1) Determine the increasing and decreasing properties of \(f(x) = \frac{\sqrt{2}}{2} x + \cos x \) on the interval \([0, 2\pi]\).

2) Let \(f \) be the function defined by \(f(x) = x - 3x^3 \). Which of the following properties does \(f \) have?

 A) local maximum at \(x = 0 \)
 B) concave up on \((0, \infty)\)
 C) point of inflection at \(x = 0 \)
 D) increasing on the interval \((-\infty, 1)\) and decreasing otherwise

3) The following is the graph of the derivative of \(f \). Use it to determine the graph of \(f'' \). Does \(f \) have a local maximum? If so, where does it occur?

4) Determine the limits:

 A) \(\lim_{x \to 0} \frac{e^x - 1}{x^3 + 2x} \)
 B) \(\lim_{x \to 0} \frac{3x - \ln x}{6x} \)
 C) \(\lim_{x \to 0} \frac{(\cos 3x)^2}{x} \)
 D) \(\lim_{x \to 1} \frac{1}{\ln x} - \frac{1}{x - 1} \)
 E) \(\lim_{x \to \infty} xe^x \)
5) Sketch a graph of a function that satisfies the following:
 A) \(f \) is continuous on \((-\infty, \infty)\)
 B) \(f \) has a local max at \(x = 3 \) where \(f'(x) = 0 \)
 C) \(f \) has a local min at \(x = -2 \) where \(f'(x) \) is undefined
 D) \(\lim_{x \to \infty} f(x) = -7 \) and \(\lim_{x \to -\infty} f(x) = 4 \)

 When your graph is finished, state the intervals where \(f \) is increasing and the intervals where \(f \) is decreasing. For which values is \(f''(x) = 0 \) and for which values is \(f''(x) \) undefined? Where are the points of inflection?

6) A function \(f \) is continuous and twice-differentiable for all \(x \neq 2 \). It is known to have the properties
 (i) \(f(0) = 0 \)
 (ii) \(f'(4) = 0 \)
 (iii) \(f'' > 0 \) on \((-\infty, 2) \cup (6, +\infty)\)
 (iv) \(f'' < 0 \) on \((2, 6)\)

 If the lines \(x = 2 \) and \(y = -3 \) are asymptotes of the graph of \(f \), sketch a graph of \(f \) satisfying these conditions.

7) For each of the following graphs, discuss the (i) local extrema, (ii) increase/decrease (iii) concavity, (iv) points of inflection, (v) critical points

 A)
 ![Graph A]

 B)
 ![Graph B]

8) Find any vertical or horizontal asymptotes of the functions.
 A) \(f(x) = \frac{2x^3 + 5}{3x^2 - x} \)
 B) \(g(x) = \frac{(x+3)^2}{9 - x^2} \)
9) Which of the following could be the graph of \(f(x) = \frac{x^3 + 1}{x^2 - 1} \)

10) A rectangular poster is to have a total area of 72 \(\text{in}^2 \) with 1-inch margins at the bottom and sides and a 3-inch margin at the top. What dimensions will give the largest printed area?

11) Find the coordinates of \(P \) that maximize the area of the rectangle shown in the figure below.

12*) An outdoor tour guide offers the following rates: $200 per person if 50 people (the minimum number necessary) go on the tour. For each additional person, up to a maximum of 80 people, everyone’s charge is reduced by $2. It costs $6000 (a fixed cost) plus $32 per person to conduct the tour. How many people does it take to maximize the guide’s profit?

13) A right circular cylinder (with a bottom and a top) is to be designed to hold 24 cubic inches of a soft drink and to use a minimum of material in its construction. Find the required dimensions for the container.

14*) A Norman window has the shape of a rectangle surmounted by a semicircle. If the perimeter of the window is 30 ft, find the length of the base that will allow the window to admit the most light.
\[-100 \text{ (50)} + 268 \text{ (50)} - (120) \text{ (50)} = 48 \text{ (50)} \]

\[268 \text{ (50)} - 120 \text{ (50)} + 268 \text{ (17)} \]

\[-2(67) \text{ (50)} - 2(67) \text{ (17)} \]

\[(268 - 120 - 134) \text{ (50)} + (268 - 2(67)) \text{ (17)} \]

\[\frac{254}{267 - 134} \]

\[14 \cdot 50 \]

\[700 \]

\[133.17 \]

\[1330 + \frac{931}{931} \]

\[\frac{2262}{2962} \]

\[80 \left(-160 + 268 - 75\right) \]

\[108 - 75 \]

\[80 \cdot 33 \]

\[2400 \]

\[240 \]
1. \(f(x) = \frac{\sqrt{2}}{2} x + \cos(x) \) is increasing when \(f'(x) > 0 \) and decreasing when \(f'(x) < 0 \).

 \[f'(x) = \frac{\sqrt{2}}{2} - \sin x. \]

So if I first find critical points of \(f \) on \([0, 2\pi]\),

I set \(f'(x) = 0 \) and get

\[\sin(x) = \frac{\sqrt{2}}{2}, \]

which has two solutions on \([0, 2\pi]\) -

\[x = \frac{\pi}{4} \text{ and } x = \frac{3\pi}{4}. \]

So if I test points in intervals \((0, \frac{\pi}{4}), (\frac{\pi}{4}, \frac{3\pi}{4}), \text{ and } (\frac{3\pi}{4}, 2\pi)\)

I get that \(f'(x) \) is positive (and \(f \) is increasing) on \((0, \frac{\pi}{4}), (\frac{3\pi}{4}, 2\pi)\)

\[f'(x) \text{ is negative (and } f \text{ is decreasing) on } (\frac{\pi}{4}, \frac{3\pi}{4}) \]
\(F(x) = x - 3x^{1/3} \).

So \(F'(x) = 1 - x^{-2/3}, \quad F''(x) = \frac{2}{3} x^{-5/3}. \)

Since \(F'(0) \) is undefined, \(F \) has a critical point at 0. However, for \(x \) close to zero (but negative), \(F'(x) \) is negative and for \(x \) close to zero (but positive) \(F'(x) \) is negative. So 0 is not a local max.

\(F''(x) \) is defined and positive for \(x \in (0, \infty) \), so \(F \) is concave up on \((0, \infty)\).

\(F''(x) \) is negative for \(x < 0 \), positive for \(x > 0 \) so 0 is a point of inflection.

\(F'(x) \) is positive (i.e. \(F \) is increasing) whenever

\[1 - x^{-2/3} > 0 \quad \text{i.e.} \quad 1 > x^{-2/3} \]

\[1 > \frac{1}{x^{2/3}} \]

\[x^{2/3} > 1 \]

\[x^2 > 1 \]

\[x > 1 \quad \text{or} \quad x < -1 \]

\(F \) is increasing on \((-\infty, -1), (1, \infty)\)

and decreasing only on \((-1, 1)\).
3) \(p'' \) is positive when \(p' \) is increasing (on \((-\infty, -5), (-1, 5)) \)
 negative \(" \) decreasing (on \((-5, -1), (5, \infty)) \).

So \(p'' \) looks something like.

\[\text{Diagram showing } p'' \text{ behavior.} \]

\[\text{So } p'' \text{ looks something like.} \]

\[\text{So } p'' \text{ looks something like.} \]

\(\begin{align*}
\text{B) } & p' \text{ is positive on } (2, 7), \text{ equal to zero at 7,} \\
& \text{ and negative on } (7, 8). \text{ (p is decreasing)} \\
& \text{So 7 is a local max.}
\end{align*}\]

\(\begin{align*}
\text{H) } & \lim_{x \to 0} \frac{e^x - 1}{x^4 + 2x} = \lim_{x \to 0} \frac{e^x}{6x^4 + 2} = \frac{e^0}{6(0)^4 + 2} = \frac{1}{2}.
\end{align*}\)
\[\lim_{x \to 0^+} \frac{3x - \ln(x)}{6x} = 0, \text{ positive} \]

\[\lim_{x \to 0} \cos(\frac{5}{x})^{\frac{5}{x}} = \lim_{x \to 0} e^{\ln(\cos(\frac{5}{x}))^{\frac{5}{x}}} = \lim_{x \to 0} e^{\frac{5}{x} \ln(\cos(3x))} = e^{\lim_{x \to 0} \frac{5 \ln(\cos 3x)}{x}} = e^0 = 1 \]

\[\text{(Since } \lim_{x \to 0} \frac{5 \ln(\cos 3x)}{x} = \lim_{x \to 0} \frac{5 \cdot (-\sin(3x))}{3 \cos(3x)} \cdot \frac{1}{3} = 0 \text{)} \]

\[\lim_{x \to 1} \left(\frac{1}{\ln(x)} - \frac{1}{x-1} \right) = \lim_{x \to 1} \left(\frac{x-1 - \ln(x)}{\ln(x)(x-1)} \right) \]
\[= \lim_{x \to 1} \frac{x - \frac{1}{x}}{\ln(x) + \frac{1}{x}(x-1)} = \lim_{x \to 1} \frac{x - 1}{x \ln(x) + x - 1} \]
\[= \lim_{x \to 1} \frac{1}{\ln(x) + x + \frac{1}{x} + 1} = 1 \to 0 \]
\[0+1+1 = \frac{1}{2} \]

\[\lim_{x \to -\infty} x e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}} = \lim_{x \to -\infty} \frac{1}{-e^{-x}} = \lim_{x \to -\infty} -e^x = 0 \]
$f(x)$ is increasing on $(-2, 3)$

decreasing on $(-\infty, -2), (3, \infty)$.

$f''(x) = 0$ at $x=5$ (the point of inflection).

$f''(x)$ is undefined at $x=-2$.
7) Local Extrema
 \(x = -2 \) a local max
 \(x = 1 \) a local max

8) Increase / Decrease
 Increasing \((-2, 1)\)
 Decreasing \((-\infty, -3) \cup (1, 3) \cup (-3, -2)\)

9) Concavity
 Concave Up \((-\infty, -3) \cup (-2, -1)\)
 Concave Down \((-3, -2) \cup (-1, 3)\)

10) Points of Inflection
 \(x = -3, -2, -1 \)

11) Critical points
 All local maxes, mins and
 \(x = -3 \quad (f' = 0) \)
 \(x = -1 \quad (f' \text{ undefined}) \)
 (All local maxes, mins and
 \(x = 0 \quad (f' = 0) \)
9. \[f(x) = \frac{x^3+1}{x^2-1} \]

\[
\lim_{x \to \infty} f(x) = \infty, \text{ via L'Hopital, so our answer is not } D.
\]

\[
\lim_{x \to 1^+} f(x) = \infty, \text{ so our answer is not } A.
\]

\[
\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{x^3+1}{x^2-1} = \lim_{x \to -1^-} \frac{3x^2}{2x} = \lim_{x \to -1^-} \frac{3}{2} x = -\frac{3}{2},
\]

so our answer is not B.

So our answer is C.

10. \[\text{Total Area = (Printed area) + Margins} \]

\[72 = (\text{Printed area}) + (3w+w+(l-4)) + (l-4) \]

So we want to maximize

\[PA = 72 - 4w - 2l + 8 \]

But we're requiring \(\text{Total area} = w \cdot l = 72 \). So \(l = \frac{72}{w} \), and

\[PA = 80 - 4w - \frac{144}{w} \]

\[(PA)' = -4 + \frac{144}{w^2} \]

Setting \((PA)' = 0\), we get \(w^2 = \frac{144}{4} = 36 \), or \(w = 6 \), \(l = 12 \).

Also, boundary values at \(w = 0 \) and \(l = 0 \) both give \(A = 0 \).
\(F(x) = \frac{2x^3 + 5}{3x^2 - x} \) is undefined when \(3x^2 - x = 0 \)

i.e. when \(x(3x-1) = 0 \), \(x = 0 \) or \(x = \frac{1}{3} \)

Since \(\lim_{x \to 0} F(x) = \infty \), \(F \) has a vertical asymptote at 0.

\(\lim_{x \to \frac{1}{3}} F(x) = -\infty \), \(F \) has a vertical asymptote at \(\frac{1}{3} \).

\(F \) has no horizontal asymptotes, since

\[\lim_{x \to \infty} F(x) = \infty \quad \text{(use L'Hospitil)} \]

\[\lim_{x \to -\infty} F(x) = -\infty \]

\[\text{Similarly, } G(x) = \frac{(x+3)^2}{9-x^2} \text{ is undefined when } 9-x^2 = 0 \]

i.e. \(x = \pm 3 \).

\[\lim_{x \to 3} G(x) = \infty, \text{ so } G \text{ has a vertical asymptote at } x = 3 \]

However

\[\lim_{x \to 3} G(x) = \lim_{x \to -3} \frac{(x+3)^2}{9-x^2} = \lim_{x \to -3} \frac{2(x+3)}{-2x} = 0, \]

so \(G \) does not have a vertical asymptote at \(x = -3 \).

We can use L'Hospital to find

\[\lim_{x \to \infty} g(x) = -1 = \lim_{x \to -\infty} g(x), \]

so \(g \) has a horizontal asymptote at \(y = -1 \).
Maximize Area.

\[
\text{Area} = l \cdot w
\]

Calling \(P = (x, y) \), \(l = x \) and \(w = y \).

\[
\text{Max } A = xy.
\]

Requiring \(P \) to lie on the line \(y = \frac{3}{4}x + 3 \), gives

\[
\text{Max } A = x\left(\frac{3}{4}x + 3\right).
\]

Then \(A' = \frac{3}{2}x + 3 \), so \(A' = 0 \iff x = 2 \), \(y = \frac{3}{2} + 3 = \frac{3}{2} \)

\[
A = 3.
\]

(Note boundary values are \(x = 0 \) or \(y = 0 \); both give \(A = 0 \).)

Max Profit = Revenue - Cost

Cost to take \(x \) people: \(6000 + 32x \).

When we have 50 people, $200 each.

When we get one more person, the fee decreases by $2. This implies the fee is a linear function of the number of people.

\[
\text{So price/person} = -2(\text{# of people}) + 300.
\]

So Revenue = \((\text{price/person})(\text{# of people}) = (-2x + 300)x \).
So we want to maximize

\[
\text{Profit} = (-2x + 300) x - (6000 + 32x) \\
P = -2x^2 + 268x - 6000, \text{ and we're requiring } 50 \leq x \leq 80.
\]

So \(P' = -4x + 268 \).

To find critical points, we set \(P' = 0 \) and get \(x = \frac{268}{4} = 67 \).

To see what our absolute max is, we evaluate \(P(50), P(67), P(80) \).

\[
P(50) = -2(50)(50) + 268(50) - 6000 \\
= 2400
\]

\[
P(67) = -2(67)(67) + 268(67) - 6000 \quad \text{\{Absolute Max with 67 people\}}
\]

\[
P(80) = -2(80)(80) + 268(80) - 6000(80) \\
= 2640
\]

13

\[
\text{Min}(SA)
\]

Minimize \(SA = 2(\pi r^2) + 2\pi rh \)

Requiring \(V = \pi r^2 h = 24 \)

or \(h = \frac{24}{\pi r^2} \)
So \(\text{Min } SA = 2\pi r^2 + 2\pi r \left(\frac{24}{\pi r^2} \right) = 2\pi r^2 + \frac{48}{r} \).

\[SA' = 4\pi r - \frac{48}{r^2} \]

\[SA' = 0 \quad \text{when} \quad 4\pi r - \frac{48}{r^2} = 0 \]

\[4\pi r = \frac{48}{r^2} \quad \Rightarrow \quad \pi r^3 = 12 \]

\[r = \sqrt[3]{\frac{12}{\pi}} \]

14. \(\text{Perimeter } = \pi r + 2h + b \)

\[= \pi r + 2h + 2r = 30 \]

Maximise \(A = \frac{1}{2} \pi r^2 + (2r)h \).

\[= \frac{1}{2} \pi r^2 + 2r \left(\frac{30 - \pi r - 2r}{2} \right) \]

\[= \frac{1}{2} \pi r^2 - \pi r^2 - 2r^2 + 30r \]

So \(A' = \pi r - 2\pi r - 4r + 30 \), and

\[A' = 0 \quad \text{when} \quad r = \frac{30}{\pi + 4}, \quad b = 2 \left(\frac{30}{\pi + 4} \right) = \frac{60}{\pi + 4}. \]