Identifying Models of the Octave Projective Plane

Daniel Allcock
15 August 1995

allcock@math.berkeley.edu
Department of Mathematics,
University of California,
Berkeley, CA 94720.

1991 mathematics subject classification: 51A35 (17C40)

Abstract.
We provide a convenient identification between two models of the projective plane over the alternative field of octaves: Aslaksen's coordinate approach and the classic approach via Jordan algebras. We do this by modifying a 1949 lemma of P. Jordan.

The Octave Plane
The projective plane \(O P^2 \) over the alternative field \(O \) of octaves (also called Cayley numbers) may be viewed from several perspectives. Two particularly attractive models are the elegant coordinatization due to H. Aslaksen using ‘restricted homogeneous coordinates’ [1], and the model developed extensively by H. Freudenthal, in which the points of \(O P^2 \) are identified with a set of idempotents in \(\mathcal{J} \), a certain Jordan algebra [2]. What is missing is a convenient means to pass between these two languages. This paper makes the observation that a lemma due to P. Jordan [3], when suitably modified, yields a beautiful identification. Jordan’s paper seems to have received little attention, despite being the first paper linking \(\mathcal{J} \) and \(O P^2 \).

Briefly, here are the models. The points of Aslaksen’s plane are the nonzero triples \((x_1, x_2, x_3)\) of octaves with at least one real element, modulo the relation that two such triples are equivalent if they differ by left multiplication by an element of \(O \). Lines may be defined as follows. Declare two points to be orthogonal if we have \(x_1 \tilde{y}_1 + x_2 \tilde{y}_2 + x_3 \tilde{y}_3 = 0 \) when we choose representative triples \((x_i), (y_i)\) for the points, with at least 2 of the sets \(\{x_i, y_i\} \) \((i = 1, 2, 3)\) containing a real number. (This choice may always be made.) The lines of the geometry are the sets orthogonal to the points. Clever computations in [1] show that these conditions do actually yield a projective plane. (Note: Aslaksen required one coordinate to be unity, but this is inessential; he also defined the same set of lines without reference to the “inner product” above. His lines and ours coincide.)

The exceptional Jordan algebra \(\mathcal{J} \) is the (real) algebra of \(3 \times 3 \) Hermitian matrices with elements in \(O \), under the multiplication defined by \(A \ast B = (AB + BA)/2 \). The points of \(O P^2 \) are the trace 1 idempotents, and two such idempotents are called orthogonal if their Jordan product vanishes. Again, the lines of the geometry are the point-sets orthogonal to points. It is convenient to identify an idempotent of \(\mathcal{J} \) with the vector subspace of \(\mathcal{J} \) consisting of its real scalar multiples.

Generalizing a construction of P. Jordan, we define a map from Aslaksen’s plane to \(\mathcal{J} \) by \((x_1, x_2, x_3) \rightarrow e\) where \(e \) is the matrix defined by \((e_{ij}) = \tilde{x}_i x_j\). This is well-defined up to real scalar multiplication, and it is easy to check that \(e \) is a trace 1 idempotent exactly when \(|x_1|^2 + |x_2|^2 + |x_3|^2 = 1 \).

Theorem. The map defined above is an isomorphism from Aslaksen’s model of \(O P^2 \) to Freudenthal’s.

Proof: It is observed above that the map is well-defined, and it is trivial to check that it is injective. To show that it is surjective, one need only find suitable \((x_1, x_2, x_3)\), given a trace 1
idempotent in \mathcal{J}, which is easy. The heart of the theorem is proving that the notions of orthogonality between points of $\mathcal{O}P^2$ coincide. We accomplish this in the following lemma, which is a modification of Jordan's Hilsatz 2. We indicate a proof (Jordan didn't) because the calculation is very tedious if approached incorrectly.

Lemma. Let $(x_1, x_2, x_3), (y_1, y_2, y_3)$ be two triples of elements of \mathcal{O}, each with at least one real element, and such that at least two of the sets $\{x_i, y_i\}$ $(i = 1, 2, 3)$ contain a real number. Then, defining elements e, f of \mathcal{J} by $e_{ij} = \bar{x}_i x_j, f_{ij} = \bar{y}_i y_j$, we have $e \ast f = 0$ if and only if $x_1 \bar{y}_1 + x_2 \bar{y}_2 + x_3 \bar{y}_3 = 0$.

Proof: We know that e and f are scalar multiples of trace 1 idempotents, and therefore (see [2]) $e \ast f = 0$ if and only if $\text{Tr}(e \ast f) = 0$. We have

$$2\text{Tr}(e \ast f) = \sum_{i,j} (e_{ij} f_{ji} + f_{ij} e_{ji}) = 2 \sum_{i,j} \text{Re}(e_{ij} f_{ji}) = 2 \sum_{i,j} \text{Re}((\bar{x}_i x_j)(\bar{y}_j y_i)).$$

Without loss of generality we may assume that x_1 and y_2 are real, and so every term (except the $i = j = 3$ term) contains a real number. By using the octave identities $\text{Re}(ab^*) = \text{Re}((ab)c) = \text{Re}((bc)a)$, we may replace each such term of the sum by $\text{Re}((x_j \bar{y}_j)(y_i \bar{x}_i))$. We may also do this in the case $i = j = 3$, for the reason that any two elements of \mathcal{O} lie in an associative subalgebra of \mathcal{O}. So we have

$$\text{Tr}(e \ast f) = \sum_{i,j} \text{Re}((x_j \bar{y}_j)(y_i \bar{x}_i)) = \text{Re} \left(\left(\sum_j x_j \bar{y}_j \right) \left(\sum_i y_i \bar{x}_i \right) \right)$$

$$= |x_1 \bar{y}_1 + x_2 \bar{y}_2 + x_3 \bar{y}_3|^2,$$

which completes the proof.

References

