boxes endgames

Proof The first case is obvious. For the second case one examines the four possible
lines of play. (Opening the 3-chain is not optimal.) &'

The next theorem summarizes the key points of the lemma after it. After estab-
lishing it we will use the implication (c ≥ 2))⇒ (v = c) many times without
specific reference. The lemma and its proof are essentially the same as lemma15 from
Buzzard and Ciere (2013), that one can “fly the plane without crashing” in the sense
of Berlekamp and Scott (2002).

Theorem 3.2 (Large controlled values) Suppose c(G) ≥ 2. Then v(G) = c(G) and
the following gives an optimal move:

(1) Open a 3-chain (if G has one and at least one other chain).
(2) Otherwise, open a shortest loop (if G has a loop).
(3) Otherwise, open a shortest chain.

Lemma 3.3 (Large controlled values—details) Suppose c(G) ≥ 2.

(1) If C is any component satisfying

tb(G − C) = tb(G) and c(G − C) ≥
{
2 if C is a chain
4 if C is a loop,

then opening C is optimal.
(2) If G has a 3-chain, 4-loop or 6-loop, whose removal does not alter the terminal

bonus, then opening it is optimal.
(3) Suppose G has no 3-chains, or exactly one 3-chain and no other chains. If G has

a loop, then opening a shortest loop is optimal.
(4) If G has no loops, then opening a shortest chain is optimal.
(5) The value v(G) is equal to the controlled value c(G).

Proof We induct on the number of components. If G has one component, then (1)–(2)
are vacuous and (3)–(5) are trivial. So suppose G has at least two components.

(1) Write l for the length of C , and assume first that C is a loop. We have

v(G;C) = (l − 4)+ |v(G − C) − 4|.

Since c(G −C) ≥ 4 by the hypothesis of (1), v(G −C) = c(G −C) ≥ 4 follows by
induction. So we have

v(G;C) = (l − 4)+ c(G − C) − 4 = (l − 8)+ c(G − C).

Since G and G − C have the same terminal bonus, c(G − C) = c(G) − (l − 8).
Plugging this in gives v(G;C) = c(G). Together with Lemma2.2 this gives

c(G) ≤ v(G) ≤ v(G;C) = c(G).

Therefore v(G;C) = v(G), which proves optimality, and v(G) = c(G). If C is a
chain, then the argument is the same with all 4s replaced by 2s and all 8s by4s.

123

Author's personal copy

D. Allcock

(2) First suppose G has a 3-chain with tb(G − 3) = tb(G). Then c(G − 3) =
1+ c(G) ≥ 3. So (1) applies to the 3-chain. And similarly for a 4-loop or 6-loop.

(3) By hypothesis,G consists of either at least one loop and a 3-chain, or at least one
loop and possibly some chains of length ≥ 4. Let C be a shortest loop. In the special
case G = C + 3, opening C is optimal by Lemma3.1. So suppose otherwise: that G
has a second loop, or a chain of length ≥ 4. In either case the removal of C leaves
the terminal bonus invariant. If C = 4! or 6!, then we are done by (2). There are two
remaining cases. First, G consists of a 3-chain and two or more loops of length ≥ 8.
Second, G consists of at least one loop of length ≥ 8 and possibly some chains of
length ≥ 4. In each case we write out formula (5) for c(G − C) and use the absence
of 4- and 6-loops. The results in the two cases are

c(G − C) = (3 − 4)+ (nonnegative terms)+ 6 ≥ 5

and c(G − C) = (nonnegative terms)+ (4 or 8) ≥ 4,

respectively. So (1) shows that opening C is optimal.
(4) Because G consists of at least 2 chains, removing any one of them leaves the

terminal bonus unchanged. LetC be shortest possible. If it is a 3-chain, then we appeal
to (2). Otherwise we mimic the argument at the end of the proof of (3) and get

c(G − C) = (nonnegative terms)+ 4 ≥ 4.

Since the right side is at least 2, it follows from (1) that opening C is optimal.
(5) One of (2)–(4) applies toG. Their proofs show that eitherG consists of a 3-chain

and a loop, or else G has a component C satisfying (1). In the first case we appeal to
Lemma3.1 for the equality v = c. In the second case we observed v = c during the
proof of (1). &'
Lemma 3.4 (Example of 6!-optimality) Suppose G += ∅ has no 3-chains or 4-loops,
and c(G) ≤ 4. Then

v(G) = 3, 2, 3, 4 if size(G) ≡ 1, 2, 3, 4 mod 4, respectively.

Furthermore, if c(G) < 2, then G has at least two 6-loops and opening one of them
is optimal.

Proof We write w for the function appearing on the right, namely

w(H) = 3, 2, 3, 4 if size(H) ≡ 1, 2, 3, 4 mod 4, respectively,

for every positionH . We must prove v(G) = w(G). First we establish the cases
c = 2, 3, 4. By the absence of 3-chains, Lemma2.2(3) gives size(G) ≡ c mod4. So
the definition of w gives w(G) = c. And Theorem3.2 gives v = c, completing the
proof when c ≥ 2.

So we may suppose c < 2. We write this out using formula (5), as

2 > c = −θ − 4 f − 2s + (nonnegative terms)+ tb(G).

123

Author's personal copy

Best play in Dots and Boxes endgames

By tb(G) ≥ 4 and θ = f = 0 we get s ≥ 2. Since there are at least two loops, the
removal of any loop leaves the terminal bonus unchanged. In particular, c(G − 6!) =
c+ 2. Also, G has a third component because c(G) < 2 and c(6! + 6!) = 4. Having
made these preparations, we now induct on the number of components.

First we claim v(G−6!) = w(G−6!). If c(G−6!) ≥ 2, then c(G−6!) = 2 or3,
which are cases already proven. This includes the base case that G has 3 components,
because then G − 6! = 6! +C ′ with C ′ += 3, 4!, which forces c(G − 6!) ≥ 2. On the
other hand, if c(G − 6!) < 2, then induction gives v(G − 6!) = w(G − 6!).

Next we claim v(G; 6!) = w(G). The previous paragraph gives us

v(G; 6!) = 2+ |w(G − 6!) − 4| =

3 if size(G − 6!) is odd
2 if size(G − 6!) ≡ 4 mod 4
4 if size(G − 6!) ≡ 2 mod 4.

(6)

Because the sizes of G and G − 6! differ by 2 mod 4, the right side of (6) is w(G),
proving the claim. Once we prove that opening a 6-loop is optimal it will follow that
v = v(G; 6!) = w(G) and the induction will be complete.

Suppose that some component C += 6! has v(G;C) < v(G; 6!). We have

2 ≤ v(G;C) ≡
mod 2

v(G; 6!) ≤ 4. (7)

The first inequality comes from (3) because C is a chain of length ≥ 4 or a loop of
length ≥ 8. The congruence is by Lemma2.2(2), and we saw v(G; 6!) ≤ 4 in the
previous paragraph. This forces

v(G;C) = 2 and v(G; 6!) = 4. (8)

Together with (3), the first shows that C is a 4-chain with v(G − 4) = 2. Together
with (6), the second shows that size(G) ≡ 4 mod 4.

This is impossible because v(G − 4) ≡ 4 mod 4: by induction if c(G − 4) < 2, or
by

v(G − 4) = c(G − 4) ≡ size(G − 4) ≡ 4 mod 4

if c(G − 4) ≥ 2. (The first congruence is Lemma2.2.) &'

We will re-use the arguments establishing (7) and (8) several times, without giving
the details each time.

Lemma 3.5 (First example of 3-optimality) Suppose c(G) < 2 and that G has no
4-loops, but does have a 3-chain. Then opening a 3-chain is optimal, and

v(G) =

2 if G is even
3 if θ = 1 and size(G) ≡ 3 mod 4
1 otherwise.

(9)

123

Author's personal copy

D. Allcock

Proof As we did in the proof of Lemma3.4, we write w for the function on the right
side of (9).

We will prove v(G) = w(G) by induction on θ . In both the base case and the
inductive step the strategy is to show v(G; 3) = w(G). Given this, the optimality of
a 3-chain follows from

2 ≤ v(G;C) ≡
mod 2

v(G; 3) = w(G) ≤ 3

for every component C other than a 3-chain.
Now for the induction. By the hypothesis c < 2, G does not consist of a single

3-chain, so there is another component. This implies that the terminal bonus rises by
at most 2 if a 3-chain is removed. In particular, c(G − 3) ≤ c + 3 ≤ 4. In the case
θ = 1, v(G − 3) is given by Lemma3.4. This yields

v(G; 3) = 1+ |v(G − 3) − 2| =

2 if size(G − 3) is odd
3 if size(G − 3) ≡ 4 mod 4
1 if size(G − 3) ≡ 2 mod 4.

This is visibly equal tow(G). Now suppose θ > 1.Wemust show that v(G; 3) is equal
to whichever of 1 and2 has the same parity asG. It is enough to show v(G; 3) ∈ {1, 2}.
Thiswill follow oncewe prove v(G−3) ∈ {1, 2, 3}.We observe c(G−3) = c+1 ≤ 2.
In the case c(G−3) = 2 we have v(G−3) = c(G−3) = 2. In the case c(G−3) < 2
we have v(G − 3) ∈ {1, 2, 3} by induction. This finishes the proof. &'
Lemma 3.6 (3-chains+ 4-loops) Suppose G consists of 3-chains and 4-loops. Then

v(G) =

(whichever of 0,4) ≡ size(G) mod 8 if θ = 0
3 if G = 3+ 4even!

(whichever of 1,2) ≡ size(G) mod 2 otherwise.

Furthermore,

(1) Opening a 4-loop is optimal if and only if θ is even or1.
(2) Opening a 3-chain is optimal if and only if θ ≥ 2 or f is even.

Proof The following table displays the value of every position consisting of 3-chains
and 4-loops. The top left entry corresponds to the empty game, with value 0. The
values of positions consisting of 3-chains appear in the left column. We worked them
out inductively in Sect. 2, as an example of using (3). A similar calculation gives the
values of positions consisting of 4-loops, which appear in the top row. The remaining
entries follow from (4): each is the smaller of

v(G; 4!) =
∣∣(the entry to the left) − 4

∣∣

and v(G; 3) = 1+
∣∣(the entry above) − 2

∣∣.

It follows by induction that the table gives v(G), which justifies all our claims.

123

Author's personal copy

Best play in Dots and Boxes endgames

f 0 1 2 3 4 5 6

θ 0 0 4 0 4 0 4 0
1 3 1 3 1 3 1 3
2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1

Starting with θ = 2, the rows alternate between all 2s and all 1s. &'

Lemma 3.7 (First example of 4!-optimality) Suppose G has a 4-loop and c(G) ≥ − 2.
Then

(1) v(G) = |c(G)| unless G = 3+ 3+ 4!, in which case v(G) = 2;
(2) opening a 4-loop is optimal unless G = 3+ 3+ 3+ 4!.

Proof First we treat the case that removing a 4-loop changes the terminal bonus.
This can only happen when G consists of a 4-loop and zero or more 3-chains.
The condition c ≥ −2 shows that the number of 3-chains is 0, 1, 2, 3 or 4. In these
cases we have c = 4, 1, 0,−1 or−2, and Lemma3.6 gives v = 4, 1, 2, 1 or 2 res-
pectively. As claimed, v = |c| unless G = 3+ 3+ 4!. For the optimality of opening
a 4-loop in 3+ 4!, 32 + 4! and 34 + 4!, we refer to Lemma3.6.

Now suppose removing a 4-loop leaves the terminal bonus invariant. So c(G−4!) =
c + 4. We first prove v(G; 4!) = |c|. By c ≥ −2 we have c(G − 4!) ≥ 2, so
v(G − 4!) = c(G − 4!). If c = −2 resp.−1, then c(G − 4!) = 2 resp. 3, so
v(G − 4!) = 2 resp. 3, so v(G; 4!) = 2 resp. 1, which equals |c|. And if c ≥ 0,
then

v(G; 4!) = |c(G − 4!) − 4| = (c + 4) − 4 = c = |c|.

This completes the proof that v(G; 4!) = |c|.
If c ≥ 2, then the optimality of opening a 4-loop is Lemma3.3(2). Otherwise,

v(G; 4!) = |c| = 0, 1 or 2 by the previous paragraph. If C is a component other than
a 4-loop, then

1 ≤ v(G;C) ≡
mod 2

v(G; 4!) ≤ 2.

So v(G;C) cannot be less than v(G; 4!). This proves the optimality of a 4-loop, hence
v(G) = v(G; 4!) = |c|. &'

Lemma 3.8 (Second example of 4!-optimality) Suppose c < 2 and that G += ∅ has
no 3-chains. If G has a 4-loop, then opening it is optimal. Regardless of whether G
has a 4-loop, if c + 4 f ≥ 2, then

v = 0, 1, 2, 3, 4 in the cases c ≡ 0,±1,±2,±3, 4 mod 8 (10)

123

Author's personal copy

D. Allcock

while if c + 4 f < 2, then

v =

2 if c ≡ 2 mod 4
otherwise:
(whichever of 0,1) ≡ c mod 2 if f is odd
(whichever of 3,4) ≡ c mod 2 if f is even.

(11)

Remark 3.9 In (11) we could replace every occurrence of c by size(G), because the
absence of 3-chains implies size(G) ≡ c(G) mod4.

Proof We begin with three special cases. First, suppose G has no 4-loops. Then c +
4 f = c < 2, so we are asserting that v(G) is given by (11). This is justified by Lemma
3.4.

Second, suppose that G is a union of 4-loops. Then c+ 4 f = −4 f + 8+ 4 f ≥ 2,
so we are asserting that v(G) is given by (10). This is justified by Lemma 3.6.

Third, suppose G has a 4-loop and that c = −2,−1, 0, or1. Then c + 4 f ≥ 2, so
we are asserting that v(G) is given by (10), namely v(G) = 2, 1, 0, or1 respectively.
This is justified by Lemma3.7.

For the general case we use induction on the number of components. So suppose
that every position with fewer components than G, that satisfies the hypotheses of
the lemma, also satisfies its conclusions. Regarding the cases already treated as base
cases, we may suppose that c(G) < −2 and that G has a 4-loop and a component
other than a 4-loop, hence a longer loop or a chain of length ≥ 4. The presence of this
extra component shows that removing a 4-loop from G does not change the terminal
bonus. In particular, c(G − 4!) = c + 4 < −2 + 4 = 2. Therefore induction applies
to G − 4!. In particular, v(G − 4!) is given by whichever of (10) and (11) applies to
G − 4!. To figure out which one applies we observe

c(G − 4!)+ 4 f (G − 4!) = c(G)+ 4 f (G). (12)

This shows that whichever of (10) and (11) claims to apply to G does indeed apply to
G − 4!.

As we did in the proof of Lemma3.4, we write w(·) for the function on positions
given by (10) and (11). Our next step is to prove that v(G; 4!) is equal to what the
lemma claims is v(G). That is, we will prove v(G; 4!) = w(G). Regardless of which
of (10) and (11) applies toG−4!, we have v(G−4!) = w(G−4!) ∈ {0, 1, 2, 3, 4}. It
follows that v(G; 4!) = 4−v(G−4!). It is also easy to see thatw(G) = 4−w(G−4!):
for (10) this uses the fact that c(G) and c(G − 4!) differ by 4 mod8, while for (11)
this uses the fact that f (G) and f (G − 4!) have different parities. It follows that
v(G; 4!) = w(G).

Now we prove the optimality of a 4-loop. Suppose for a contradiction that C is a
component of G with v(G;C) < v(G; 4!). By

2 ≤ v(G;C) ≡
mod 2

v(G; 4!) ≤ 4

123

Author's personal copy

Best play in Dots and Boxes endgames

we must have v(G;C) = 2 and w(G) = v(G; 4!) = 4. The first of these forces C
to be a 4-chain with v(G − 4) = 2, or a 6-loop with v(G − 6!) = 4. Removing a 6!

leaves the terminal bonus invariant, while removing a 4-chain increases it by 0 or4.
In either case we have

c(G − C) ≤ c(G)+ 4 < −2+ 4 = 2.

By induction, the lemma describes v(G − C).
If C is a 4-chain, then v(G − 4) = 2 forces c(G − 4) ≡ 2 mod 4, regardless of

whether (10) or (11) applies to G − 4. But then the absence of 3-chains shows

c(G) ≡ size(G) ≡ size(G − 4) ≡ c(G − 4) ≡ 2 mod 4.

This givesw(G) = 2, regardless of whether (10) or (11) applies toG. This contradicts
our earlier conclusion that w(G) = 4. If C is a 6-loop, then v(G − 6!) = 4 forces
c(G − 6!) ≡ 0 mod 4, regardless of whether (10) or (11) applies to G − 6!. This
forces c(G) ≡ 2 mod 4, leading to the same contradiction.

We have proven the optimality of opening a 4-loop. So v(G) = v(G; 4!) = w(G)

follows and the proof is complete. &'

The next two lemmas, taken together, are an analogue of sections 11–13 of Buzzard
and Ciere (2013). But the formulations and arguments are quite different.

Lemma 3.10 (Third example of 4!-optimality) Suppose G has exactly one 3-chain,
and size(G) ≡ 3 mod 4 and c < 2. If G has a 4-loop, then opening it is optimal.
Regardless of whether G has a 4-loop, if c + 4 f ≥ 2, then

v(G) = 1 or 3 according to whether c(G) ≡ ±1 or ± 3 mod 8 (13)

while if c + 4 f < 2, then

v(G) = 1 or 3 according to whether f is odd or even. (14)

Proof This is similar in structure to the previous proof. Note that c is odd because G
is. We begin with three special cases. First, if G has no 4-loops, then c + 4 f < 2, so
the lemma claims v = 3. This is justified by Lemma3.5.

Second, if G has a 4-loop and c(G) = ±1, then c + 4 f ≥ 2, so the lemma claims
that v = 1 and opening a 4-loop is optimal. This is justified by Lemma3.7. (The
exception 3+ 3+ 3+ 4! there is irrelevant because θ = 1.)

Third, suppose thatG consists of a 3-chain and f > 0many 4-loops. Then c+4 f =
−1−4 f +6+4 f = 5, so the lemma asserts that v(G) = 1 or 3 according to whether
c ≡ ±1 or ±3 mod8. The cases c ≡ −1 or3 mod8 do not occur, and the cases c ≡ 1
or −3 mod8 are equivalent to f being odd or even, respectively. So we may quote
Lemma3.6.

For the general case we induct on the number of components. So suppose every
position with fewer components thanG, that satisfies the hypotheses of the lemma,

123

Author's personal copy

D. Allcock

also satisfies its conclusions. Regarding the cases already treated as base cases, wemay
suppose that c < −2, and thatG contains a 4-loop and also a component that is neither
a 3-chain nor a 4-loop. In particular, removing a 4-loop does not alter the terminal
bonus. So c(G − 4!) = 4+ c < 2. By induction, the lemma describes v(G − 4!). In
particular, v(G − 4!) = 1 or 3. These lead to v(G; 4!) = 3 or1 respectively.

Next we claim v(G; 3) = 3. We have c(G − 3) ≤ c + 4 < 2, so Lemma3.8
computes v(G − 3). Which case of that lemma applies depends on the value of c(G −
3)+ 4 f (G − 3). But both cases give

v(G − 3) ≡ size(G − 3) ≡ size(G) − 3 ≡ 0 mod 4.

So v(G − 3) ∈ {0, 4}, which implies v(G; 3) = 1 + |(0 or 4) − 2| = 3. This proves
the optimality of opening a 4-loop, because any component C += 3, 4! has v(G;C)

odd and at least 2.
All that remains is to justify the stated value of v(G). We know v(G) = v(G; 4!) =

4−v(G−4!). On the other hand, the equality (12) from the previous proof also holds
here, so that whichever of (13) and (14) purports to describe v(G) does indeed describe
v(G − 4!). Examining these two formulas shows that 4 − v(G − 4!) is the claimed
value of v(G). For (13) this uses the fact that c(G) and c(G − 4!) differ by4, while
for (14) this uses the fact that f (G) and f (G − 4!) have different parities. &'

Lemma 3.11 (Second example of 3-optimality) Suppose c < − 1 and that either

(1) θ ≥ 2, or
(2) θ = 1 and size(G) ≡/ 3 mod 4.

Then opening a 3-chain is optimal, and v = 1 or 2 according to whether G is odd or
even.

Proof Webegin by treating three special cases. First, ifG has no 4-loops, thenwe quote
Lemma3.5. Second, if G consists of 4-loops and 3-chains, then we quote Lemma3.6.

Third, suppose that G consists of a 3-chain and at least one loop. Then G is odd, so
our hypothesis on size(G) forces size(G) ≡ 1 mod 4. Also c(G−3) = 3+c(G) < 2,
so Lemma3.8 describes v(G − 3). In order to apply it we need to know c(G − 3)
modulo either 8 or 4, depending on which of (10) or (11) applies to G − 3. Because
θ(G − 3) = 0, we have c(G − 3) ≡ size(G − 3) ≡ 2 mod 4. Now Lemma3.8 gives
v(G−3) = 2, no matter which of (10) and (11) applies to G−3. From v(G−3) = 2
we get v(G; 3) = 1. Since v(G) is odd and bounded above by v(G; 3), the 3-chain is
optimal and v(G) = 1.

We have reduced to the case that G has at least two chains, that it has a 4-loop,
and that it has a component that is neither a 3-chain nor a 4-loop. It follows that
the terminal bonus is invariant under the removal of either a 3-chain or a 4-loop. In
particular, c(G − 3) = 1+ c < 0 and c(G − 4!) = 4+ c < 3.

As a fourth special case, suppose c = −2. Then Lemma3.7 applies to both G and
G − 3, giving v(G) = 2 and v(G − 3) = 1. The first of these is our claimed value for
v(G), and the second shows v(G; 3) = 2. Since this equals v(G), opening a 3-chain
is optimal. Henceforth we suppose c(G) < −2.

123

Author's personal copy

Best play in Dots and Boxes endgames

Suppose G is a counterexample with fewest possible components; we will derive
a contradiction. The main step is to show v(G; 3) ∈ {1, 2}. Suppose first that θ = 1.
Lemma3.8 describes v(G − 3). Because c(G − 3) ≡ size(G − 3) ≡ 0 mod 4, it says
v(G − 3) = 1, 2 or3. Then v(G; 3) = 2, 1 or 2 respectively. Now suppose θ = 2 and
size(G) ≡ 2 mod 4. Then Lemma3.10 gives v(G − 3) ∈ {1, 3}, hence v(G; 3) = 2.
Finally, suppose that either θ = 2 and size(G) ≡ 2 mod 4, or that θ > 2. Then
the minimality of G shows that the current lemma describes v(G − 3). In particular,
v(G−3) ∈ {1, 2}, so v(G; 3) ∈ {2, 1} also. This finishes the proof of v(G; 3) ∈ {1, 2}.

SinceG is a counterexample, it has a componentC with v(G;C) < v(G; 3). This is
obviously impossible if v(G; 3) = 1, so we must have v(G; 3) = 2 and v(G;C) = 0.
The latter forcesC to be a 4-loopwithv(G−4!) = 4. If c(G−4!) < −1, then induction
would give the contradiction v(G − 4!) ∈ {1, 2}. Therefore c(G − 4!) ≥ −1. On the
other hand, c(G − 4!) = c + 4 < 2, so we must have c(G − 4!) = −1, 0 or1.
There must be no 4-loops in G − 4!, or else Lemma3.7 would give the contradiction
v(G−4!) = |c(G−4!)| = (0 or 1) += 4. But then Lemma3.5 gives the contradiction
v(G − 4!) ∈ {1, 2, 3}. &'
Proof of Theorem 1.1 This amounts to combining the results above. First suppose c ≥
2. If G = 3+ (one or more loops), then Theorem3.2 shows that opening the shortest
loop is optimal, as claimed. Otherwise, the same theorem shows that opening a 3-chain
is optimal, justifying our claim that the standard move is optimal.

Henceforth we may assume c < 2. We begin by showing that if G has no 3-
chains or 4-loops then the standard move is optimal. Lemma3.4 shows that G has a
6-loop, and that opening it (which is the standardmove) is optimal. Next we generalize
this by showing that if G has a 3-chain, but still no 4-loops, then the standard move
(opening a 3-chain) is optimal. This is part of Lemma3.5. Next we treat the special
case G = 4! + 3+ 3+ 3. We must prove that the standard move (opening a 3-chain)
is optimal. This is part of Lemma3.6.

We have reduced to the case that c < 2 and that G += 4! + 3+ 3+ 3 has a 4-loop.
If c ∈ {0,±1}, then Lemma3.7 shows that opening a 4-loop is optimal.

Finally, suppose c ≤ −2. IfG has no 3-chains, then wemust prove that the standard
move (opening a 4-loop) is optimal. This is part of Lemma3.8. The only remaining
cases are G = 3+ 4! + H . If H has no 3-chains and 4| size(H), then we must show
that opening a 4-loop is optimal, which is part of Lemma3.10. On the other hand, if
H has a 3-chain, or 4 ! size(H), then we must show that the standard move (opening
the 3-chain) is optimal. This is part of Lemma3.11. &'

4 Game values and controller strategy

The controller’s strategy in Theorem1.3 depends on being able to recognize when a
positionG has value > 2. We will give two ways to compute the value. First we give
an explicit value in terms of c(G), f (G) and the overall size and shape of G. This
is complicated. Then we give our preferred method, whose essential case computes
v(G) by starting with c(G0) for a certain smaller positionG0, and then applying a
simple process. The following result immediately implies Theorems 1.4 and1.5.

123

Author's personal copy

D. Allcock

Theorem 4.1 (Values—explicit) Suppose G is a nonempty Dots and Boxes position
consisting of loops and long chains. Then its value v = v(G) is given by the first of
the following cases that applies:

(1) If c ≥ 2, then v = c.
(2) If c = 0 and G = 4! + (anything except 3+ 3), then v = 0.
(3) If θ = 0, or if θ = 1 and size(G) ≡ 3 mod 4, then

(a) if c+ 4 f ≥ 2, thenv = 0, 1, 2, 3or4according towhether c ≡ 0,±1,±2,±3
or 4 mod 8;

(b) if c + 4 f < 2, then
(i) if G is odd, then v = 1 resp. 3 if f is odd resp. even;
(ii) if size(G) ≡ 2 mod 4, then v = 2;
(iii) if size(G) ≡ 0 mod 4, then v = 0 resp. 4 if f is odd resp. even.

(4) In all other cases, v = 1 resp. 2 if G is odd resp. even.

Proof (1) is part of Theorem3.2. (2) is part of Lemma3.7. (3) follows from Lemma3.8
if θ = 0, or Lemma3.10 if θ = 1.

(4) It is enough to prove v ∈ {1, 2}. Because case (1) does not apply toG, we know
that c < 2. Because case (3) does not apply toG, we know that either θ ≥ 2, or else
θ = 1 and size(G) ≡ 3 mod4. In light of these restrictions, if G has no 4-loop, then
Lemma3.5 gives v ∈ {1, 2}.

So we suppose f > 0. If c = ±1, then v = 1 by Lemma3.7. If c = 0, then we
must have G = 4! + 3+ 3, or else case (2) would have applied. This special case has
value2 by Lemma3.6. Finally, if c < −1, then Lemma3.11 gives v ∈ {1, 2}. &'

There is a way to replace the complicated case (3) by a simpler iterative procedure.
In practice it is easier and less error-prone than working through the tree of subcases.
It is easier to use than explain, so the reader might want to look ahead at Example4.3.

We will define a union G0 of components ofG. The strategy for computing v(G) is
to show v(G0) = c(G0) and that v(G) is got from v(G0) by a simple process. Suppose
θ ≤ 1. We define the core G0 of G as the union of the following components ofG. Its
loops are all the loops of length ≥ 8. Its chains are either all the chains of length ≥ 4
(if there are any) or the 3-chain (if G has one and no other chains). The core has the
useful property that if H is the union of G0 and possibly some more components of
G, then H0 = G0. Write θ ′ ∈ {0, 1} for the number of 3-chains in G − G0.

We define maps Z → Z:

#(x) = |x − 4| + 2 $(x) = x − 1 %(x) = |x − 4|.

Only their values on Z≥0 will be important. We think of # as decreasing any x ≥ 2
in steps of size 2 until x enters [0, 4], where # acts as reflection across 3. And %

decreases x in steps of size 4 until x enters [0, 4], where % acts as reflection across 2.
The operation % is from Lemma 21 and Corollary 22 of Buzzard and Ciere (2013).

Theorem 4.2 (Values—procedural) Suppose G is a nonemptyDots and Boxes position
consisting of loops and long chains. Then

(1) if c ≥ 2, then v = c;

123

Author's personal copy

Best play in Dots and Boxes endgames

(2) if c = 0, G has a 4-loop, and G += 4! + 3+ 3, then v = 0;
(3) if θ = 0, or if θ = 1 and size(G) ≡ 3 mod 4, then

v = % f $θ ′
#s(c(G0)).

In all other cases, v = 1 or 2 according to the parity of G.

Example 4.3 Say G = (8! + 18)+ 69! + 3+ 4101! , where the parentheses indicateG0.
Because θ = 1 and size(G) ≡ 3 mod 4, part (3) of the theorem applies. We begin
with v(G0) = c(G0) = 18. Adjoining the first seven 6-loops decreases this by2 each
time, leaving 4. Adjoining the remaining two 6-loops bounces this to 2 and back to
4 (reflecting across3). Adjoining the 3-chain reduces this to3. Adjoining the 4-loops
bounces this between 3 and 1 an odd number of times, leaving v(G) = 1.

Proof of Theorem 4.2 Unlike Theorem4.1, no case (1)–(3) has priority over any other.
If two apply, then we are asserting that both are correct. Cases (1) and (2) are justified
by Theorem3.2 and Lemma3.7 respectively. The “in all other cases” argument is the
same as for Theorem4.1.

For case (3) we first prove v(G0) = c(G0). If G0 = ∅, then both sides are 0,
so suppose G0 += ∅. Every component of G0 is a loop of length ≥ 8 or a chain of
length ≥ 4, or a 3-chain. There is at most one 3-chain. Every term in the formula (5)
for c(G0) is nonnegative, except that one term can be−1. So c(G0) ≥ tb(G0)−1 ≥ 3,
which implies v(G0) = c(G0).

Next we observe that the initial moves in an optimal strategy for the opener is to
open all the 4-loops, then the 3-chain (if G − G0 has one), then the 6-loops. This
follows from Theorem1.1. Therefore v(G) can be got by working backwards from
v(G0) = c(G0). We defined # so that v(H) = #(v(H − 6!)) for any position H in
which opening a 6-loop is optimal. It follows that if G−G0 has no 3-chain or 4-loops,
then v(G) = #s(v(G0)). If G −G0 has a 3-chain but no 4-loops, then instead we use
v(G) = 1+|v(G−3)−2| = $(v(G−3)). The second equality here comes from the
fact that G0 ⊆ G − 3 is nonempty (else the 3-chain would lie in G0) without 3-chains
or 4-loops, hence has value ≥ 2 by Lemma3.4. We have proven v = $θ ′

#s(c(G0))

if G has no 4-loops. For general G the same argument shows

v(G) = % f (G − (all 4-loops)
)
= % f $θ ′

#s(c(G0)). &'

5 Consequences for midgame play

This section discusses how to use our results in actual play. After reaching a position
consisting of loops and long chains, one can play optimally by following the strategies
in the introduction. But before play gets that far, there are opportunities to influence
the shape of the endgame.

We write from the perspective of a player (“you”) who expects to be the opener
once the game settles down to a union of loops and long chains. This means that you
expect to lose the Nimstring game. Assuming you are right in this expectation, your
only chance of victory is to gain a large enough advantage in captured boxes before

123

Author's personal copy

D. Allcock

the endgame. For a line of play under consideration, we write G for the resulting
endgame and A for your advantage in boxes at the time play reaches that position.
Players prefer odd × odd boards because ties are impossible, so we restrict to this
case. As a consequence, A and size(G) have different parities. We also assume that
you will create enough 3-chains and 4- and 6-loops so that c(G) < 2 and hence
v(G) ∈ {0, . . . , 4}.

A simple rule of thumb is: if A ≤ 1, then youwill lose, while if A ≥ 2, then youwill
win. This is not really true, but it is true “generically” in the sense that Theorem4.1
shows that almost all positions with c(G) < 2 have value 1 or 2. If A = 1, then the
only way you can win is to arrange for v(G) = 0. If A = 2 resp. 3, then the only way
you can lose is for v(G) = 3 resp. 4. According to Theorem4.1, each of these imposes
very strong constraints onG. We now consider in more detail the possibilities for pairs
(A,G). Your goal, for given A, is to steer the game toward an endgame G satisfying
A − v(G) > 0. We refer to Theorem4.1 throughout the analysis. Any (A,G) with
A ≤ 0 is lost, while any (A,G) with A ≥ 4 is a win.

First consider (A,G) with A = 1. You have probably lost, but if you can arrange
v(G) = 0, then you will win. Your opponent will try to block the creation of a 4-loop.
If she succeeds, then you will lose (f = 0 implies v += 0, hence v ≥ 2 because G is
even). So we assume that you can arrange for a 4-loop to be present. You will win if
you can also arrange for c = 0, with the single exception G = 4! + 3+ 3.

Our advice past this point involves the complicated case (3) of Theorem4.1. See
the next paragraph for a simplification. If you cannot arrange for c = 0, then you
must aim for θ = 0, because this is the only way to reach case (3a) or (3(b)iii). Even
if you can achieve this, you must also aim for 4| size(G). This is because v = 0
requires this in case (3(b)iii), and requires the stronger condition c ≡ 0 mod 8 in
case (3a). This condition on c implies 4| size(G), because the absence of 3-chains
gives size(G) ≡ c(G) mod 4 by Lemma2.2(3). If you can achieve both θ = 0 and
4| size(G), then you will win if you can also arrange for the number s of 6-loops to
be small and c ≡ 0 mod8, or if you can arrange for s to be large and f to be odd.
Here and below we write “s small” and “s large” as stand-ins for the more precise
statements c+ 4 f ≥ 2 and c+ 4 f < 2 respectively. (Because θ = 0, making c+ 4 f
small requires 6-loops.)

Actual play is unlikely to lead to many 6-loops, and one can ignore the “s
large/small” conditions without much loss. Ignoring them lets us simplify the advice
in the previous paragraph: if you can arrange for f > 0, but cannot arrange for c = 0,
then aim for θ = 0 and c ≡ 0 mod8. Of course, this simplified advice may mislead
you into a losing position, or blind you to an opportunity to win. For small G it is easy
to memorize the exceptions. The following theorem, verified by computer, makes it
fairly easy to remember the small winnableG.

Theorem 5.1 Suppose 0 < size(G) < 28 and c < 2. Then v = 0 if and only if: either
G = 4! + 62! + 41 or 2, or

θ = 0, f > 0, c ≡ 0 mod 8, and G += 42! + 62! + 4.

123

Author's personal copy

Best play in Dots and Boxes endgames

Now consider (A,G) with A = 2, so G is odd. You will probably win, but if your
opponent can arrange for v(G) = 3, then you will lose. If you can create two 3-chains,
then you will win. Even a single 3-chain will do if size(G) ≡ 3 mod 4. If you cannot
achieve this, then you must arrange for both (a) and (b) of Theorem1.5 to fail. That
is, you must arrange for s to be small and c(G) ≡ ±1 mod8, or for s to be large and
f to be odd. We sought an analogue of theorem5.1, but could not find one with just a
few exceptions.

Finally consider (A,G) with A = 3. This is similar to the A = 2 case but easier
since you will win unless v(G) = 4. If you arrange for G to have a 3-chain, or
size(G) ≡ 2 mod 4, then you will win. (This uses the evenness of G.) Suppose you
cannot achieve either of these, so θ = 0 and size(G) ≡ 0 mod4. Then you must aim
for s to be small and c(G) ≡ 0 mod8, or for s to be large and f to be odd. Here is an
analogue of theorem5.1, also verified by computer.

Theorem 5.2 Suppose size(G) < 28 and c < 2. Then v = 4 if and only if: either
θ = 0 and c ≡ 4 mod8 and G += 4! + 62! + 41 or 2, or else

G ∈
{
62! + 41 or 2 or 3, 62! + 4+ 42!, 62! + 4+ 8!, 63! + 6, 64!

}
.

Acknowledgements Supported by Simons Foundation Collaboration Grant 429818.

References

Berlekamp E (2000) The Dots and Boxes game. A K Peters, Wellesley
Berlekamp E, Scott K (2002) Forcing your opponent to stay in control of a loony Dots-and-Boxes endgame.

In: More games of no chance (Berkeley, CA, 2000), vol 42. MSRI Publ., Cambridge University Press,
pp 317–330

Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, vol 2. Academic
Press, New York

Buzzard K, Ciere M (2013) Playing simple loony Dots and Boxes endgames optimally. arxiv:1305.2156
Scott K (2000) Loony endgames in Dots-and-Boxes. U.C. Berkeley MS thesis

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Author's personal copy

