The Bianchi groups

Let d be a square-free positive integer, and O_d the ring of algebraic integers in the field $\mathbb{Q}(\sqrt{-d})$. The collection of groups

$$\text{PSL}_2(\mathbb{Z}) \subset \begin{array}{c} \text{PSL}(2, O_d) \end{array}$$

discrete subgps of $\text{PSL}_2(\mathbb{C})$.

is called the **Bianchi groups**.

The quotients (**Bianchi orbifolds**):

$$Q_d = \mathbb{H}^3 / \text{PSL}(2, O_d)$$

are finite volume hyperbolic orbifolds.

Definition: Let $M = \mathbb{H}^3 / \Gamma$ be a non-compact finite volume hyperbolic 3-manifold (or orbifold). Then Γ is **arithmetic** if some conjugate of Γ in $\text{PSL}(2, \mathbb{C})$ is commensurable with $\text{PSL}(2, O_d)$.
Hyperbolic Manifolds

Let H^3 denote hyperbolic 3-space.

The full group of orientation-preserving isometries can be identified with $\text{PSL}(2, \mathbb{C})$.

Linear fractional action

$$z \rightarrow \frac{az + b}{cz + d}$$

extended to H^3 by Poincaré Extn.
We will only be interested in non-compact finite volume hyperbolic 3-manifolds (and orbifolds). These manifolds (and orbifolds) have the form:

These manifolds can be described as complements of links in closed orientable 3-manifolds.
Remarks: (1) Let h_d denote the class number of $\mathbb{Q}(\sqrt{-d})$. Hurwitz showed:

Q_d has h_d cusps.

(2) When $d \neq 1, 3$, every cusp cross-section of Q_d is a torus.

When $d = 1$ the cusp cross-section is

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \text{ fixes } \infty$$

When $d = 3$ the cusp cross-section is

$$\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix} \text{ fixes } \infty$$

$\omega = -1 + \frac{5 - 3}{2}$

Mark: When $h_d > 1$ there can be orbifolds in the commensurability class with ω.

There are only finitely many such comm classes.
Some Bianchi orbifolds

\[d = 1 \]

\[d = 2 \]

\[d = 3 \]

\[d = 5 \]

\[d = 7 \]
Comparison with the $\text{PSL}(2, \mathbb{Z})$

Cuspidal Cohomology

Let Γ be a non-cocompact Kleinian (resp. Fuchsian) group acting on \mathbb{H}^3 (resp. \mathbb{H}^2).

Let $\mathcal{U}(\Gamma)$ denote the subgroup of Γ generated by parabolic elements of Γ and define:

$$V(\Gamma) = (\Gamma/\mathcal{U}(\Gamma))^{ab} \otimes_{\mathbb{Z}} \mathbb{Q}$$

Then $r(\Gamma) = \dim_{\mathbb{Q}}(V(\Gamma))$ denotes the dimension of the space of non-peripheral homology or equivalently $r(\Gamma)$ is the dimension of the Cuspidal Cohomology of Γ.
Examples:

1) If \mathbb{H}^2/Γ is genus g surface with p punctures and finitely many orbifold points, then $r(\Gamma) = g$.

Thus $r(\text{PSL}(2, \mathbb{Z})) = 0$.

2) Let n be a square-free positive integer and define:

$$\Gamma_0(n) = \text{P}\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : c = 0 \mod n \right\}$$

and $O_n = \mathbb{H}^2/\Gamma_0(n)$.

Now the Riemann-Hurwitz formula shows easily that $g(O_n) = 0$ if and only if $1 \leq n \leq 10$ and $n = 12, 13, 16, 18, 25$.
(2) If $L \subset S^3$ is a link then $r(\Gamma) = 0$. The link group is generated by meridians.

$$\pi_1(S^3 \setminus L)$$

(3) If L is a link in a rational homology 3-sphere, $r(\Gamma) = 0$.
Grunewald’s work on Bianchi groups

with Schwermer:

with Elstrodt and Mennicke:

Eisenstein series for imaginary quadratic number fields. Contemp. Math., 53.

On the group PSL₂(\(\mathbb{Z}[i]\)). London Math. Soc. Lecture Note Ser., 56.

PSL(2) over imaginary quadratic integers. Astérisque, 94.
with Mennicke:

with Helling and Mennicke:

SL_2 over complex quadratic number fields. I. Algebra i Logika 17 (1978).

Preprint with Finis and Tirao

The cohomology of lattices in $\text{SL}_2(\mathbb{C})$.

13
Theorem: (Cuspidal Cohomology Problem) (Harder, Zimmert, Grunewald-Schwermer, Rohlfs,, Vogtmann)

The only Bianchi orbifolds \(Q_d \) that can admit a finite sheeted cover that is a link complement in \(S^3 \) arise when

\[d \in \{1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71\}. \]

(i.e. \(\left(\text{PSL}_2(\mathbb{O}_d) \right) = 0 \) \(\iff \) \(d \in \text{list above} \))

Theorem: (Baker) For all values \(d \) as above, there exists a link complement covering \(Q_d \).
Arithmetic Knots

What can one say about \(M \rightarrow Q_d \) with \(M \) having 1 cusp. (or more generally 1-cusped auth. 3-mflds)

Note: If \(M \rightarrow Q_d \) and \(M \) has 1 cusp, then \(Q_d \) has 1 cusp. Thus \(h_d = 1 \) (by Hurwitz's theorem).

Solution to the class number 1 problem: \(h_d = 1 \) if and only if

\[
d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.
\]

Examples:

\[
d = 1
\]

\[
d = 3
\]

[cyclic covers]

\[
((-11), (-10))
\]

Remark: \(d = 2, 7, 11, 19 \) there are also 1 cusped covers.

(Brunner, Frame, Lee Wieland)
Dehn Surgery

$S^3 \setminus N(K)$

$\mu \to m^p \times q$

$\langle p, q \rangle = 1$

V solid torus

Glue by homeo of boundaries
Understanding 1-cusped __is the same as understanding arithmetic knots.

Definition: A knot K (or link L) in a closed orientable 3-manifold is called arithmetic if $M \setminus K$ (resp. $M \setminus L$) is arithmetic.

Example—S^3

Theorem: (R) *The figure eight knot is the only arithmetic knot.*

Links are different. *There are infinitely many arithmetic links (even of two components).*

Take m-fold cyclic covers $(3, m) = 1$.

$d = 2$.
A question that naturally arise from this:

Question: Does every closed orientable 3-manifold contain an arithmetic knot?

Why Care?

A positive answer implies the Poincare Conjecture.

The proof that the figure eight knot is the only arithmetic knot in S^3 shows that the figure eight knot in S^3 is the only arithmetic knot in a homotopy 3-sphere.
Remark: Once again links are different.

Every closed orientable 3-manifold contains an arithmetic link.

The reason is:

The figure eight knot is *universal* (every closed orientable 3-manifold arises as a branched cover of S^3 with branch set K).
Theorem 1: (Baker-R) Suppose L is a Lens space with $\pi_1(L)$ of odd order $\neq 5$. Then L does not contain an arithmetic knot.

Some ideas in Proof:

1. \[L \rightarrow \mathbb{H}^3 / \Gamma \]
 \[\Rightarrow d \in \{1, 2, 3, 7, 11, 19\} \]

2. $P_0 \subset \Gamma \subset \text{PSL}_2(\mathbb{O}_d)$ be peripheral subgroup fixing ∞.
 \[P_0 = \langle (1, x) (0, 1) \rangle, \quad x, y \in \mathbb{O}_d \]
 \[\cong \mathbb{Z} \oplus \mathbb{Z} \]
 \[\mu = \text{"meridian" of } K. \]

Gromov-Thurston 2-Thu. $\implies 1 \times 1 \leq 6$ "small"
(Improvement, Agol, Lackenby
6 Theorem)

$O_d \subset \mathbb{C}$ discrete \implies only finitely many $x.$
D) Two Cases

\(x \neq \text{a unit} \)

(i) \(x \text{ a unit } \implies L \setminus K \cong S^3 \times \mathbb{R} \)

Impossible as \(S^3 \times \mathbb{R} \)

has no Lens Space Dehn Surgery.

(ii) \(x \neq \text{a unit} \).

\(\langle x \rangle \) non-trivial ideal, so \(\exists \mathfrak{p} | \langle x \rangle \)

\(\mathfrak{p} \) a prime ideal.

\[
\begin{align*}
\operatorname{PSL}_2(\mathbb{Q}_d) & \overset{\langle \mathfrak{p} \rangle}{\longrightarrow} \operatorname{PSL}_2(\mathbb{Q}_\mathfrak{a}/\mathfrak{p}) \\
\Gamma & \longrightarrow \Gamma/\langle \langle \mathfrak{p} \rangle \rangle = \pi_1 \mathbb{T}
\end{align*}
\]

\(\mathfrak{p}(\Gamma) \) cyclic \((\neq 1, \mathbb{H}^3/\ker \epsilon_\mathfrak{p} > 1 \text{ ungr}) \)

\(\mathfrak{p}(\Gamma) \) is cyclic of large prime order

But \(|\mathfrak{F} = \mathbb{Q}_d/\langle \mathfrak{p} \rangle| \) is bounded on \(1 \times 1 \leq 6 \)

Contradiction.
Unlike the case of S^3, there are examples of closed orientable hyperbolic 3-manifolds that contain more than one arithmetic knot.

Examples:

1. $S^2 \times S^1$ contains at least 2 arithmetic knots (the complements being commensurable with Q_3 and Q_7).

2. $\mathbb{RP}^3 \# \mathbb{RP}^3$ contains at least 2 arithmetic knots (the complements being commensurable with Q_1 and Q_3).

3. $L(4,1) \# L(4,1)$ contains at least 2 arithmetic knots (both the complements being commensurable with Q_7).

4. $\mathbb{RP}^3 \# (S^2 \times S^1)$ contains at least 2 arithmetic knots (the complements being commensurable with Q_1 and Q_3).
There are hyperbolic examples:

The manifold obtained by 5/1-Dehn surgery on the figure eight knot contains at least 2 arithmetic knots.

One obvious one, and the other is shown:

\[\text{Brunner - Frenkel - Lee}\]
\[\text{Wiclenberg.}\]

Question: *Is the number of arithmetic knots in a closed orientable 3-manifold finite?*
One can generalize the question about the uniqueness of the figure eight knot in S^3 in two obvious ways.

$$ S^3 \xrightarrow{\text{spherical}} \text{integral homology 3-sphere.} $$

Question: What can one say about arithmetic knots in spherical 3-manifolds or integral homology 3-spheres?

Theorem 2: (Baker-R) Suppose M be a spherical 3-manifold or an integral homology 3-sphere. Suppose that

$$ M \setminus K \rightarrow \mathbb{Q}_d. $$

Then,

(1) If M is spherical then $d = 3$.

(2) If M is an integral homology 3-sphere, $d = 1, 3$.

23
Remain: If M is an integral homology 3-sphere and $K \subset M$ an arithmetic knot then one can show that $M \setminus K \to Q_d$ for some d.

[True for knots in mod 2 homology spheres]

Conjecture: Let M be an integral homology 3-sphere. If M contains an arithmetic knot K, then M is obtained by $1/n$-Dehn surgery on the figure eight knot complement and K is "the core of the surgery solid torus".

i.e. $M \setminus K \cong S^3 \setminus \text{fig 8 knot}$.
Final Comments

1-cusped congruence subgroups

In the case of the modular group H, Petersson showed that there are only finitely many 1-cusped congruence subgroups of $\text{PSL}(2, \mathbb{Z})$.

In her (2005) thesis, K. Petersen (my former student) showed that there are only finitely many **maximal 1-cusped congruence subgroups**.

Indeed for $d = 11, 19, 43, 67, 163$ there are only finitely many 1-cusped congruence subgroups.

For $d = 19, 43, 67, 163$ there are **no torsion-free 1-cusped congruence subgroups**.
Arithmetic number of a closed orientable 3-manifold

Let M be a closed orientable 3-manifold. The arithmetic number of M, denoted $\mathcal{A}(M)$, is the minimal number of components of a non-empty arithmetic link in M.

As remarked, M contains an arithmetic link, so $\mathcal{A}(M)$ is well defined positive integer.

Examples: (1) A Lens Space L is a Dehn surgery on the Whitehead link, so that $\mathcal{A}(L) \leq 2$. Theorem 1 therefore shows $\mathcal{A}(L) = 2$ for L with $\pi_1(L)$ odd order $\neq 5$.

\begin{center}
\includegraphics[width=0.2\textwidth]{diagram.png}
\end{center}
(2) The Poincare homology sphere Σ contains a 2-component arithmetic link so $A(\Sigma) \leq 2$.

This prompts:

Question: Does the Poincare homology sphere contain an arithmetic knot?

(3) Methods of proof of Theorem 1 show "many" non-hyperbolic 3-manifolds have arithmetic number ≥ 2.

Brunner - Frence - Lee - Wienberg.
Challenges:

(1) Prove that there exists closed orientable 3-manifolds for which $\mathcal{A}(M)$ is arbitrarily large.

(2) Prove that there exists a closed orientable hyperbolic 3-manifold that does not contain an arithmetic knot; ie $\mathcal{A}(M) \geq 2$.

(1) Looks like it is related to Heegaard genus.

(2) There are candidate integral homology 3-spheres.