NORMALIZERS OF PARABOLIC SUBGROUPS OF COXETER GROUPS

DANIEL ALLCOCK

Abstract. We improve a bound of Borcherds on the virtual cohomological dimension of the non-reflection part of the normalizer of a parabolic subgroup of a Coxeter group. Our bound is in terms of the types of the components of the corresponding Coxeter subdiagram rather than the number of nodes. A consequence is an extension of Brink’s result that the non-reflection part of a reflection centralizer is free. Namely, the non-reflection part of the normalizer of parabolic subgroup of type D_5 or $A_{m\text{ odd}}$ is either free or has a free subgroup of index 2.

Suppose Π is a Coxeter diagram, J is a subdiagram and $W_J \subseteq W_\Pi$ is the corresponding inclusion of Coxeter groups. The normalizer $N_{W_\Pi}(W_J)$ has been described in detail by Borcherds [3] and Brink-Howlett [5]. Such normalizers have significant applications to working out the automorphism groups of Lorentzian lattices and K3 surfaces; see [3] and its references. $N_{W_\Pi}(W_J)$ falls into 3 pieces: W_J itself, another Coxeter group W_Ω, and a group Γ_Ω of diagram automorphisms of W_Ω. The last two groups are called the “reflection” and “non-reflection” parts of the normalizer. Borcherds bounded the virtual cohomological dimension of Γ_Ω by $|J|$. Our theorems 1, 3 and 4 give stronger bounds, in terms of the types of the components of J rather than the number of nodes. There are choices involved in the definition of W_Ω and Γ_Ω, and our bound in theorem 3 applies regardless of how these choices are made (theorem 1 is a special case). Theorem 4 improves this bound when W_Ω is “maximal”. In this case, when $J = D_5$ or $A_{m\text{ odd}}$, Γ_Ω turns out to either be free or have an index 2 subgroup that is free. This extends Brink’s result [4] that Γ_Ω is free when $J = A_1$.

The author is grateful to the Clay Mathematics Institute, the Japan Society for the Promotion of Science, and Kyoto University for their support and hospitality.

We follow the notation of [3], and refer to [6] for general information about Coxeter groups. Suppose (W_Π, Π) is a Coxeter system, which is

Date: May 2, 2011.

2000 Mathematics Subject Classification. 20F55.
to say that W_Π is a Coxeter group and Π is a standard set of generators. The Coxeter diagram is the graph whose nodes are Π, with an edge between $s_i, s_j \in \Pi$ labeled by the order m_{ij} of s_is_j, when $m_{ij} > 2$. W_Π acts isometrically on a real inner product space V_Π with basis (the simple roots) Π and inner products defined in terms of the m_{ij}. The (open) Tits cone K is an open convex subset of V_Π^* on which W_Π acts properly discontinuously with fundamental chamber C_Π. (Our C_Π and K are “missing” the faces corresponding to infinite parabolic subgroups of W_Π.) The standard generators act on V_Π^* by reflections across the hyperplanes containing the facets of C_Π, and they also act on V_Π by reflections. For a root α (i.e., a W_Π-image of a simple root) we write α^\perp for α’s mirror, meaning the fixed-point set in K of the reflection associated to α.

Now let $J \subseteq \Pi$ be a spherical subdiagram, i.e., one corresponding to a finite subgroup of W_Π, and let W_{min} be the group generated by the reflections in W_Π that act trivially on $V_J \subseteq V_\Pi$. This is the “reflection” part of $N_{W_\Pi}(W_J)$, or rather the strictest possible interpretation of this idea. It corresponds to Borcherds’ W_Ω in the case that the groups he calls Γ_Π and Γ_J are trivial; see the discussion after lemma 2. Let $J^\perp := \cap_{\alpha \in J} \alpha^\perp$, pick a component C_min of the complement of W_{min}’s mirrors in J^\perp, and define C_{min} as its closure (in J^\perp). By definition, W_{min} is a Coxeter group, and the general theory of these groups shows that C_{min} is a chamber for it. The “non-reflection” part of $N_{W_\Pi}(W_J)$ means the subgroup Γ_min of W_Π preserving J (regarded as a set of roots) and sending C_{min} to itself. The reason for the first condition is to discard the trivial part of $N_{W_\Pi}(W_J)$, namely W_J itself. That is, $W_{\text{min}}:\Gamma_\text{min}$ is a complement to W_J in $N_{W_\Pi}(W_J)$. We write Γ_min^\vee for the subgroup of Γ_{min} acting trivially on J (equivalently, on V_J). The reason for passing to this (finite-index) subgroup is that Γ_{min} often contains torsion and therefore has infinite cohomological dimension for boring reasons.

Theorem 1. Γ_min^\vee acts freely on a contractible cell complex of dimension at most

$$\#A_1 + \#D_{m>4} + \#E_6 + \#I_2(5) + 2(\#A_{m>1} + \#D_4)$$

where $\#X_m$ means the number of components of J isomorphic to a given Coxeter diagram X_m. In particular, Γ^\vee_{min}’s cohomological dimension is at most (1).

Borcherds’ result [3, thm. 4.1] has $|J|$ in place of (1), but treats a more general group Γ_Ω, of which Γ_{min} is a special case. The more general case follows from this one, in theorem 3 below.
Proof. First we prove for \(x \in C_{\min}^\circ \) that its stabilizer \(\Gamma_{\min,x}^\vee \) is trivial. The \(W_\Pi \)-stabilizer of \(x \) is some \(W_\Pi \)-conjugate \(W_x \) of a spherical parabolic subgroup of \(W_\Pi \). So \(W_x \) acts on \(V_\Pi \) as a finite Coxeter group. It is well-known that any vector stabilizer in such an action is generated by reflections, so the subgroup \(W_{x,J} \) fixing \(J \) pointwise is generated by reflections. Observe that any reflection in \(W_{x,J} \) lies in \(W_{\min} \). Since \(x \) lies in the interior \(C_{\min}^\circ \) of \(C_{\min} \), it is fixed by no reflection in \(W_{\min} \), so there can be no reflection in \(W_{x,J} \), so \(W_{x,J} = 1 \). It is easy to see that \(W_{x,J} \) contains \(\Gamma_{\min,x}^\vee \), so we have proven that \(\Gamma_{\min}^\vee \) acts freely on \(C_{\min}^\circ \).

\(C_{\min}^\circ \) is contractible because it is convex, and it obviously admits an equivariant deformation-retraction to its dual complex. So it suffices to show that the dual complex has dimension at most \((1) \). Suppose \(\phi \subseteq J^\perp \) is a face of a chamber of \(W_\Pi \), with codimension in \(J^\perp \) larger than \((1) \); we must show \(\phi \cap C_{\min}^\circ = \emptyset \). For some \(w \in W_\Pi \), \(w\phi \) is a face of \(C_\Pi \) whose corresponding set of simple roots \(I' \subseteq \Pi \) contains \(J' := w(J) \cong J \). By the codimension hypothesis on \(\phi \), \(|I'| - |J'| \) is more than \((1) \). Applying the lemma below to \(J' \) and \(I' \), we see that \(W_{I'} \) contains a reflection \(r \) fixing \(J' \) pointwise. Since \(r \in W_{I'} \), its mirror contains \(w\phi \). So \(w^{-1}rw \) is a reflection fixing \(J \) pointwise (so it lies in \(W_{\min} \)), whose mirror contains \(\phi \). Since \(C_{\min}^\circ \) is a component of the complement of the mirrors of \(W_{\min} \), it is disjoint from \(\phi \), as desired. □

Lemma 2. If \(J \) lies in a spherical Coxeter diagram \(I \subseteq \Pi \), whose cardinality exceeds that of \(J \) by more than \((1) \), then \(W_I \) contains a reflection fixing \(J \) pointwise.

Remark. Equality in \((1) \) holds when \(I \) extends the \(A_m \), \(D_m \), \(E_6 \) and \(I_2(5) \) components of \(J \) by \(A_1 \rightarrow A_2 \), \(A_{m>1} \rightarrow D_{m+2} \), \(D_4 \rightarrow E_6 \), \(D_{m>4} \rightarrow D_{m+1} \), \(E_6 \rightarrow E_7 \) and \(I_2(5) \rightarrow H_3 \). One can check in this case that the conclusion of the lemma fails.

Proof. We may suppose \(I = \Pi \), by discarding the rest of \(\Pi \). Working one component at a time, it suffices to prove the lemma under the additional hypothesis that \(\Pi \) is connected. We now consider the various possibilities for \(\Pi \), and suppose \(W_\Pi \) contains no reflections fixing \(V_J \) pointwise. That is, we assume \(W_{\min} = 1 \). In each case we will show that \(|\Pi| - |J| \) is at most \((1) \).

The \(\Pi = A_n \) case is a model for the rest. Suppose the component of \(J \) nearest one end of \(\Pi \) has type \(A_m \) and does not contain that end. Then it must be adjacent to that end (since \(W_{\min} = 1 \)), so together with the end it forms an \(A_{m+1} \). We conjugate by the long word in \(W(A_{m+1}) \), which exchanges the two \(A_m \) diagrams in \(A_{m+1} \) and fixes the roots in the other components of \(J \). The result is that we may suppose without loss that \(J \) contains that end of \(\Pi \). Repeating the argument to move
the other components of J toward that end, we may suppose that there is exactly one node of Π between any two consecutive components of J. And the other end of Π is either in J or adjacent to it. It is now clear that $|\Pi| - |J|$ is the number of components of J, or one less than this. Since every component of J has type A, $|\Pi| - |J|$ is at most (1). This finishes the proof in the $\Pi = A_n$ case.

If $\Pi = B_n = C_n$ then we begin by shifting any type A components of J as far as possible from the double bond. If J has no B_m then J contains one end of the double bond, and we get $|\Pi| - |J|$ equal to the number of components of J, all of which have type A. If J has a B_m then the node after it (if there is one) must be adjacent to some type A component of J. This is because $W(B_{m+1})$ contains a reflection acting trivially on V_{B_m}. This is easy to see in the model of $W(B_{m+1})$ as the isometry group of \mathbb{Z}^{m+1}. It follows that $|\Pi| - |J|$ is the number of components of J of type A.

In the $\Pi = D_{n>3}$ case, one can use the shifting trick to reduce to one of the cases

\[
\begin{array}{cccccccc}
\vdots & \vdots \\
\bullet & \bullet \\
\vdots & \vdots \\
\end{array}
\]

where the filled nodes are those in J and the dashes indicate a chain of nodes with no two consecutive unfilled nodes. (Except for the dashes on the left in the last 3 diagrams, which indicate chains of filled nodes.)

In every case we get

$$|\Pi| - |J| \leq \#A_1 + \#D_{m\geq 4} + 2 \#A_{m>1}.$$

The most interesting case is $A_{n-2} \rightarrow D_n$, at the top left.

We will treat the case $\Pi = E_8$ and leave the similar E_6 and E_7 cases to the reader. If J has a D_4, D_5 or E_6 component, then it must also have a type A component, and then $|\Pi| - |J| \leq 2 \#D_4 + \#D_5 + \#A_{m \geq 1}$, as desired. J cannot be D_6 or E_7, because then W_{\min} would contain the reflection in the lowest root of E_8, which extends E_8 to the affine diagram \tilde{E}_8. So we may suppose J’s components have type A. In order for $|\Pi| - |J|$ to exceed (1), we must have $J = A_{m \leq 5}$, A_3A_1, A_2A_1 or $A_1^m \leq 3$. But none of these cases can occur, because in each of them we may shift J’s components around so that some node of Π is not joined to J.

The remaining cases are $\Pi = F_4$, H_3, H_4 and I_2, the last case including $G_2 = I_2(6)$. The facts required to treat these cases are that if $J = B_2$ or B_3 in $\Pi = F_4$ then W_{\min} contains a reflection, and similarly in the $J = H_3 \subseteq H_4 = \Pi$ case. The first fact is visible inside a B_3 or
B_4 root system inside F_4. To see the second, observe that the root stabilizer in H_4 contains Coxeter groups of types A_2 and I_2(5), visible in the centralizers of the two end reflections of H_4 (which are conjugate). So the root stabilizer can only be W(H_3), which is to say that the H_3 root system is orthogonal to a root. □

The greater generality obtained by Borcherds is the following. Let Γ_{Π} be a group of diagram automorphisms of Π, acting on V_{Π} and K in the obvious way. The goal is to understand \(N_{W_ΠΓ_{Π}}(W_J) \). Again we discard the boring part of this normalizer by passing to the subgroup \(W_J' \) preserving the set of roots \(J \subseteq Π \). Let \(W_{Ω} \) be any subgroup of \(W_J' \) which contains \(W_{min} \) and is generated by elements which act on \(J^⊥ \) by reflections. We define \(C^Ω_{Ω}, C_{Ω} \) and \(Γ_{Ω} \) as for \(C^min_{min}, C_{min} \) and \(Γ_{min} \), and define \(Γ^Ω_{min} \) as the subgroup of \(Γ_{Ω} \cap W_Π \) acting trivially on \(J \). (Borcherds left \(Γ^Ω_{min} \) unnamed and defined \(W_{Ω} \) in terms of auxiliary groups \(R \lhd Γ_J \subseteq Aut J \); his \(W_{Ω} \) has the properties assumed here.) The inclusion \(W_{min} \subseteq W_{Ω} \) is the source of the subscript “min”, but note that \(C_{min} \) and \(Γ_{min} \) are larger than \(C_{Ω} \) and \(Γ_{Ω} \). We can now recover Borcherds’ result [3, thm. 4.1] with our (1) in place of \(|J|\).

Theorem 3. Theorem 1 holds with \(Γ^Ω_{min} \) replaced by \(Γ^Ω_{min} \).

Proof. The freeness of the action follows from the same argument. (This is why \(Γ^Ω_{Ω} \) is defined as a subgroup of \(Γ_{Ω} \cap W_Π \) rather than just \(Γ_{Ω}. \)) The essential point for the rest of the proof is that \(W_{Ω} \) contains \(W_{min} \), so the decomposition of \(J^⊥ \) into chambers of \(W_{Ω} \) refines that of \(W_{min} \). This shows \(C^Ω_{Ω} \subseteq C_{min}^Ω \). So the dual complex of \(C^Ω_{Ω} \) has dimension at most that of \(C_{min}^Ω \), and we can apply theorem 1. □

The point of considering \(W_{Ω} \) rather than \(W_{min} \) is that it is larger and so \(Γ_{Ω} \) will be smaller than \(Γ_{min} \). This is good since the nonreflection part is more mysterious than the reflection part. So it is natural to define \(W_{max} \) by setting \(Γ_{Π} = 1 \) and taking \(W_{Ω} \) as large as possible, i.e., \(W_{max} \) is the subgroup of \(W_J' \) generated by the transformations which act on \(J^⊥ \) by reflections.

This is the largest possible “universal” \(W_{Ω} \), although a larger \(W_{Ω} \) is possible if Π admits suitable diagram automorphisms. For example, \(Γ_{Π} \) might contain elements acting on \(C_{Π} \) by reflections. I don’t know other examples, although probably there are some.

We define \(C_{max}^Ω, C_{max}, Γ_{max} \) and \(Γ^Ω_{max} \) as above. The next theorem follows from lemma 5 in exactly the same way that theorem 1 follows from lemma 2.
Theorem 4. The dimension of the dual complex of C_{max}°, hence the cohomological dimension of Γ_{max}^\vee, is bounded above by

(3) \[\#D_5 + \#A_{m \text{ odd}} + 2 \#A_{m \text{ even}}. \]

Remarks. (i) If J has no A_m or D_5 component then $\Gamma_{\text{max}}^\vee = 1$ and Γ_{max} is finite. This is Borcherds’ [3, example 5.6]. (ii) If $J = D_5$ or $A_{m \text{ odd}}$ then $\Gamma_{\text{max}}^\vee \subseteq N_{W_I}(W_J)$ is free. Also, since $|\text{Aut } J| \leq 2$, Γ_{max}^\vee has index 1 or 2 in Γ_{max}. Therefore the non-reflection part Γ_{max} of $N_{W_I}(W_J)$ has a free subgroup of index 1 or 2. (iii) If $J = A_1$ then $\Gamma_{\text{min}}^\vee = \Gamma_{\text{min}} = \Gamma_{\text{max}} = \Gamma_{\text{max}}^\vee$ has cohomological dimension ≤ 1. This recovers Brink’s result [4] that Γ_{min}^\vee is free. (iv) If $J = A_{m \text{ even}}$ then the conclusion $\dim(\text{dual of } C_{\text{min}}^\circ) \leq 2$ suggests that Γ_{max} is often comprehensible, like the $J = A_6$ example of [3, example 5.4].

Lemma 5. If J lies in a spherical Coxeter diagram $I \subseteq \Pi$, whose cardinality exceeds that of J by more than (3), then W_I contains an element preserving the set J of roots and acting on J^\perp by a reflection.

Proof. This is essentially the same as for lemma 2, using the following additional ingredients. For example, when $I = D_n$ one can use them to show that the 5th, 7th, 8th and 10th cases of (2) are impossible, while the first can only occur when n is even.

First, if $J = E_6 \subseteq E_7 = I$ then W_I contains the negation of V_I, which we follow by the long word in W_I to send $-J$ back to J. The composition is the claimed element of W_I. The same argument applies if $J = I_2(5) \subseteq H_3 = I$.

Second, if $J = A_{m \text{ odd}} \subseteq D_{m+2} = I$ as in the first diagram of (2), then consider the long word in W_I. It negates J and exchanges and negates the two simple roots in $I - J$. Following this by the long word in W_J yields the claimed element of W_I. (When m is even, the long word in W_I negates the simple roots in $I - J$ without exchanging them, so it doesn’t act on J^\perp by a reflection.)

Third, if $J = D_{m \geq 3} \subseteq D_{m+1} = I$ then consider the model of W_I as the group generated by permutations and evenly many negations of $m + 1$ coordinates, with W_J the corresponding subgroup for the first m coordinates. Letting σ be the negation of the last two coordinates, and following it by the element of W_J sending $\sigma(J)$ back to J, gives the claimed element of W_I. □

There is a nice geometrical interpretation of the freeness of Γ_{min}^\vee in the case $J = A_1$, developed further in [1]. Namely, the natural map $C_{\text{min}}^\circ \to C_{\text{min}}^\circ/\Gamma_{\text{min}} \subseteq K/W_{\Pi} = C_{\Pi}$ is the universal cover of its image.
The image is got by discarding all the codimension 2 faces of \(C_{\Pi} \) corresponding to even bonds in \(\Pi \), discarding all codimension 3 faces, and taking the component corresponding to \(J \). This identifies \(\Gamma_{\text{min}} \) with the fundamental group of \(J \)’s component of the “odd” subgraph of \(\Pi \) in a natural manner.

One can extend this picture to the case \(J \neq A_1 \), but complications arise. First, one must take \(W_{\Omega} \) to be normal in \(W_{\Pi}:\Gamma_{\Pi} \). Second, while \(C^\circ_{\Omega} \to C^\circ_{\Omega}/\Gamma_{\Omega}^\vee \) is a covering space, the image \(C^\circ_{\Omega}/\Gamma_{\Omega} \) of \(C^\circ_{\Omega} \) in \(C_{\Pi} \) is the quotient of \(C^\circ_{\Omega}/\Gamma_{\Omega}^\vee \) by the finite group \(\Gamma_{\Omega}/\Gamma_{\Omega}^\vee \). Usually, \(C^\circ_{\Omega} \to C^\circ_{\Omega}/\Gamma_{\Omega} \) is only an orbifold cover since \(\Gamma_{\Omega} \) often has torsion. The top-dimensional strata of \(C^\circ_{\Omega}/\Gamma_{\Omega}^\vee \) correspond to the “associates” of the inclusion \(J \to \Pi \) in the sense of [3] and [5]. Suppose \(J' \subseteq \Pi \) is (the image of) an associate and \(I' \) is a spherical diagram containing it. Then the face of \(C_{\Pi} \) corresponding to \(I' \), minus lower-dimensional faces, lies in \(C^\circ_{\Omega}/\Gamma_{\Omega} \) just if \(W_{I'} \) contains no element preserving \(J' \), acting on it in a manner constrained by the choice of \(W_{\Omega} \), and acting on \(J'^\perp \) by a reflection. From this perspective, lemmas 2 and 5 amount to working out two cases of Borcherds’ notion of “R-reflectivity”. The orbifold structure on \(C^\circ_{\Omega}/\Gamma_{\Omega} \) is essentially the same information as Borcherds’ classifying category for \(\Gamma_{\Omega} \).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN
E-mail address: allcock@math.utexas.edu
URL: http://www.math.utexas.edu/~allcock