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Aut(S)→ Aut(C) is injective in characteristic 0 and we identify its image with the subgroup
of PGL2 coming from the isometries of a regular tetrahedron and the reflections across its
facets.
Résumé. — Donnons-nous une surface cubique et faisons l’hypothèse, faible, que cette

surface peut être décrite sous forme pentaèdrique de Sylvester. Il est bien connu que l’on peut
trouver une surface de Enriques ou de Coble S dont un revêtement double est une surface K3
birationnellement isomorphe à la hessienne de cette surface cubique. Nous décrivons le cône nef
et les −2-courbes de S. Si les paramètres pentaèdriques sont (1, 1, 1, 1, t 6= 0) nous calculons
le groupe d’automorphismes de S. Lorsque t 6= 1, c’est le produit semi-direct du produit libre
(Z/2)∗4 et du groupe symétrique S4. Dans le cas particulier t = 1

16 nous étudions l’action de
Aut(S) sur une courbe rationnelle, lisse et invariante C de la surface de Coble S. Nous décrivons
l’action et son image, de manière géométrique et arithmétique à la fois. En particulier, nous
montrons que l’homomorphisme Aut(S) → Aut(C) est injectif en caractéristique 0 et nous
identifions son image au sous-groupe de PGL2 associé aux isométries d’un tétraèdre régulier
et aux réflexions le long de ses faces.

1. Introduction

Let UC(4) be the universal Coxeter group on 4 generators, i.e. a free product
of four groups of order 2. The permutation group S4 acts naturally on it. Let
G = UC(4) oS4 be the semi-direct product. In this article we realize the group G
in several ways:

(1) G is the group of automorphisms of every Enriques and Coble surface in a
certain 1-parameter family.

(2) G acts on an invariant smooth rational curve on a particular rational surface
in this family, faithfully when in characteristic 0.

(3) G is a discrete group of motions of hyperbolic space H9.
(4) G is the (nondiscrete) group of isometries of 3-dimensional Euclidean space

generated by the isometries of a regular tetrahedron and the reflections across
its facets.

(5) G is the group of Z[1
3 ]-valued points of an algebraic group scheme over Z

coming from automorphisms of Hamilton’s quaternion algebra.
(6) G is maximal among discrete subgroups with finite covolume in PGL2(Q3),

where Q3 is the field of 3-adic rationals.
The geometrical motivation for the study of this remarkable group is a question

discussed by Arthur Coble in his book [Cob82, p. 226–227] and a later paper [Cob39]:
given a group of birational automorphisms of an algebraic surface S over an alge-
braically closed field k that leaves a rational curve C on it invariant, what are the
image and kernel of the restriction map to Bir(C) ∼= PGL2? Interest in this problem
was recently resurrected in works of Dinh and Oguiso [DO19] and Lesieutre [Lei18].
In our situation, k has characteristic 6= 2, 3 and S is the surface obtained by blowing
up all ten double points of a certain plane rational curve of degree 6 that admits
S4 as its group of projective symmetries (see [Dol18, Section 5.4]). This surface is a
special case of a rational Coble surface, whose definition we will recall in the next
section. The curve C ⊂ S is the proper transform of this sextic.
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Enriques and Coble surfaces 1135

Another description of S begins with the Hessian surface H, of a cubic surface
having six Eckardt points (points where three lines meet) and one ordinary node.
There is a birational involution of P3 that acts freely away from the node, and S
is the minimal resolution of the quotient of H by it. We will show that the group
of automorphisms of S is isomorphic to G, via a homomorphism that identifies
natural generators of G = UC(4) o S4 with natural generators of Aut(S). This
allows us to deduce that the restriction homomorphism G → PGL2(k) is faithful
when working in characteristic 0. This faithfulness is appealing and suggestive, but
does not say anything definite about Coble’s original problem, because UC(4) oS4
is much smaller than the automorphism group of a general Coble surface, which is a
lattice in SO(9, 1) by [CD89, Theorem 2.10.1].
The cubic surface that gives rise to this Coble surface S is the t = 1

16 member of
the following one-parameter family of cubic surfaces

y0 + · · ·+ y4 = y3
0 + · · ·+ y3

3 + ty3
4 = 0

where t 6= 0. This family is also projectively isomorphic to the pencil of cubic
surfaces with S4-symmetry of type V from Table 9.5.9 from [Dol12](1). The minimal
resolution St of the quotient of the Hessian surface is a Coble surface if t ∈ {1

4 ,
1
16},

or if t = 1 and chark = 5. Otherwise it is an Enriques surface. We compute the
group of automorphisms of St and obtain the amazing fact that it does not depend
on the parameter t 6= 1 and is isomorphic to the group G.(2) The exceptional case
t = 1 corresponds to the Clebsch diagonal cubic surface. In this case, both St and
the cubic surface have automorphism group S5, and St has type VI in Kondo’s
classification of complex Enriques surfaces with finite automorphism group [Kon86].
Our strategy for working out Aut(St) is to use known automorphisms coming from

the projections of the Hessian surface from its 10 nodes to build a concrete model
for the real nef cone NefR(St). Then we use the shape of this cone to show that
these known automorphisms generate Aut(St). The nef cone is (the cone in R10 over)
a polytope in hyperbolic 9-space, which usually has infinitely many facets. (In the
Coble case, NefR(St) has dimension larger than 10. But we identify a 10-dimensional
slice of it on which Aut(St) acts faithfully. By restricting attention to that slice, the
Coble and Enriques cases become uniform.) We are nevertheless able to give a useful
description of it in Theorem 3.2, for surfaces arising from the Hessian surfaces of an
arbitrary Sylvester non-degenerate cubic surface. It seems reasonable to hope that
this description will enable the computation of their automorphism groups in the
same generality. For a Sylvester nondegenerate nonsingular cubic surface with no
Eckardt points this has been done by other methods by I. Shimada [Shi19].

Acknowledgements

The authors thank Shigeru Mukai for stimulating discussions about the auto-
morphism groups of Enriques surfaces arising from Hessian surfaces during their
(1)There is a misprint in the formula: the term at1t2t3 must be added.
(2)Although the Picard lattice of the K3-cover of an Enriques surface from the family does not
depend on the parameter, it is still an amazing fact.
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2. Enriques and Coble surfaces of Hessian type

We work over an algebraically closed field k of characteristic 6= 2, 3. Although
some of the references in the paper refer to sources which work over the field of
complex numbers, all the proofs of what we need extend to our case. This section
develops the situation of [Dol18] in a manner which treats the Enriques and Coble
cases uniformly.
Let V3 be a cubic surface in P3 given by equation F (x0, x1, x2, x3) = 0 and H ⊂ P3

be its Hessian surface, given by the determinant of the matrix of second partial
derivatives of F . We call V3 Sylvester non-degenerate if F can be written as the
sum of the cubes of five linear forms, any four of the linear forms being linearly
independent. A well-known theorem of Sylvester [Dol12, Theorem 9.4.1] asserts
that a general cubic surface is Sylvester non-degenerate and that a Sylvester non-
degenerate cubic surface uniquely determines the linear forms, up to cube roots
of unity and a common scaling factor. It is more convenient to work with certain
multiples of the linear forms. Namely, up to a common factor, they have unique
nonzero multiples L0, . . . , L4 with the property ∑4

a=0 La = 0. We define λ0, . . . , λ4
by the relation F = ∑4

a=0 λaL
3
a. The λa are nonzero by Sylvester nondegeneracy.

Using the map P3 → P4 defined by

(x0 : x1 : x2 : x3) 7→
(
L0(x0, x1, x2, x3): · · · :L4(x0, x1, x2, x3)

)
we embed V3 and H into P4. Their images are defined by

4∑
a=0

ya =
4∑

a=0
λay

3
a = 0 and

4∑
a=0

ya =
4∑

a=0

1
λaya

= 0

respectively. The last sum is shorthand for the quartic polynomial got by clearing
denominators. When speaking of P3 we will always mean the hyperplane∑4

a=0 ya = 0.
The intersections of this hyperplane with the hyperplanes ya = 0 are called the faces
of the Sylvester pentahedron, and their pairwise and triple intersections are called
the edges and vertices of the pentahedron. Each face contains four edges, which form
the intersection of that face with the Hessian. We write Lab for the edge ya = yb = 0
and Pab for the vertex defined by yc = 0 for all c 6= a, b. Pab lies in Lcd if and only
if {a, b} ∩ {c, d} = ∅. The lines and vertices form an abstract symmetric Desargues
configuration (103); see Figure 2.1.
The singularities of the Hessian surface are mild:

Lemma 2.1. — Let V3 be a Sylvester non-degenerate cubic surface. The vertices
of the pentahedron are ordinary double points (nodes) of the Hessian surfaces H.
The singular points of V3 coincide with the remaining singular points of H, none
of which lie in the faces of the pentahedron. Each such point is an ordinary double
point of V3 and an ordinary double point of H.
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Figure 2.1. Sylvester pentahedron

Proof. — We clear the denominators of ∑a 1/λaya to write it properly as a quartic
hypersurface, and evaluate its 2nd derivative matrix at the point (1,−1, 0, 0, 0) of
affine space lying over a vertex. All entries vanish except the lower right 3 × 3
submatrix

−λ0λ1

 0 λ2λ3 λ2λ4
λ2λ3 0 λ3λ4
λ2λ4 λ3λ4 0


which has nonzero determinant. The nullspace of this quadratic form is spanned by
the radial direction (1,−1, 0, 0, 0) in affine space and a vector (1, 0, 0, 0, 0) transverse
to the hyperplane ∑a ya = 0. Therefore the local defining equation for H in P3 has
nondegenerate second derivative matrix at the vertex. This is the definition of a
node.
Now let us find the singular points of H away from the vertices of the pentahedron.

Plugging in yi = 0 in the equation of H, we find that its section by the face of the
pentahedron is a complete quadrilateral of the edges lying in the face. Its singular
points are the six vertices. So no more singular points satisfy yi = 0, and we may
take ∑4

a=0 ya = ∑4
a=0 1/λaya = 0 as the defining equations. The singular points are

where the jacobian matrix(
λ0 λ1 λ2 λ3 λ4

1/λ0y
2
0 1/λ1y

2
1 1/λ2y

2
2 1/λ3y

2
3 1/λ4y

2
4

)
has rank equal to 1. This shows that the singular points of H are given by the
additional conditions λay2

a = λby
2
b for all a, b. Regarding (y0, . . . , y4) as a point of A5

lying over one of these singularities, the second derivative matrix of the polynomial∑ 1/λiyi is a scalar multiple of the diagonal matrix diag[1/y0, . . . , 1/y4]. Again we
regard this as a bilinear form on the tangent space of A5 at this point. To show that
the singularity is an ordinary node, it is enough to show that this form’s restriction to
the coordinate-sum zero subspace has null space no larger than the radial direction
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in A5. This is immediate: if (c0, . . . , c4) lies in the null space, then orthogonality to
the vectors like (1,−1, 0, 0, 0) forces ca/ya = cb/yb for all a, b.
The corresponding analysis for V3 turns out to be exactly the same calculation. In

particular, its singular points are defined by the same conditions λay2
b = λby

2
a. The

only difference is that V3 has no singularities in the faces of the pentahedron. �

Since singularities of H away from the vertices usually don’t exist, and are nodes
when they do, we call them the new nodes. We will write k for the number of new
nodes.
Because the Hessian H is a quartic surface whose singularities are ordinary nodes,

its minimal resolution X is a K3 surface. We write Eab for the exceptional curve
over Pab. Because Pab is an ordinary node, Eab is a (−2)-curve, meaning a smooth
rational curve with self-intersection −2. We denote the proper transforms of the
Lab by the same notation Lab. The ten curves Eab (resp. Lab) are disjoint. By the
definition of the pentahedron, Lab contains Pcd if and only if {a, b} and {c, d} are
disjoint. Therefore

(2.1) Lab · Ecd =

1 if {a, b} ∩ {c, d} = ∅,
0 otherwise.

The birational involution of P4 defined by the formula

σ : (y0 : · · · : y4) 7→
( 1
λ0y0

: · · · : 1
λ4y4

)
restricts to a birational self-map of H. This restriction is biregular on the complement
of the faces of the pentahedron. The fixed points of σ in this open set coincide with
the new nodes, since the condition [y0 : · · · : y4] = [1/λ0y0 : · · · : 1/λ4y4] is the
same as the condition λay

2
a = λby

2
b describing the new nodes. We also write σ for

the corresponding self-map of X, which is biregular. (Every birational map from
one K3 surface to another is biregular). One can check that σ swaps each Eab with
the disjoint curve Lab. It follows that σ acts freely on X, away from the exceptional
divisors over the new nodes.
The exceptional divisor over a new node is a (−2)-curve, got by blowing up once.

Also, each new node is an isolated fixed point under the action of σ on P4, so σ acts
by negation on the tangent space there. It follows that σ acts trivially on the fibers
over the new nodes. Therefore the quotient surface S = X/〈σ〉 is smooth. S is the
main object of interest in this paper. We write f : X → S for the quotient map, E for
the sum of the exceptional divisors over the new nodes, and C for the branch divisor
in S (the image of E). This branch divisor consists of k disjoint smooth rational
curves with self-intersection −4. Also, we write Uab for the common image in S of
Eab and Lab. Since f : X → S is a degree 2 cover, the usual properties of intersection
theory give

Uab · Ucd = 1
2(Lab + Eab) · (Lcd + Ecd) = 1

2(Lab · Ecd + Lcd · Eab)

=

1 if {a, b} ∩ {c, d} = ∅
0 otherwise
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where we used (2.1) in the last step. That is, the Uab are (−2)-curves which intersect
according to the Petersen graph, whose symmetry group is the symmetric group S5.
See Figure 2.2.
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Figure 2.2. The Petersen graph

We recall that a Coble surface means a smooth rational surface whose anticanonical
system is empty but whose bi-anticanonical system is not (see [DZ01]). They are
important because they occur as degenerations of Enriques surfaces.

Lemma 2.2. — If there are no new nodes then S is an Enriques surface. Otherwise,
S is a Coble surface, and C is the unique effective bi-anticanonical divisor on S.

Proof. — It is standard that the quotient of a K3 surface by a fixed-point-free
involution is an Enriques surface. So suppose σ has fixed points. The Hurwitz-type
formula

0 = 2KX = 2(f ∗(KS) + E) = f ∗(2KS + C)
shows that 2KS + C is numerically trivial, which is to say that C is numerically
bi-anticanonical. If there were an effective bicanonical divisor, then its sum with C
would be numerically trivial, which is absurd. Therefore |2KS| = ∅. Together with
H1(S,OS) = 0, which follows from H1(X,OX) = 0, this lets us apply Castelnuovo’s
rationality criterion to deduce that S is rational. By this rationality, numerical
equivalence and linear equivalence of linear systems are equivalent. So C is a bi-
anticanonical divisor. There are no other effective bi-anticanonical divisors because
the components of C are disjoint with negative self-intersection. The only candidate
for an effective divisor in |−KS| is 1

2C, but this is not a divisor, so |−KS| = ∅. This
proves that S is a Coble surface.
(Another approach to the rationality of S is to use the fact that the quotient of a

K3 surface by an involution is birationally an Enriques surface, rational surface or
a K3 surface. The last case happens if and only if the involution has eight isolated
fixed points. So, in our case S must be a rational surface.) �

One of the goals of this paper is to understand Aut(S). We will use some elliptic
fibrations |Gab| of S in order to show that Aut(S) acts faithfully on a certain lattice
Λ in NumQ(S). To construct these elliptic fibrations we begin with some elliptic
fibrations of X.

TOME 3 (2020)



1140 Daniel ALLCOCK & Igor DOLGACHEV

Consider the pencil of planes in P3 that contain Lab. Each plane meets H in Lab
and a plane cubic curve. The total transforms in X of these residual cubics form
a pencil of elliptic curves, which we identify with the elliptic fibration X → P1 it
defines. We write |G̃ab| for this elliptic fibration and also the corresponding linear
system. (This is harmless by the completeness of the pencil as a linear system. It is
complete because every member of the linear system has trivial intersection number
with every member of the pencil.) By taking the plane to be the face ya = 0 of the
Sylvester pentahedron, one can express |G̃ab| as
(2.2) |G̃ab| = |Lac + Lad + Lae + Ebc + Ebd + Ebe|
where {c, d, e} = {0, . . . , 4} − {a, b}. This particular fiber has type I6 in Kodaira’s
notation.

Lemma 2.3. — Each fibration |G̃ab| is σ-invariant in the sense that σ permutes
its fibers. It permutes them nontrivially.

Proof. — The divisors Ecd and Lcd are swapped by σ, for each pair c, d. Therefore
σ sends

Lac + Lad + Lae + Ebc + Ebd + Ebe

to Eac + Ead + Eae + Lbc + Lbd + Lbe ,
(2.3)

which is a different fiber of |G̃ab|, coming from the hyperplane section yb = 0. So σ
preserves the linear system and acts nontrivially on it. �
The fibers (2.3) have common image

Fab := Uac + Uad + Uae + Ubc + Ubd + Ube

under X → S. We write |Gab| for its linear system on S. This is pencil of elliptic
curves for the same reason that |G̃ab| is, so we also write |Gab| for the corresponding
elliptic fibration. The projection X → S sends the class of a fiber of |G̃ab| to the
class of a fiber of |Gab|.
Now we define the lattice Λ on which Aut(S) will act faithfully. It was first

introduced by S. Mukai in his unpublished work on automorphisms of Coble surfaces,
so we call it the Coble–Mukai lattice.(3) Let C1, . . . , Ck be the components of the
bi-anticanonical divisor C. Let Num(S)′ be the lattice in NumQ(S) generated by
Num(S) and 1

2C1, . . . ,
1
2Ck. Let Λ be the orthogonal complement of C1, . . . , Ck in

Num(S)′.

Lemma 2.4. — Aut(S) acts faithfully on Λ, which is integral, even and unimod-
ular of signature (1, 9), and spanned by the Uab and the
(2.4) fab = 1

2Fab.

Remark 2.5. — Up to isometry there is a unique even unimodular lattice of
signature (1, 9), often called E10. So Λ ∼= E10. Lemma 2.4 is no surprise because if
there are no new nodes then S is an Enriques surface and Λ coincides with Num(S),
which is well-known to be a copy of E10. Instead of Λ, it might seem simpler to
(3)Not to be confused with the Mukai lattice used in the context of moduli of sheaves on a K3
surface.
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Enriques and Coble surfaces 1141

consider the orthogonal complement of C1, . . . , Ck in Num(S). This turns out to
be inconvenient because the isometry type of the resulting lattice depends on the
number of new nodes. (It is still E10 if there is one new node, but not if there are
more.) The Coble–Mukai lattice is the same in all cases.

Proof. — First we note that Aut(S) acts on Λ. This is because Aut(S) preserves
the unique member of | − 2KS|, namely C. Therefore it permutes the components of
C. So it preserves Num(S)′ and their orthogonal complement in Num(S)′.
Next we prove dim Λ = 10. We remarked above that the k = 0 case is a prop-

erty of Enriques surfaces. So suppose k > 0, in which case S is rational. Then
dim(Num(S)) = 10−K2

S. (Blowing up a point increases both sides by 1, while blow-
ing down a (−1)-curve decreases both sides by 1. So it is enough to check equality for
P2.) Since K2

S = 1
4C

2 = −k we get dim(Num(S)) = 10+k. Since C has k components,
we get dim Λ = 10.
Now we show that Λ is integral. Any x ∈ Λ may be expressed as y +∑k

i=1 riCi/2
where y ∈ Num(S) and r1, . . . , rk ∈ Z. Rewriting this as y = x−∑ riCi/2, expressing
x′ ∈ Λ similarly, and using Λ ⊥ Ci gives

y · y′ = x · x′ +
∑

rir
′
i

Ci · Ci
4 = x · x′ −

∑
rir
′
i.

This proves x · x′ ∈ Z.
Next we show that Λ contains the fab. We saw in Lemma 2.3 that σ acts nontrivially

on the base P1 of the elliptic fibration |G̃ab|. Since an involution of P1 has exactly
two fixed points, σ sends exactly two fibers of this elliptic fibration to themselves.
Choose one, call it F̃ , and write Π for the corresponding plane in P3. Now, F̃ is the
total transform of the cubic plane curve residual to Lab in Π, and we write it as
F̃ = A+E1 + · · ·+El. Here E1, . . . , El are the (−2)-curves over the new nodes in Π
(if any), and A is the sum of the proper transform of the plane cubic curve and the
(−2)-curves over the vertices of the pentahedron that lie in the cubic plane curve (if
any).
We will show that the corresponding fiber F of |Gab| is something like a double fiber.

Write B for the image of A in S, and choose the labeling so that C1, . . . , Cl ⊆ S are
the images of E1, . . . , El ⊆ X. Because σ acts freely on A away from E1, . . . , El, which
it fixes pointwise, we have F = 2B+C1 + · · ·+Cl. That is, fab = B+ 1

2C1 + · · ·+ 1
2Cl,

which lies in Num(S)′. It remains to show fab · Ci = 0 for all i = 1, . . . , k. Each Ci
lies in a fiber of |Gab|, namely the one corresponding to the plane in P3 that contains
Lab and the ith new node. As a multiple of the class of a fiber, fab pairs trivially
with every component of every fiber.

Remark. — If k = 1 then E1 lies in one of the σ-invariant fibers, and we can
choose F̃ to be the other one. Then fab = B, so fab lies in Num(S) not just Num(S)′.
This leads to Remark 2.5’s isomorphism, in the case of one new node, between E10
and the orthogonal complement of C1 in Num(S).

We continue the proof of Lemma 2.4. The Uab lie in Λ and one can compute that
their inner product matrix has signature (1, 9). So up to finite index they span Λ,
which therefore also has this signature. One can check that the lattice spanned by
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the Uab and fab is even unimodular. By integrality, Λ can be no larger than this
unimodular lattice. So we have proven all our claims except for the faithfulness of
the action.
For this, suppose g : S → S is an isomorphism that preserves each Uab. We know

that U01 meets each of U23, U34, U24 in a single point. So each of these points is fixed.
Since these points are distinct and U01 is isomorphic to P1, we see that g fixes U01
pointwise. The same holds with other indices in place of 0, 1, so g fixes every Uab
pointwise.
Next, g preserves the elliptic pencil |G01|. Each of the curves U23, U24, U34 has

intersection number 2 with the class of the fiber, hence meets every fiber. So g
preserves every fiber. Furthermore, the restriction of g to a general fiber preserves
its intersection with U23 ∪ U24 ∪ U34, so it has 6 fixed points. By [Sil09, Theo-
rem III.10.1], every automorphism of an elliptic curve over a algebraically closed
field of characteristic 6= 2, 3 has order 1, 2, 3, 4 or 6. (Fixing a single point means
the automorphism preserves a Weierstrass equation, after which the result is easy.)
In the last four cases, a Hurwitz formula calculation shows that g has 4, 3, 2 or 1
fixed points respectively. It follows that g is the identity. �

To each vertex Pab of the pentahedron is associated a birational involution g̃ab of
the Hessian surface. Namely, projection away from Pab defines a dominant rational
map H 99K P2 of degree 2. This realizes the function field of H as a quadratic
extension of that of P2, and g̃ab is the nontrivial automorphism of this field extension.
Again using the biregularity of birational maps between K3 surfaces, we regard the
g̃ab as automorphisms of X.

Lemma 2.6. — Each g̃ab commutes with the Cremona involution σ, hence de-
scends to an automorphism of S.

Proof. — From the definition of g̃ab, it is enough to show, for a generic pair of points
u, v ∈ H with u, v, Pab collinear, that σ(u), σ(v), Pab are also collinear. Consider one
of the 3 edges Lcd of the pentahedron that pass through Pab. By the definition of
the |G̃cd| in terms of planar sections of H, Lemma 2.3 says that the coplanarity
of u, v, Lcd implies that of σ(u), σ(v), Lcd. Applying this for each of the 3 edges
shows that σ(u), σ(v) lie on three planes, each containing one of these edges and in
particular Pab. The intersection of these planes is not a plane (since the 3 edges are
not coplanar) and not a point (since it contains σ(u), σ(v)). Therefore it is a line,
proving the collinearity of σ(u), σ(v), Pab. �

We write gab for this induced automorphism of S. The next step is to examine how
it acts on Λ. Its nature turns out to depend on whether the equality λa = λb holds.
Although we don’t need it, we remark that λa = λb if and only if Pab is an Eckardt
point of the cubic surface V3, meaning that 3 of the 27 lines on V3 pass through Pab;
see [Dol12, Example 9.1.25]. To describe the gab we must introduce some vectors
αab ∈ Λ and some isometries tab of Λ. We define

(2.5) αab = fab − Uab,
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where fab is from (2.4). One can check that αab has self-intersection −2. For later
use we record

αab · Ucd =

2 if {a, b} = {c, d},
0 otherwise,

(2.6)

αab · αcd =

1 if {a, b} ∩ {c, d} is a singleton,
0 if {a, b} ∩ {c, d} is empty.

(2.7)

The groupS5 of permutations of 0, . . . , 4 acts on Λ by permuting the subscripts of the
Uab and fab. We write tab for the isometry of Λ corresponding to the transposition (ab).
Lemma 2.7 ([Dol18, Corollary 4.3]). — Suppose λa 6= λb. Then gab ∈ Aut(S) acts

on Λ ⊂ Num(S) by the composition of tab and the reflection in αab.
Proof. — We write Πab ⊆ P3 for the plane spanned by Pab and Lab. We claim that

the projection involution g̃ab sends Lab to neither itself nor Eab. In fact, from λa 6= λb
it follows that Πab ∩H consists of Lab and a plane cubic with a singularity at Pab.
By [Dol18, Lemma 4.6] this cubic is irreducible if and only if λa 6= λb. By definition,
g̃ab exchanges Lab and this cubic (or rather its proper transform).
To see how g01 permutes the Ucd other than U01, we begin by working in the face

y3 = 0 of the pentahedron. This is the “front left” face in Figure 2.1, spanned by
the topmost, bottommost and leftmost vertices. This face meets H in 4 lines, two of
which pass through P01 and two of which do not, namely L03 and L13. For a generic
line through P01, by definition g̃01 swaps its two remaining intersection points with
H. So g̃ab swaps L03 with L13 and preserves their intersection point P24, hence the
divisor E24 of X. Applying the same argument to the y2 = 0 and y4 = 0 faces shows
that g̃01 exchanges L0c with L1c for each c = 2, 3, 4, and preserves Ede for each pair
{d, e} disjoint from {0, 1}.
Taking images under X → S shows that g01 permutes the Ubc other than U01 by

t01. Their orthogonal complement is spanned by α01, which is therefore either fixed
or negated by g01. The first case leads to g01(U01) = U01, which contradicts the first
paragraph. So g01 negates α01, completing our description of g01’s action on a basis
for Λ ⊗ Q. It is obviously as stated in the Lemma 2.7. And similarly for the other
involutions gab. �
The reader may skip the rather technical second paragraph of the next Lemma 2.8.

It is needed only for proving Theorem 4.3, which itself is not needed elsewhere in
the paper.
Lemma 2.8. — Suppose λa = λb. Then g̃ab acts on H as the coordinate trans-

position ya ↔ yb, and gab acts on Λ ⊂ Num(S) as tab. Furthermore, αab ∈ Λ is
represented by a rationally effective divisor.
More specifically, if the plane Πab ⊂ P3 spanned by Lab and Pab contains no new

node, then αab is the class of a (−2)-curve. Otherwise Πab contains exactly two new
nodes and αab = 2[D] + 1

2 [Ci] + 1
2 [Cj], where D is a (−1)-curve and Ci, Cj are the

(−4)-curves corresponding to the two new nodes.
Proof. — Suppose x is a point of H, and let x′ be its image under the coordinate

transposition (ab). Clearly it lies in H. Also, x, x′ and Pab are collinear. For x generic,
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this shows that the definition of g̃ab is to swap x with x′. This proves our claims
about g̃ab and gab.
Under the hypothesis λa = λb, we get Πab ∩H = 2Lab +M +M ′ where M,M ′ are

lines through Pab (possibly coincident). We keep the same notation M,M ′ for their
proper transforms in X. The fiber F̃ of |G̃ab| corresponding to Πab is

F̃ = Lab +M +M ′ + Eab + E1 + · · ·+ El

where E1, . . . , El are the exceptional divisors over the new nodes that lie in Πab (if
any). Because σ exchanges Lab with Eab, it preserves this fiber. Arguing as in the
proof of Lemma 2.4 (with A = Lab +M +M ′ + Eab) shows that

fab = B + 1
2C1 + · · ·+ 1

2Cl

where B = Uab +D with D an effective divisor. This shows that αab = fab − Uab is
rationally effective.
A more detailed analysis leads to two cases. If Πab contains no new nodes, then σ

must act freely on M ∪M ′. This forces M,M ′ to be distinct. So F̃ is a cycle of four
(−2)-curves. Taking the quotient by σ shows that fab is the sum of two (−2)-curves
intersecting each other twice. One is Uab and D is the other.
On the other hand, if Πab contains a new node, then the planar sectionM+M ′+Lab

of H contains that node with multiplicity two. So the node lies on both M and M ′.
Since Pab also lies on these lines, we get M = M ′. Since σ has exactly two fixed
points on M , Πab contains exactly two new nodes. So F̃ = Lab + 2M +Eab +Ei +Ej
where Ei, Ej are the (−2)-curves in X lying over these new nodes. So fab = Uab +
2D + 1

2Ci + 1
2Cj, where D is the image of M in S. Since D is clearly a smooth

curve D that meets Uab, Ci, Cj once each, the relation f 2
ab = 0 forces D2 = −1. �

3. The nef cone

We continue in the situation of Section 2. In particular, λ0, . . . , λ4 6= 0 are the
parameters of the cubic surface in Sylvester pentahedral form, and S is the Enriques
or Coble surface obtained from its Hessian. We defined the Coble–Mukai lattice as a
certain 10-dimensional lattice Λ ⊂ NumQ(S), and showed that Aut(S) acts faithfully
on it. The main object in this section is the intersection of the real nef cone NefR(S)
with ΛR = Λ ⊗ R. In the next section we will use this to compute Aut(S) in the
special case (λ0, . . . , λ4) = (1, 1, 1, 1, t). But we impose no condition on the λa in this
section.
The signature of Λ is (1, 9), so the set of positive-norm lines in ΛR forms a copy

of hyperbolic 9-space H9. In Section 2 we defined twenty vectors Uab, αab ∈ Λ. We
define

P =
{
x ∈ ΛR

∣∣∣ x · Uab > 0 and x · αab > 0 for all a, b
}
.

We will usually pass freely between P and the corresponding hyperbolic polytope.
One can work out the dihedral angles of P from the fact that the Uab and αab have
norm −2 and their pairwise inner products are 0, 1 or 2 by (2.6)–(2.7). Namely, two
facets meet orthogonally when the inner product is 0, and make angle π/3 when the
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inner product is 1. When the inner product is 2, the facets are parallel in the sense
that the hyperplanes containing them meet at the boundary of H9 but not in H9

itself. The language comes from the corresponding example in the upper half-plane
model of H2: two vertical half-lines.
This shows that P is a Coxeter polytope, meaning that if two facets meet then their

dihedral angle is an integral submultiple of π. Such polytopes have a long history in
the theory of algebraic surfaces, for example P itself is the nef cone of the Enriques
surface KV I of Type VI in Kondo’s classification of complex Enriques surfaces with
finite automorphism group [Kon86]. We will use the following background material
about Coxeter polytopes; for more information see [Dol08, Vin71].
A Coxeter polytope is usually understood in terms of its Coxeter diagram, which

is a graph with one vertex for each facet of the polytope, and edges that indicate
the dihedral angles between facets. We use Kondo’s conventions that orthogonality
corresponds to the absence of an edge, a dihedral angle π/3 corresponds to a single
edge, and parallelism corresponds to a double edge. (Caution: double edges do not
have the same meaning as in Lie theory, where they indicate a dihedral angle π/4.)
The Coxeter diagram D of P is rather complicated, but can be described as

follows. The facets corresponding to the Uab form a copy of the Petersen graph
(Figure 2.2). The facets corresponding to the αab form a copy of the “anti-Petersen”
graph, meaning that αab and αcd are joined just if Uab and Ucd are not. Finally, each
Uab is joined to αab by a double edge. A drawing of this graph, due to Kondo [Kon86],
appears in Figure 3.1. Calculations like Lemma 4.1 below are usually easiest using the
Petersen/anti-Petersen description rather than the figure, because the S5 symmetry
is manifest.
For each facet of a Coxeter polytope, one chooses an outward-pointing normal

vector and calls it the simple root of that facet. In some situations there is a question
of how to normalize the simple roots, but we always take vectors of norm −2. For
example, the αab and Uab are the simple roots of P . The center of P is represented
by ∆ = ∑

{a,b} Uab, which has inner product 1 with each Uab, inner product 2 with
each αab, and norm 10.
Kondo showed that P (regarded as a hyperbolic polytope) has finite volume [Kon86,

p. 226]; actually he proved the equivalent statement that the Coxeter group of P
has finite index in Aut Λ.

Remark 3.1. — We mentioned that P is the nef cone of the Enriques surface
KV I . Its facets correspond to (−2)-curves on KV I , and Figure 3.1 is the dual graph
of these curves. This particular surface KV I has Hessian type, coming from the
construction of Section 2 applied to the Clebsch diagonal surface. That is, with
(λ0, . . . , λ4) = (1, 1, 1, 1, 1).
The polytope P also occurs in Shimada’s paper [Shi19], where his Theorem 1.8

shows that P is the union of 214 · 3 · 5 · 7 · 17 · 31 fundamental chambers for the full
reflection group W237 of the lattice Λ ∼= E10.
For any Enriques surface S of Sylvester-nondegenerate Hessian type, the class

∆ ∈ Pic(S) represents an ample Fano polarization on S that realizes the surface
as a surface of degree 10 in P5, the smallest possible projective embedding of an
Enriques surface (see, for example, [Dol16, p. 14]). Each such ample polarization,
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U01 U02 U03 U04 U12 U13 U14 U23 U24 U34
E1 E8 E4 E7 E5 E9 E10 E2 E3 E6

α01 α02 α03 α04 α12 α13 α14 α23 α24 α34
E20 E11 E18 E14 E13 E15 E16 E12 E17 E19

Figure 3.1. Kondo’s drawing of the Coxeter diagram of the polytope P , and how
his labels correspond to ours.

taken with multiplicity 3, is equal to the sum of ten isotropic nef divisors (in our
case, the fab), all of whose pairwise intersection numbers are 1. Such a polarization
(maybe quasi-ample instead of ample) exists on any Enriques surface. In our case, the
associated projective embedding sends each Uab to a line and any divisor representing
fα to a plane cubic curve.

Theorem 3.2. — Let G0 be the subgroup of Aut(Λ) generated by those gcd for
which λc 6= λd. Then NefR(S) ∩ ΛR is the closure Q of the union of the G0-images
of the polytope P . Furthermore, the facets of Q correspond to the G0-images of the
Uab and of those αab for which λa = λb.

Proof. — The Uab are effective divisors, and the αab with λa = λb are rationally
effective by Lemma 2.8. We call the corresponding facets of P the exterior facets.
Each remaining facet of P corresponds to some αcd with λc 6= λd. Lemma 2.7 shows
that this facet is also a facet of gcd(P ), which lies on the other side of the facet. It
follows that the boundary of Q in H9 consists of the G0-images of the exterior facets
of P . This proves the last claim of the Theorem 3.2, and shows that every facet of
Q is orthogonal to a rationally effective divisor. This implies NefR(S) ∩ ΛR ⊆ Q.
Suppose that the inclusion NefR(S) ∩ ΛR ⊆ Q were strict. By definition, NefR(S)

is the intersection of the half-spaces x · B > 0 in NumR(S), where B varies over
the effective divisors on S. So S has some effective divisor B, whose orthogonal
complement in NumR(S) meets the interior of Q. Write β for the projection of its
class in Num(S) to Λ. Without loss of generality we replace B by its G0-image
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having smallest possible β · ∆. This corresponds to the hyperplane β⊥ coming as
close as possible to ∆ in hyperbolic space.
We claim that β ·αcd > 0 when λc 6= λd. Supposing to the contrary that β ·αcd < 0,

we write β′ = β + (β · αcd)αcd for the image of β under the reflection in αcd. Then
we compute

gcd(β) ·∆ = tcd(β′) ·∆ = β′ · t−1
cd (∆) = β′ ·∆

=
(
β + (β · αcd)αcd

)
·∆ = β ·∆ + 2β · αcd < β ·∆

where we have used the description of gab from Lemma 2.7, the invariance of ∆ under
tcd ∈ S5, and αcd ·∆ = 2. This contradicts the choice of B.
Because Uab ∈ Λ we also have β · Uab = B · Uab > 0 for all a, b. When λa = λb,

the same argument gives β · αab = B · αab > 0 because αab is rationally effective.
We have shown that β has nonnegative inner products with the simple roots of
P . That is, it lies in P . Regarded as a hyperbolic polytope, P has finite volume.
Therefore, regarded as a cone in ΛR, it consists of norm > 0 vectors. This contradicts
the hypothesis that β⊥ meets the interior of Q (or indeed any point of hyperbolic
space). �

4. Automorphism groups

Our goal in this section is to work out the automorphism groups of the Enriques
and Coble surfaces S constructed in Section 2, for the parameters (λ0, . . . , λ4) =
(1, 1, 1, 1, t), with t 6= 0 as always. By Lemma 2.4, Aut(S) acts faithfully on the lattice
Λ ⊂ NumQ(S). And Theorem 3.2 describes the invariant cone Q = NefR(S) ∩ ΛR
fairly explicitly. The idea in this section is to use the shape of this cone to show that
Aut(S) is generated by the known automorphisms gab.
In the particular case t = 1, the cubic surface is the Clebsch diagonal cubic surface.

It is smooth except in characteristic 5, in which case it has an ordinary node at
(1:1:1:1:1). Regardless of whether there is a node, Theorem 3.2 shows that Q = P .
The isometry group of P is the automorphism group of its Coxeter diagram, which
is just the obvious group S5 permuting the pentahedral coordinates y0, . . . , y4. So
Aut(S) = S5. Over C, this Enriques surface has type VI in Kondo’s classification of
complex Enriques surfaces with finite automorphism group; see Remark 3.1.
We remark on the other special surfaces in the family. If t /∈ { 1

16 ,
1
4} then the

Hessian surface H is smooth away from the vertices of the Sylvester pentahedron.
In this case the Cremona involution σ acts freely on X, so S is an Enriques surface.
When t = 1

16 there is one new node, at (1:1:1:1:−4). When t = 1
4 there are four

new nodes, at the images of (1:1:1:−1:−2) under the permutations of the first four
coordinates.
A cusp (or ideal vertex) of a Coxeter polytope in H9 means a point of the boundary

∂H9, such that the simple roots orthogonal to it span a rank 9 subspace of R1,9. The
proof of Theorem 4.2 below relies on a comparison between the cusps of P and those
of Q. Cusps can be recognized easily from the Coxeter diagram, in terms of parabolic
subdiagrams (also called affine). This means a subset of vertices, together with all
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edges between them, which is a disjoint union of copies of the standard extended
Dynkin diagrams Ãn, D̃n, Ẽn. The rank of the subdiagram means the sum of the
subscripts, and cusps correspond bijectively to parabolic subdiagrams of rank 8.
The idea behind this bijection is that the simple roots corresponding to a parabolic
subdiagram have negative semidefinite inner product matrix, and the nullspace of
their span determines a point of ∂H9. And on the other hand, in the upper half
space model, with a cusp at infinity, the intersection of the Coxeter polytope with a
horizontal plane is a Euclidean Coxeter polytope. And such polytopes are classified
by parabolic diagrams. The diagrams B̃n, C̃n, F̃ 4, G̃2 do not occur for us because
they involve dihedral angles π/4 or π/6. See [Vin72, Sections 2–3] or [Dol08] for
more background.

Lemma 4.1. — There are four S5-orbits of cusps of P , corresponding to subdia-
grams Ã5Ã1Ã2, Ẽ6Ã2, D̃5Ã3 and Ã4Ã4 of D. In each case the first listed component
lies in the Petersen graph rather than the anti-Petersen graph, hence corresponds to
some set of divisors Uab.

Proof. — It is not hard to directly classify the connected parabolic diagrams K in
D up to the action of S5. It turns out that the vertices of D not joined to K form
a parabolic diagram, which together with K has rank 8. Kondo had to perform this
computation in his proof that P has finite volume, so one can rely on his results
recorded in [Kon86, p. 226]. �

Theorem 4.2. — Let S be the Enriques or Coble surface arising from the Hessian
of a Sylvester non-degenerate cubic surface with parameters

(λ0, . . . , λ4) = (1, 1, 1, 1, t).

Then Aut(S) is generated by the ten involutions gab.

Proof. — We treated the t = 1 case above, so we suppose t 6= 1. Theorem 3.2
shows that Q is (the closure of) the union of the G0-translates of P . Here G0 is the
subgroup of Aut(S) generated by those gcd with λc 6= λd. We will also write G for
the group generated by all ten gab. Suppose g ∈ Aut(S). Our strategy is to replace
g by its compositions with elements of G, ultimately leading to the conclusion that
g is the identity. The main idea of the proof is to show that the tessellation of Q by
copies of P is intrinsic, so that g preserves it. We will do this by comparing the cusps
of Q to the cusps of P . As in the proof of Theorem 3.2 we use the term “exterior
facets” for the facets of P corresponding to the Uab and to those αab with λa = λb.
We call the other facets “interior”.
The fact that λ4 is different from λ0, . . . , λ3 breaks the S5 symmetry. Each S5-

orbit of cusps of P breaks up into several orbits under the subgroup S4 acting on
the indices {0, 1, 2, 3}. We will focus on the cusps of type Ẽ6Ã2. There is one such
cusp for every ordered pair a, b of distinct elements of {0, . . . , 4}. Namely, Ẽ6(a, b)
has Uab as the branch node, Ucd, Ude, Uec as its neighbors, and Uae, Uac, Uad as the
end nodes. Here {c, d, e} = {0, . . . , 4}−{a, b}. The nodes of D not joined to Ẽ6(a, b)
are αbc, αbd, αbe, which form an Ã2 diagram. The corresponding facets of P can be
either exterior or interior. Under S4 there are three orbits of ordered pairs of distinct
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elements of {0, . . . , 4}, so there are three orbits of Ẽ6Ã2 diagrams, represented by

exterior Ã2 facets interior Ã2 facets
Ẽ6(4, 0) α01, α02, α03 none
Ẽ6(0, 1) α12, α13 α14
Ẽ6(0, 4) none α14, α24, α34

It is easy to write down a vector in Λ representing the cusp corresponding to a
given Ẽ6(a, b), namely the null vector

(4.1) νa,b = 3Uab + 2(Ucd + Ude + Uec) + (Uae + Uac + Uad).

(This comes from Lie theory. The lowest root of the E6 root system extends the E6
Dynkin diagram to Ẽ6. Our formula, modulo νa,b, is the standard linear dependence
between it and the simple roots of E6.)
Set ν = ν4,0. Since all the facets of P incident to ν are exterior facets, ν is also

a cusp of Q. Since g(ν) is a cusp of Q, it is a cusp of some G0-translate of P . By
replacing g by its composition with a suitable element of G0, we may therefore
suppose without loss that g(ν) is a cusp of P . The facets of Q containing g(ν) might
not coincide with the facets of P containing g(ν), because Q might contain several
translates of P that are incident to g(ν). Nevertheless, every exterior facet of P that
contains g(ν) will also be a facet of Q. Lemma 4.1 shows that these facets of P
account for a subdiagram Ã5, Ẽ6, D̃5 or Ã4 of g(ν)’s diagram in Q. The cases Ã5,
D̃5 and Ã4 are incompatible with the fact that the diagram of g(ν) in Q is Ẽ6Ã2. It
follows that the Ẽ6 component, of the diagram of g(ν) as a cusp of Q, consists of
exterior walls of P . By replacing g by its composition with some element of S4 ⊂ G,
we may suppose without loss that g(ν) is one of the cusps ν4,0, ν0,1 or ν0,4 of P .
We claim that the first of these three cases holds, which is to say that g fixes the

cusp ν4,0. One can check that g14 exchanges the other two cusps, by using the explicit
formula (4.1) for vectors representing them. So in the case g(ν) = ν0,1 we may replace
g by its composition with g14, reducing to the case g(ν) = ν0,4. In this case we will
derive a contradiction. The facets α14, α24, α34 of P are incident to ν0,4, but they are
interior facets. Therefore Q also contains the images of P under g14, g24, g34. We will
focus on g14(P ). We already noted that α12 is an exterior facet of P incident to ν0,1,
and that g14 sends ν0,1 to ν4,0. Therefore g14(α12) = α14 +α24 is a facet of Q incident
to ν0,4. Since ν0,4 is invariant under permutations of the indices 1, 2, 3, the remaining
two facets of Q at ν0,4 are α24 + α34 and α34 + α14.
In summary, the facets of Q at ν4,0 are Ẽ6(4, 0) and α01, α02, α03, while the facets

of Q at ν0,4 are Ẽ6(0, 4) and α14 + α24, α24 + α34, α34 + α14. Under our assumption
g(ν4,0) = ν0,4, we see that g sends Ẽ6(0, 4) to Ẽ6(4, 0) and {α01, α02, α03} to {α14 +
α24, α24 + α34, α34 + α14}. This contradicts

α01 + α02 + α03 = 1
2ν4,0

(α14 + α24) + (α24 + α34) + (α34 + α14) = ν0,4.

(The fact that the right side is twice as large in the second line is the numerical
manifestation of the idea that the cusp of Q at ν0,4 is “twice as big in the A2 direction”
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as the cusp of Q at ν4,0. One should visualize an equilateral triangle of edge length
2, divided into four equilateral triangles of edge length 1.)
We have reduced to the case that g fixes ν4,0. The center of the polytope P is

represented by ∆ = ∑
{a,b} Uab. It has inner product 1 with each Uab, inner product

2 with each αab, and inner product 10 with itself. We may characterize it in terms of
the cusp ν4,0 as follows. It is the unique norm 10 element of Λ that is effective, has
inner product 1 with each root of the Ẽ6 diagram at ν4,0, and has inner product 2
with each root of the Ã2 diagram there. Therefore g preserves ∆.
If r ∈ Λ is the class of a (−2) curve, then r · ∆ > 1, with equality if and only

if r equals some Uab. So g permutes the Uab, hence the αab, hence preserves P . Its
action on P is determined by its action on the Coxeter diagram D. Since g preserves
Q, it permutes the interior facets αa4 of P among themselves. By replacing g by
its composition with an element of S4 ⊂ G, we may suppose that it preserves each
of them. The only automorphism of the Coxeter diagram D with this property is
the identity. So g acts by the identity on Λ. Then Lemma 2.4 shows that g is the
identity, completing the proof. �

The following result is not needed elsewhere in the paper.

Theorem 4.3. — For t 6= 1
4 , there are two orbits of Aut(S) on the set of (−2)

curves, with orbit representatives U01, α01. For t = 1
4 , no αab is represented by a

(−2)-curve, and every (−2)-curve is Aut(S)-equivalent to U01.

Proof. — Consider the simple roots of Q. By Theorem 3.2 these are the Aut(S)-
images of the Uab and of those αcd for which λc = λd. Each Uab is a (−2)-curve. And
by Lemma 2.8, each of these αcd is either represented by a (−2)-curve, or else has
the form αcd = 2[D] + 1

2 [Ci] + 1
2 [Cj] where D is a (−1)-curve and Ci, Cj are two

components of the bi-anticanonical divisor (and in particular are (−4)-curves). The
latter case occurs if and only if the plane Πcd ⊂ P3 containing Lcd and Pcd contains
two new nodes. This happens only when t = 1

4 , and then it happens for all c, d 6= 4.
Now suppose R is a (−2)-curve in S. The adjunction formula forces R ·KS = 0, so

R misses the components C1, . . . , Ck of the bi-anticanonical divisor. It follows that
the class of R in Num(S) lies in Λ. We claim that R equals one of the (−2)-curves
from the previous paragraph. Otherwise it would have inner product > 0 with all
the simple roots of Q. But these define (the intersection with ΛR of) the nef cone, so
R would be nef, contrary to R2 < 0. Therefore either R is an Aut(S)-image of some
Uab, or else t 6= 1

4 and R is an Aut(S)-image of some αcd with λc = λd.
When t = 1 we have seen that Aut(S) = S5, whose orbits on the simple roots of

Q = P have representatives U01, α01. So suppose t 6= 1. Using S4 ⊂ Aut(S) shows
that R is Aut(S)-equivalent to U01, U04 or α01, with the last case only possible when
t 6= 1

4 . We claim g14(U04) = U01. To see this, recall that g14 acts by the transposition
(14) on subscripts, followed by reflection in α14. The transposition sends U04 to U01,
which is orthogonal to α14. This proves our claim.
All that remains to prove is that U01 and α01 are not Aut(S)-equivalent. It suffices

to show that they are not equivalent under the much larger group W o Aut(P ),
where W is the Coxeter group of the polytope P . This is equivalent to the non-
conjugacy in W o Aut(P ) of the reflections of Λ corresponding to U01 and α01.
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To prove this non-conjugacy we construct a homomorphism W o Aut(P )→ (Z/2)2

that sends the reflections of U01 and α01 to distinct elements of (Z/2)2. We will need
the standard presentation of W , which is as follows [Bou81, Chapter V, Section 4],
[Vin71, Theorem 2]. It has one generator for each vertex of D, namely the reflection
across the corresponding facet of P . These have order 2, two of them commute if
their vertices unjoined (because the facets are orthogonal), and two of them have
product of order 3 if their vertices are joined by a single edge (because the dihedral
angle is π/3). These relations define W . The action of S5 on W is by permuting the
generators in the way that it permutes the facets of P .
Our homomorphism sends the reflections in the Uab to (1, 0), the reflections in the

αab to (0, 1), and S5 to the trivial element. It is easy to check that all the relations
are satisfied, so this does in fact define a homomorphism. �

Theorem 4.4. — Suppose S is as in Theorem 4.2, with t 6= 1. Then
(4.2) Aut(S) =

(
(Z/2) ∗ (Z/2) ∗ (Z/2) ∗ (Z/2)

)
oS4

where the factors of the free product are generated by g04, g14, g24, g34. Also, the
group S4 is generated by the gab with a, b 6= 4, and permutes the factors of the free
product in the obvious way.
Proof. — Because the action of Aut(S) on Λ is faithful and independent of the

parameter t and the characteristic( 6=2, 3) of k, it suffices to prove this for t = 1
16 in

characteristic 0. In this case k = 1, so the unique bi-anticanonical divisor of S is a
smooth rational curve. This yields a homomorphism Aut(S)→ PGL2(k). We show
in Theorem 5.7 that the images ga4 of the ga4 generate the factors of a free product
(Z/2)∗4 ⊂ PGL2(k). It follows that the same holds for the ga4 as elements of Aut(S).
The rest of the Theorem 4.4 is obvious. �

Remark 4.5. — Theorem 4.4 is an analogue of I. Shimada’s calculation of Aut(S)
when S is the Enriques surface arising from a general Sylvester non-degenerate
cubic surface [Shi19, Theorem 1.2]. Shimada used Borcherds’ method, which is more
technical but similar in flavor to ours. He showed that Aut(S) is generated by the
gab, with defining relations

g2
ab = 1, (gabgbcgca)2 = 1, (gabgcd)2 = 1

where {a, b}∩{c, d} = ∅ in the last relation. It is an interesting question whether our
methods could be adapted to recover his result, and possibly even compute Aut(S)
in the case of an arbitrary Sylvester nondegenerate cubic surface.
The group in Theorem 4.4 also arose in [MO15] as the group of automorphisms of an

Enriques surface whose K3-cover is a quartic surface given by the equation s2
2− ts4 =

0, t 6= 0, 4, 36, where si denote elementary symmetric functions in variables t0, t1, t2, t3.
These surfaces belong to a larger family given by the equation t1s2

2 +t2s4 +t3s1s3 = 0,
that includes our 1-parameter family when t1 = 0. It was stated in [Dol18] that the
proof from [MO15] applies in our case, but its authors have informed us that it does
not. The analog of the polytope P in their case is defined by the Coxeter diagram
equal to the dual graph of (−2)-curves on Kondo’s surface of type V, which also has
automorphism group S5. The surface is the limit (in the appropriate sense) in the
family when t2 →∞ (see [MO15, Remark 2.3]).
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Remark 4.6. — We owe this remark to Matthias Schütt. Consider the family of
quartic surfaces in P3 given by the equation

Ht : −ts4(x, y, z, w) + s1(x, y, z, w)s3(x, y, z, w) = 0,
where sk(x, y, z, w) are elementary symmetric polynomials of degree k in x, y, z, w.
If the characteristic p of k is not equal to 2 or 3, the surface Ht is isomorphic to the
Hessian surface of a cubic surface with Sylvester parameters (1, 1, 1, 1, t) considered
in Theorem 4.2. When p = 2, 3 it is not the Hessian of a cubic surface, but it still
contains 10 lines Lab and ten nodes Pab forming the Desargues configuration (103).
The standard cubic Cremona involution τ : (x : y : z : w) 7→ (1/x : 1/y : 1/z : 1/w)
leaves invariant each surface in the family. If p = 2, the surfaces St with t 6= 0,∞ are
nonsingular, the involution acts freely and the quotient St = Ht/(τ) is an Enriques
surface. There are no Coble surfaces in the family. If p = 3, the only singular surface
in the family is the surface S1. It has one singular point (1:1:1:1) and leads to
a Coble surface with finite automorphism group isomorphic to S5. The proofs of
Theorems 4.2, 4.3 and 4.4 extend to these families of surfaces. Reinterpreted in terms
of the surfaces Ht, these results therefore apply in all characteristics.

5. A model of Aut(S) as a lattice in PGL2(Q3)

This section studies Aut(S), where S is the Coble surface arising from parameters
(λ0, . . . , λ4) = (1, 1, 1, 1, 1

16), under the additional hypothesis that chark = 0. In
this case there is one new node, so the unique bi-anticanonical divisor is a smooth
rational curve C, yielding a homomorphism Aut(S) → Aut(C) ∼= PGL2(k). We
completely describe this homomorphism and its image. The main point is that this
map is faithful. A side benefit is that this special case is enough to identify the
automorphism group of the surface, even when the parameters and ground field
characteristic are relaxed to (1, 1, 1, 1, t 6= 1) and chark 6= 2, 3. (See the proof of
Theorem 4.4.)
Recall from Theorem 4.2 that Aut(S) is generated by ten involutions gab, where

the subscripts vary over the 2-element subsets of {0, . . . , 4}. All we will need to know
about them is the following:

(1) they are involutions;
(2) they act nontrivially on C;
(3) two commute if their corresponding pairs are disjoint;
(4) if a, b 6= 4 then conjugation by gab permutes the ten involutions by acting on

subscripts by the transposition (ab);
(5) these six gab generate a copy of S4.

Everything but (2) was established in Section 2. For (2), choose a plane Π in P3

containing Pab and the new node x, such that the tangent cone of Π∩H consists of two
lines. By its definition, g̃ab exchanges them. So it acts by a nonscalar on the tangent
cone to H at x, hence nontrivially on its projectivization. This projectivization is
the exceptional divisor of X above x, and C is its isomorphic image in S. So gab acts
nontrivially on C.
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We write gab for the image of gab in AutC, and G for the subgroup of AutC
generated by these ten involutions. Our first description of G is as a subgroup of
AutH, where H is Hamilton’s quaternion algebra over Q. By “norm” we mean the
reduced norm in the sense of division algebras: 1, i, j and k are orthogonal unit
vectors. Because k is algebraically closed, k⊗H is isomorphic to the 2× 2 matrix
algebra M2(k). Therefore, any subgroup of AutH may be regarded as a subgroup of
AutM2(k) ∼= PGL2(k). We begin with a complete description of the homomorphism
AutS → AutC, in terms of an integral form of H called the Hurwitz integers and
written H. It is defined as the Z-span of the 24 unit norm quaternions ±1, ±i, ±j,
±k and 1

2(±1± i± j ± k).

Theorem 5.1. — There is an isomorphism C ∼= P1 under which the four ga4
correspond to the images in PGL2(k) of ±i ± j ± k and the six remaining gab
correspond to the images in PGL2(k) of ±i± j, ±j ± k and ±k ± i.

Proof. — Consider the convex hull in Im(H⊗ R) = R3 of ±i± j ± k. It is a cube
centered at the origin. The twelve Hurwitz integers ±i ± j, ±j ± k and ±k ± i
are the midpoints of its edges. The conjugation action on ImH of any one of them
is the order 2 rotation that fixes that midpoint. This proves that the subgroup of
AutH generated by their conjugation actions is the rotation group of the cube. In
particular, it is isomorphic to S4.
Now consider the subgroup S4 ⊂ Aut(S) generated by the gab with a, b 6= 4. It is

easy to check that it acts faithfully on the tangent space to P3 at the node [1:1:1:1:−4]
of the Hessian surface H. It follows that the nontrivial (hence noncentral) elements
of S4 act on this tangent space by non-scalars, which implies that S4 acts faithfully
on the projectivized tangent cone to H at that node. That is, S4 acts faithfully
on C.

PGL2(k) contains a unique conjugacy class of subgroups isomorphic to S4. So C
may be identified with P1 in such a way that these two groups S4 are identified.
Under this identification, the six involutions outside A4, namely the gab with a, b 6= 4,
correspond to the six rotations of the cube considered above. That is, these gab are
identified with the images in PGL2(k) of ±i± j, ±j ± k and ±k ± i.
By the hypothesis on how S4 ⊂ Aut(S) permutes g04, . . . , g34, we know that

some ga4 centralizes each order 3 subgroup of the rotation group of the cube. For
example, g04 centralizes the subgroup generated by g12 ◦ g23. The order 3 subgroups
are generated by the order 3 rotations around the body-diagonals of the cube. Only
one order 2 element of PGL2(k) centralizes any given order 3 element of PGL2(k). In
our case it is easy to exhibit: the order 2 rotation around that same body-diagonal.
That is, by the conjugacy action of one of ± i± j ± k. Therefore the g04, . . . , g34 act
as stated. �

Corollary 5.2. — The image G of the restriction homomorphism Aut(S) →
Aut(C) is conjugate to the subgroup of SO(3) generated by the order 2 rotations
rab, 0 6 a, b 6 3 around the midpoints of the edges of a cube, and the order 2
rotations ra4 around the four body diagonals.
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Remark 5.3. — One can write down explicit matrices for the gab by choosing an
isomorphismH⊗k ∼= M2(k). For example, if k = C then one standard isomorphism is

i↔
(

0 −i
−i 0

)
j ↔

(
0 −1
1 0

)
k ↔

(
−i 0
0 i

)
where i =

√
−1 ∈ C. So the matrices for the gab with a, b 6= 4 are the signed sums

of pairs of these matrices, and the matrices for the ga4 are the signed sums of all
three. (This gives 20 matrices, but only 10 up to sign.) By direct computation of the
restriction homomorphism for the Coble surface, the second author was able, using
MAPLE, to find 10 matrices corresponding to gab that generate the same group as
do the isometries of a regular tetrahedron and the reflections across its facets. The
present proof is less computational, but the original calculation was essential; see
the Remark at the end of the paper.
Although pretty, Corollary 5.2’s description of G is difficult to use because G is

not discrete in SO(3). Our next result realizes G as a discrete group in PGL2(Q3)
rather than SO(3). Here Q3 is the field of 3-adic rational numbers. The embedding
G→ PGL2(Q3) arises as follows.

We write F for the algebraic group scheme over Z, which to each commutative
ring R assigns the group Aut(H⊗ R). This is a Z-form of PGL2, in the sense that
the functor becomes equal to PGL2 after base changing to any field over which
the division algebra H splits. We claim that G ⊂ F(Z[1

3 ]). To see this, note that
± i± j ± k have norm 3 and so their inverses lie in H⊗ Z[1

3 ]. So their conjugation
maps lie in F(Z[1

3 ]). The inverses of ± i±j, ±j±k and ±k± i do not lie in H⊗Z[1
3 ].

But the conjugation maps of these Hurwitz integers do preserve H, hence lie in F(Z).
So G ⊂ F(Z[1

3 ]). The embedding Z[1
3 ]→ Q3 induces an inclusion F(Z[1

3 ])→ F(Q3).
Since H splits over Q3, we have F(Q3) ∼= PGL2(Q3). Putting all of this together
yields an embedding G→ PGL2(Q3).
Lemma 5.4. — The groups F(Z[1

3 ]) and G are discrete in F(Q3) ∼= PGL2(Q3).
Proof. — The discreteness of Z[1

3 ] in R × Q3 shows that F(Z[1
3 ]) is discrete in

F(R) × F(Q3). Projecting onto the second factor preserves discreteness because
F(R) ∼= SO(3) is compact. As a subgroup of F(Z[1

3 ]), G is also discrete. �
Over any p-adic field, PGL2 acts properly on a certain tree, which is a standard tool

for working with discrete subgroups. We recall the construction over Q3. See [Ser03,
Section II.1.1] for background, including the fact that the tree T we now define is in
fact a tree. It has vertex set equal to the set of homothety classes of lattices (rank
two Z3-submodules) in Q2

3. Note that while PGL2(Q3) does not act on Q2
3, it does act

on the set of homothety classes of lattices. Two vertices are adjacent just if there are
lattices representing them, such that one contains the other of index 3. In particular,
if a lattice L represents a vertex v of T , then its neighbors in T correspond to the
index 3 sublattices of L, or equivalently the 1-dimensional subspaces of L/3L ∼= F2

3.
Under SL2(Q3), the vertices fall into two orbits, which are exchanged by any element
of GL2(Q3) of determinant 3.
Lemma 5.5. — Let A be the binary tetrahedral group consisting of the 24 units

of H. Its image A in F(Z) lies in G.
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Proof. — Observe that (j−k)(i− j)−1 = (−1 + i+ j+k)/2. This quaternion is an
order 3 element of A, and its conjugation map lies in G by Theorem 5.1. Conjugating
by ± i± j, ± j ± k and ± k ± i shows that G contains the conjugation maps of all
eight order 3 elements of A, namely (−1± i± j ± k)/2. These generate A. �

Lemma 5.6. — The binary tetrahedral group A fixes a unique vertex v of T . Each
order 3 element of A fixes v, exactly one neighbor of v, and no other vertices of T .
Proof. — Because A is a finite subgroup of SL2(Q3), it preserves some lattice L,

for example the Z3-span of the A-images of your favorite nonzero vector. We write
v for the corresponding vertex of T . By identifying L with Z2

3, we identify the
SL2(Q3)-stabilizer of L with SL2(Z3). Because the kernel of SL2(Z3)→ SL2(F3) is a
pro-3 group, the normal subgroup Q8 of A maps faithfully to SL2(F3). Since every
Z/3 subgroup of A acts nontrivially on Q8, it also maps faithfully. Therefore the
composition A→ SL2(Z3)→ SL2(F3) is injective. It is even an isomorphism, because
|SL2(F3)| = 24.
We have shown that A acts on L/3L ∼= F2

3 as SL2(F3). In particular, it permutes
the four 1-dimensional F3-subspaces as the alternating group of degree 4. It follows
that A fixes no neighbor of v (hence no point of T other than v), and that each
order 3 element of A fixes exactly one neighbor of v.
It remains to show that no vertex at distance 2 from v is fixed by any order 3

element of A. Each such vertex is represented by a lattice M having index 9 in
L. Furthermore, L/M cannot be isomorphic to (Z/3)2, because that would force
M = 3L, which corresponds to the vertex v rather than to a vertex at distance 2.
Therefore L/M ∼= Z/9. It follows that the vertices at distance 2 correspond to the
12 subgroups Z/9 of L/9L ∼= (Z/9)2. It suffices to show that no order 3 element of
A preserves any one of them. This follows from the claim: every order 3 element
of SL2(Z/9), that preserves some Z/9 ⊂ (Z/9)2, lies in the kernel of SL2(Z/9) →
SL2(F3).
To prove the claim, we use the fact that all the Z/9’s are SL2(Z/9)-equivalent, so

it is enough to examine the order 3 elements in the stabilizer of the Z/9 generated by
( 1

0 ). This stabilizer is the semidirect product 〈τ〉o 〈σ〉, where τ = ( 1 1
0 1 ) has order 9

and σ = ( 2 0
0 1/2 ) has order 6. One can check that στσ−1 = τ 4. We must show that

every order 3 element x ∈ 〈τ〉 o 〈σ〉 has trivial image in SL2(F3). It is clear that
every order 3 element lies in 〈τ〉o 〈σ2〉. If x = τ i then the relation x3 = 1 forces 3|i.
If x = τ iσ±2 then the relation x3 = 1 boils down to τ 273i = 1, which again forces 3|i.
We have proven x ∈ 〈τ 3〉o 〈σ2〉. This implies our claim, because τ 3 and σ2 map to
the identity of SL2(F3). �

Theorem 5.7. —
(1) The subgroup of Aut(C) ∼= PGL2(k) generated by g04, . . . , g34 is the free

product 〈g04〉 ∗ · · · ∗ 〈g34〉 of four copies of Z/2. It acts simply transitively on
the vertices of T .

(2) The image G of Aut(S) in Aut(C) ∼= PGL2(k) is the semidirect product of
the group from (1) by the symmetric group S4, permuting the free factors
Z/2 in the obvious way.

In particular, the natural map Aut(S)→ Aut(C) is injective.
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Proof.
(1). — Even though G was defined as a subgroup of Aut(C) ∼= PGL2(k), we will

continue to work with it as a subgroup of PGL2(Q3). We continue to write v for the
unique vertex of T fixed by the binary tetrahedral group A. Each of ± i ± j ± k
has norm 3 in H, hence determinant 3 when regarded as an element of GL2(Q3).
Therefore each ga4 exchanges the two SL2(Q3)-orbits of vertices of T . In particular,
each ga4 moves v to some other vertex.
Next, ga4 centralizes some order 3 subgroup Θa of S4 ⊂ G. The image of A in

PGL2(Q3) contains all the order 3 subgroups of S4. Therefore Lemma 5.6 shows that
Θa fixes the vertex v and one of its neighbors, but no other vertices of T . Since ga4
centralizes Θa, it preserves this set of two vertices. In the previous paragraph we saw
that ga4 moves v to some other vertex. Therefore ga4 exchanges v with the neighbor
fixed by Θa. The midpoint ma of the edge joining these vertices is the only fixed
point of ga4 in T . We think of ga4 as acting on T by a sort of reflection, whose mirror
consists of the single point ma. Each of g04, . . . , g34 centralizes a different order 3
subgroup of S4, so m0, . . . ,m3 are the midpoints of the four edges emanating from v.
This suggests that the union D of the four half-edges from v to m0, . . . ,m3 should

be a fundamental domain for the action of 〈g04, . . . , g34〉 on T . This can be verified
by using Poincaré’s Polyhedron Theorem. Standard references, such as [Mas88, Sec-
tion IV.H], only develop this theorem for groups acting on manifolds. So we sketch
the proof in our situation, which is actually much simpler than the general manifold
case.
We set H = 〈g04, . . . , g34〉. (There is no group H; the bar merely reminds us that

H lies in G.) We also introduce formal symbols g̃04, . . . , g̃34, each generating a copy
of Z/2, and set

H̃ = 〈g̃04〉 ∗ · · · ∗ 〈g̃34〉 ∼= (Z/2) ∗ (Z/2) ∗ (Z/2) ∗ (Z/2).

We write elements of H̃ with tildes, and indicate the natural map H̃ → H by
converting tildes to bars. We think of H̃ × D as a disjoint union of copies of D
indexed by h̃ ∈ H̃. There is a natural H̃-action on this union, with g̃ ∈ H̃ sending
(h̃, d) to (g̃h̃, d). The map H̃ × D → T defined by (h̃, d) 7→ h(d) is compatible
with the natural map H̃ → H and the H̃- and H-actions on H̃ × D and T . We
glue the copies of D together to form a connected graph T̃ , by identifying (h̃,ma)
with (h̃g̃a4,ma), for every h̃ ∈ H̃ and a = 0, . . . , 3. The gluing is compatible with
the H̃-action, so H̃ acts on T̃ . The gluing is also compatible with the projection
H̃ ×D → T , which therefore descends to a map T̃ → T . This map is compatible
with H̃ → H and the H̃- and H-actions. It is easy to check that T̃ → T is a covering
map, hence a homeomorphism. It follows that H̃ → H must be an isomorphism.
The simple transitivity of H̃ on the vertices (h̃, v) of T̃ is obvious, so H acts simply
transitively on the vertices of T .
(2). — Having proven (1), we know that G is generated byS4 and the free product

of four copies of (Z/2), with the first group normalizing the second. To establish the
semidirect product decomposition we must show that these groups meet trivially.
As a finite subgroup of the free product, the intersection is conjugate into one of
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the free factors by [Ser03, Theorem 8 of Section I.4.3]. Therefore it has order 6 2.
But the intersection is also normal in S4, which has no normal subgroups of order 2.
Therefore the intersection is trivial. �

Theorem 5.8. — The group G coincides with F(Z[1
3 ]), which is maximal among

discrete subgroups of PGL2(Q3).

Proof. — Because F(Z[1
3 ]) is discrete and contains G, it suffices to show that G is

maximal among discrete subgroups of PGL2(Q3). So suppose Γ is a discrete subgroup
that contains it. Because G acts transitively on the vertices of T , Γ is generated
by G and the Γ-stabilizer of v. The latter is finite, by discreteness. It contains the
G-stabilizer S4 of v. Since S4 is maximal among finite subgroups of PGL2, over any
field of characteristic 0, the Γ-stabilizer is the same as the G-stabilizer. So Γ = G. �

Theorem 5.7 has an appealing consequence:

Theorem 5.9. — Let T be a regular tetrahedron in Euclidean 3-space R3. Then
the group of isometries generated by the automorphisms of T and the reflections
across its facets is

(
(Z/2) ∗ (Z/2) ∗ (Z/2) ∗ (Z/2)

)
o Aut(T ).

Proof. — It suffices to show that the image of this group in O(3) has this structure.
Combining Corollary 5.2 and Theorem 5.7 shows that the groupG ⊂ SO(3) generated
by the rotations rab (a, b = 0, . . . , 3) around the midpoints of the edges of the cube,
and the rotations ra4 around the body diagonals of the cube, has this structure.
Replacing each rab by −rab replaces each g ∈ G by ±g, and therefore does not
change the isomorphism type of the subgroup of O(3) they generate. (This uses
−1 /∈ G.)
We identify T with one of the two regular tetrahedra inscribed in the cube. (That

is, T is the convex hull of 4 vertices of the cube, no two adjacent.) Then the planes
through the origin, perpendicular to the body diagonals, are parallel to the facets
of T . Therefore the −ra4 are the reflections across them. And the −rab with a, b 6 3
are reflections that generate the isometry group of T . �

An amusing way to interpret this is that you can reflect T across a facet, and then
reflect that image of T across one of its facets, and so on. Imagine doing this and
then challenging your friend to return the tetrahedron to its original position by
further reflections. The only solution is to retrace your sequence of reflections. This
has the same flavor as Rich Schwartz’s game “Lucy and Lily” [Sch02], which uses a
regular pentagon in the plane in place of our tetrahedron.
In fact, the entire paper grew backwards from Theorem 5.9. The explicit matrix

computations referred to in Remark 5.3 identifiedG with the group from this theorem.
The problem of identifying the image led to the discrete subgroup of PGL2(Q3).
Having identified G, it was natural to wonder whether it was the full and faithful
image of Aut(S), which led to the computation of the nef cone.
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