Name and Discussion Section Time:

M 408C
FINAL
Reid Sample

1. A particle P moves along the x -axis with position function at time t being $s(t)=t^{5}-5 t^{3}+10$.
(a) What is the velocity and acceleration at $t=2$? 6 points
(b) At what times is the particle stationary? 4 points
(c) On which intervals is the particle moving to the right (resp. left). 5 points
2. Find the general form of the anti-derivatives for the following functions.
(a) $\frac{e^{x}}{e^{2 x}+2 e^{x}+1} \quad 10$ points
(b) $\frac{x}{\sqrt{25-x^{2}}} 10$ points
3. Answer YES or NO to the following. To get full credit you must explain your answers and show your work:
(a) Does the following limit exist: 4 points

$$
\lim _{x \rightarrow-1} \frac{3 x^{7}+16 x^{3}+x+6}{x^{9}+6 x^{4}+4 x^{2}+3} .
$$

(b) Does the following limit exist: 6 points

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}}{2 \tan ^{2} 2 x} .
$$

(c) Is the function $f(x)=\left\{\begin{array}{ll}e^{x} & x<0 \\ 2 & x=0 \\ e^{-x} & x>0 .\end{array}\right.$ is continuous at $0 ? \quad 4$ points
(d) Is the function $h(x)=\frac{x}{x+1}$ is one-to-one. 6 points
4.(a) Show that the function $f(x)=\left\{\begin{array}{ll}1-x & x<1 \\ x^{2}-3 x+2 & x \geq 1 .\end{array}\right.$ is differentiable at $1 . \mathbf{1 0}$ points
(b) Let $f(x)=2 \sqrt{\pi-\arctan 2 x}$ and $g(x)=\frac{x^{2}+1}{x+2}$. Compute $(f \circ g)^{\prime}(0)$. 10 points
5.(a) Sketch the region R bounded by the curve $x=2 y-y^{2}$, and the y -axis from $y=0$ to $y=2$. 8 points
(b) Compute the area of the region $R .12$ points
6. Evaluate the definite integrals.
(a) $\int_{1}^{2}\left(\frac{x}{2}-\frac{2}{x}\right) d x$. 10 points
(b) $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}} 10$ points
7. A kite is flying at a height of 300 feet and moving in a horizontal wind. When 500 feet of string is out the kite is pulling the string out at a rate of 20 feet $/ \mathrm{sec}$. What is the kites (horizontal) velocity at this instant. 15 points
8. Find the area of the largest rectangle that can be inscribed in the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{25}=1 . \quad 15 \text { points }
$$

9. (a) Sketch the region Ω bounded by the curves $x=y^{2}+3$, and $x+y=5$ marking carefully the points where these curves meet. 8 points
(b) Find the volume of the solid obtained by revolving the region Ω (from part (a)) about the y-axis. 12 points

Questions 10, 11 and 12 refer to the function

$$
f(x)=\frac{x^{2}-5}{x+3}
$$

10. (a) Find the intervals on which f is increasing and those on which it is decreasing. 10 points
(b)Determine the critical values of f and the nature of any local extrema. 5 points
11. Find the intervals on which f is concave up/down and any inflection points. $\mathbf{1 0}$ points
12. Describe any horizontal and vertical asymptotes, x and y intercepts and then sketch the graph clearly marking the information on the graph. 10 points
